Merge remote-tracking branch 'upstream/master'

This commit is contained in:
Willie Zutz
2025-04-19 12:51:57 -06:00
127 changed files with 5838 additions and 7063 deletions

View File

@ -1,38 +0,0 @@
import { startWebSocketServer } from './websocket';
import express from 'express';
import cors from 'cors';
import http from 'http';
import routes from './routes';
import { getPort } from './config';
import logger from './utils/logger';
const port = getPort();
const app = express();
const server = http.createServer(app);
const corsOptions = {
origin: '*',
};
app.use(cors(corsOptions));
app.use(express.json());
app.use('/api', routes);
app.get('/api', (_, res) => {
res.status(200).json({ status: 'ok' });
});
server.listen(port, () => {
logger.info(`Server is running on port ${port}`);
});
startWebSocketServer(server);
process.on('uncaughtException', (err, origin) => {
logger.error(`Uncaught Exception at ${origin}: ${err}`);
});
process.on('unhandledRejection', (reason, promise) => {
logger.error(`Unhandled Rejection at: ${promise}, reason: ${reason}`);
});

306
src/app/api/chat/route.ts Normal file
View File

@ -0,0 +1,306 @@
import prompts from '@/lib/prompts';
import MetaSearchAgent from '@/lib/search/metaSearchAgent';
import crypto from 'crypto';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { EventEmitter } from 'stream';
import {
chatModelProviders,
embeddingModelProviders,
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '@/lib/providers';
import db from '@/lib/db';
import { chats, messages as messagesSchema } from '@/lib/db/schema';
import { and, eq, gt } from 'drizzle-orm';
import { getFileDetails } from '@/lib/utils/files';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { ChatOpenAI } from '@langchain/openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { searchHandlers } from '@/lib/search';
export const runtime = 'nodejs';
export const dynamic = 'force-dynamic';
type Message = {
messageId: string;
chatId: string;
content: string;
};
type ChatModel = {
provider: string;
name: string;
};
type EmbeddingModel = {
provider: string;
name: string;
};
type Body = {
message: Message;
optimizationMode: 'speed' | 'balanced' | 'quality';
focusMode: string;
history: Array<[string, string]>;
files: Array<string>;
chatModel: ChatModel;
embeddingModel: EmbeddingModel;
systemInstructions: string;
};
const handleEmitterEvents = async (
stream: EventEmitter,
writer: WritableStreamDefaultWriter,
encoder: TextEncoder,
aiMessageId: string,
chatId: string,
) => {
let recievedMessage = '';
let sources: any[] = [];
stream.on('data', (data) => {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
writer.write(
encoder.encode(
JSON.stringify({
type: 'message',
data: parsedData.data,
messageId: aiMessageId,
}) + '\n',
),
);
recievedMessage += parsedData.data;
} else if (parsedData.type === 'sources') {
writer.write(
encoder.encode(
JSON.stringify({
type: 'sources',
data: parsedData.data,
messageId: aiMessageId,
}) + '\n',
),
);
sources = parsedData.data;
}
});
stream.on('end', () => {
writer.write(
encoder.encode(
JSON.stringify({
type: 'messageEnd',
messageId: aiMessageId,
}) + '\n',
),
);
writer.close();
db.insert(messagesSchema)
.values({
content: recievedMessage,
chatId: chatId,
messageId: aiMessageId,
role: 'assistant',
metadata: JSON.stringify({
createdAt: new Date(),
...(sources && sources.length > 0 && { sources }),
}),
})
.execute();
});
stream.on('error', (data) => {
const parsedData = JSON.parse(data);
writer.write(
encoder.encode(
JSON.stringify({
type: 'error',
data: parsedData.data,
}),
),
);
writer.close();
});
};
const handleHistorySave = async (
message: Message,
humanMessageId: string,
focusMode: string,
files: string[],
) => {
const chat = await db.query.chats.findFirst({
where: eq(chats.id, message.chatId),
});
if (!chat) {
await db
.insert(chats)
.values({
id: message.chatId,
title: message.content,
createdAt: new Date().toString(),
focusMode: focusMode,
files: files.map(getFileDetails),
})
.execute();
}
const messageExists = await db.query.messages.findFirst({
where: eq(messagesSchema.messageId, humanMessageId),
});
if (!messageExists) {
await db
.insert(messagesSchema)
.values({
content: message.content,
chatId: message.chatId,
messageId: humanMessageId,
role: 'user',
metadata: JSON.stringify({
createdAt: new Date(),
}),
})
.execute();
} else {
await db
.delete(messagesSchema)
.where(
and(
gt(messagesSchema.id, messageExists.id),
eq(messagesSchema.chatId, message.chatId),
),
)
.execute();
}
};
export const POST = async (req: Request) => {
try {
const body = (await req.json()) as Body;
const { message } = body;
if (message.content === '') {
return Response.json(
{
message: 'Please provide a message to process',
},
{ status: 400 },
);
}
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.name || Object.keys(chatModelProvider)[0]
];
const embeddingProvider =
embeddingModelProviders[
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0]
];
const embeddingModel =
embeddingProvider[
body.embeddingModel?.name || Object.keys(embeddingProvider)[0]
];
let llm: BaseChatModel | undefined;
let embedding = embeddingModel.model;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
if (!embedding) {
return Response.json(
{ error: 'Invalid embedding model' },
{ status: 400 },
);
}
const humanMessageId =
message.messageId ?? crypto.randomBytes(7).toString('hex');
const aiMessageId = crypto.randomBytes(7).toString('hex');
const history: BaseMessage[] = body.history.map((msg) => {
if (msg[0] === 'human') {
return new HumanMessage({
content: msg[1],
});
} else {
return new AIMessage({
content: msg[1],
});
}
});
const handler = searchHandlers[body.focusMode];
if (!handler) {
return Response.json(
{
message: 'Invalid focus mode',
},
{ status: 400 },
);
}
const stream = await handler.searchAndAnswer(
message.content,
history,
llm,
embedding,
body.optimizationMode,
body.files,
body.systemInstructions,
);
const responseStream = new TransformStream();
const writer = responseStream.writable.getWriter();
const encoder = new TextEncoder();
handleEmitterEvents(stream, writer, encoder, aiMessageId, message.chatId);
handleHistorySave(message, humanMessageId, body.focusMode, body.files);
return new Response(responseStream.readable, {
headers: {
'Content-Type': 'text/event-stream',
Connection: 'keep-alive',
'Cache-Control': 'no-cache, no-transform',
},
});
} catch (err) {
console.error('An error occurred while processing chat request:', err);
return Response.json(
{ message: 'An error occurred while processing chat request' },
{ status: 500 },
);
}
};

View File

@ -0,0 +1,69 @@
import db from '@/lib/db';
import { chats, messages } from '@/lib/db/schema';
import { eq } from 'drizzle-orm';
export const GET = async (
req: Request,
{ params }: { params: Promise<{ id: string }> },
) => {
try {
const { id } = await params;
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, id),
});
if (!chatExists) {
return Response.json({ message: 'Chat not found' }, { status: 404 });
}
const chatMessages = await db.query.messages.findMany({
where: eq(messages.chatId, id),
});
return Response.json(
{
chat: chatExists,
messages: chatMessages,
},
{ status: 200 },
);
} catch (err) {
console.error('Error in getting chat by id: ', err);
return Response.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
};
export const DELETE = async (
req: Request,
{ params }: { params: Promise<{ id: string }> },
) => {
try {
const { id } = await params;
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, id),
});
if (!chatExists) {
return Response.json({ message: 'Chat not found' }, { status: 404 });
}
await db.delete(chats).where(eq(chats.id, id)).execute();
await db.delete(messages).where(eq(messages.chatId, id)).execute();
return Response.json(
{ message: 'Chat deleted successfully' },
{ status: 200 },
);
} catch (err) {
console.error('Error in deleting chat by id: ', err);
return Response.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
};

View File

@ -0,0 +1,15 @@
import db from '@/lib/db';
export const GET = async (req: Request) => {
try {
let chats = await db.query.chats.findMany();
chats = chats.reverse();
return Response.json({ chats: chats }, { status: 200 });
} catch (err) {
console.error('Error in getting chats: ', err);
return Response.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
};

119
src/app/api/config/route.ts Normal file
View File

@ -0,0 +1,119 @@
import {
getAnthropicApiKey,
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
getGeminiApiKey,
getGroqApiKey,
getOllamaApiEndpoint,
getOpenaiApiKey,
getDeepseekApiKey,
getLMStudioApiEndpoint,
updateConfig,
} from '@/lib/config';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '@/lib/providers';
export const GET = async (req: Request) => {
try {
const config: Record<string, any> = {};
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
config['chatModelProviders'] = {};
config['embeddingModelProviders'] = {};
for (const provider in chatModelProviders) {
config['chatModelProviders'][provider] = Object.keys(
chatModelProviders[provider],
).map((model) => {
return {
name: model,
displayName: chatModelProviders[provider][model].displayName,
};
});
}
for (const provider in embeddingModelProviders) {
config['embeddingModelProviders'][provider] = Object.keys(
embeddingModelProviders[provider],
).map((model) => {
return {
name: model,
displayName: embeddingModelProviders[provider][model].displayName,
};
});
}
config['openaiApiKey'] = getOpenaiApiKey();
config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['lmStudioApiUrl'] = getLMStudioApiEndpoint();
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey();
config['deepseekApiKey'] = getDeepseekApiKey();
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
config['customOpenaiModelName'] = getCustomOpenaiModelName();
return Response.json({ ...config }, { status: 200 });
} catch (err) {
console.error('An error occurred while getting config:', err);
return Response.json(
{ message: 'An error occurred while getting config' },
{ status: 500 },
);
}
};
export const POST = async (req: Request) => {
try {
const config = await req.json();
const updatedConfig = {
MODELS: {
OPENAI: {
API_KEY: config.openaiApiKey,
},
GROQ: {
API_KEY: config.groqApiKey,
},
ANTHROPIC: {
API_KEY: config.anthropicApiKey,
},
GEMINI: {
API_KEY: config.geminiApiKey,
},
OLLAMA: {
API_URL: config.ollamaApiUrl,
},
DEEPSEEK: {
API_KEY: config.deepseekApiKey,
},
LM_STUDIO: {
API_URL: config.lmStudioApiUrl,
},
CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey,
MODEL_NAME: config.customOpenaiModelName,
},
},
};
updateConfig(updatedConfig);
return Response.json({ message: 'Config updated' }, { status: 200 });
} catch (err) {
console.error('An error occurred while updating config:', err);
return Response.json(
{ message: 'An error occurred while updating config' },
{ status: 500 },
);
}
};

View File

@ -0,0 +1,61 @@
import { searchSearxng } from '@/lib/searxng';
const articleWebsites = [
'yahoo.com',
'www.exchangewire.com',
'businessinsider.com',
/* 'wired.com',
'mashable.com',
'theverge.com',
'gizmodo.com',
'cnet.com',
'venturebeat.com', */
];
const topics = ['AI', 'tech']; /* TODO: Add UI to customize this */
export const GET = async (req: Request) => {
try {
const data = (
await Promise.all([
...new Array(articleWebsites.length * topics.length)
.fill(0)
.map(async (_, i) => {
return (
await searchSearxng(
`site:${articleWebsites[i % articleWebsites.length]} ${
topics[i % topics.length]
}`,
{
engines: ['bing news'],
pageno: 1,
},
)
).results;
}),
])
)
.map((result) => result)
.flat()
.sort(() => Math.random() - 0.5);
return Response.json(
{
blogs: data,
},
{
status: 200,
},
);
} catch (err) {
console.error(`An error occurred in discover route: ${err}`);
return Response.json(
{
message: 'An error has occurred',
},
{
status: 500,
},
);
}
};

View File

@ -0,0 +1,83 @@
import handleImageSearch from '@/lib/chains/imageSearchAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { getAvailableChatModelProviders } from '@/lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { ChatOpenAI } from '@langchain/openai';
interface ChatModel {
provider: string;
model: string;
}
interface ImageSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
export const POST = async (req: Request) => {
try {
const body: ImageSearchBody = await req.json();
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.model || Object.keys(chatModelProvider)[0]
];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
const images = await handleImageSearch(
{
chat_history: chatHistory,
query: body.query,
},
llm,
);
return Response.json({ images }, { status: 200 });
} catch (err) {
console.error(`An error occurred while searching images: ${err}`);
return Response.json(
{ message: 'An error occurred while searching images' },
{ status: 500 },
);
}
};

View File

@ -0,0 +1,47 @@
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '@/lib/providers';
export const GET = async (req: Request) => {
try {
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
Object.keys(chatModelProviders).forEach((provider) => {
Object.keys(chatModelProviders[provider]).forEach((model) => {
delete (chatModelProviders[provider][model] as { model?: unknown })
.model;
});
});
Object.keys(embeddingModelProviders).forEach((provider) => {
Object.keys(embeddingModelProviders[provider]).forEach((model) => {
delete (embeddingModelProviders[provider][model] as { model?: unknown })
.model;
});
});
return Response.json(
{
chatModelProviders,
embeddingModelProviders,
},
{
status: 200,
},
);
} catch (err) {
console.error('An error occurred while fetching models', err);
return Response.json(
{
message: 'An error has occurred.',
},
{
status: 500,
},
);
}
};

270
src/app/api/search/route.ts Normal file
View File

@ -0,0 +1,270 @@
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import { ChatOpenAI } from '@langchain/openai';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '@/lib/providers';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { MetaSearchAgentType } from '@/lib/search/metaSearchAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { searchHandlers } from '@/lib/search';
interface chatModel {
provider: string;
name: string;
customOpenAIKey?: string;
customOpenAIBaseURL?: string;
}
interface embeddingModel {
provider: string;
name: string;
}
interface ChatRequestBody {
optimizationMode: 'speed' | 'balanced';
focusMode: string;
chatModel?: chatModel;
embeddingModel?: embeddingModel;
query: string;
history: Array<[string, string]>;
stream?: boolean;
systemInstructions?: string;
}
export const POST = async (req: Request) => {
try {
const body: ChatRequestBody = await req.json();
if (!body.focusMode || !body.query) {
return Response.json(
{ message: 'Missing focus mode or query' },
{ status: 400 },
);
}
body.history = body.history || [];
body.optimizationMode = body.optimizationMode || 'balanced';
body.stream = body.stream || false;
const history: BaseMessage[] = body.history.map((msg) => {
return msg[0] === 'human'
? new HumanMessage({ content: msg[1] })
: new AIMessage({ content: msg[1] });
});
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.name ||
Object.keys(chatModelProviders[chatModelProvider])[0];
const embeddingModelProvider =
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0];
const embeddingModel =
body.embeddingModel?.name ||
Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
let llm: BaseChatModel | undefined;
let embeddings: Embeddings | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: body.chatModel?.name || getCustomOpenaiModelName(),
openAIApiKey:
body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL:
body.chatModel?.customOpenAIBaseURL || getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
}
if (
embeddingModelProviders[embeddingModelProvider] &&
embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddings = embeddingModelProviders[embeddingModelProvider][
embeddingModel
].model as Embeddings | undefined;
}
if (!llm || !embeddings) {
return Response.json(
{ message: 'Invalid model selected' },
{ status: 400 },
);
}
const searchHandler: MetaSearchAgentType = searchHandlers[body.focusMode];
if (!searchHandler) {
return Response.json({ message: 'Invalid focus mode' }, { status: 400 });
}
const emitter = await searchHandler.searchAndAnswer(
body.query,
history,
llm,
embeddings,
body.optimizationMode,
[],
body.systemInstructions || '',
);
if (!body.stream) {
return new Promise(
(
resolve: (value: Response) => void,
reject: (value: Response) => void,
) => {
let message = '';
let sources: any[] = [];
emitter.on('data', (data: string) => {
try {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
message += parsedData.data;
} else if (parsedData.type === 'sources') {
sources = parsedData.data;
}
} catch (error) {
reject(
Response.json(
{ message: 'Error parsing data' },
{ status: 500 },
),
);
}
});
emitter.on('end', () => {
resolve(Response.json({ message, sources }, { status: 200 }));
});
emitter.on('error', (error: any) => {
reject(
Response.json(
{ message: 'Search error', error },
{ status: 500 },
),
);
});
},
);
}
const encoder = new TextEncoder();
const abortController = new AbortController();
const { signal } = abortController;
const stream = new ReadableStream({
start(controller) {
let sources: any[] = [];
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'init',
data: 'Stream connected',
}) + '\n',
),
);
signal.addEventListener('abort', () => {
emitter.removeAllListeners();
try {
controller.close();
} catch (error) {}
});
emitter.on('data', (data: string) => {
if (signal.aborted) return;
try {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'response',
data: parsedData.data,
}) + '\n',
),
);
} else if (parsedData.type === 'sources') {
sources = parsedData.data;
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'sources',
data: sources,
}) + '\n',
),
);
}
} catch (error) {
controller.error(error);
}
});
emitter.on('end', () => {
if (signal.aborted) return;
controller.enqueue(
encoder.encode(
JSON.stringify({
type: 'done',
}) + '\n',
),
);
controller.close();
});
emitter.on('error', (error: any) => {
if (signal.aborted) return;
controller.error(error);
});
},
cancel() {
abortController.abort();
},
});
return new Response(stream, {
headers: {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache, no-transform',
Connection: 'keep-alive',
},
});
} catch (err: any) {
console.error(`Error in getting search results: ${err.message}`);
return Response.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
};

View File

@ -0,0 +1,81 @@
import generateSuggestions from '@/lib/chains/suggestionGeneratorAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { getAvailableChatModelProviders } from '@/lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { ChatOpenAI } from '@langchain/openai';
interface ChatModel {
provider: string;
model: string;
}
interface SuggestionsGenerationBody {
chatHistory: any[];
chatModel?: ChatModel;
}
export const POST = async (req: Request) => {
try {
const body: SuggestionsGenerationBody = await req.json();
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.model || Object.keys(chatModelProvider)[0]
];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
const suggestions = await generateSuggestions(
{
chat_history: chatHistory,
},
llm,
);
return Response.json({ suggestions }, { status: 200 });
} catch (err) {
console.error(`An error occurred while generating suggestions: ${err}`);
return Response.json(
{ message: 'An error occurred while generating suggestions' },
{ status: 500 },
);
}
};

View File

@ -0,0 +1,134 @@
import { NextResponse } from 'next/server';
import fs from 'fs';
import path from 'path';
import crypto from 'crypto';
import { getAvailableEmbeddingModelProviders } from '@/lib/providers';
import { PDFLoader } from '@langchain/community/document_loaders/fs/pdf';
import { DocxLoader } from '@langchain/community/document_loaders/fs/docx';
import { RecursiveCharacterTextSplitter } from '@langchain/textsplitters';
import { Document } from 'langchain/document';
interface FileRes {
fileName: string;
fileExtension: string;
fileId: string;
}
const uploadDir = path.join(process.cwd(), 'uploads');
if (!fs.existsSync(uploadDir)) {
fs.mkdirSync(uploadDir, { recursive: true });
}
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 500,
chunkOverlap: 100,
});
export async function POST(req: Request) {
try {
const formData = await req.formData();
const files = formData.getAll('files') as File[];
const embedding_model = formData.get('embedding_model');
const embedding_model_provider = formData.get('embedding_model_provider');
if (!embedding_model || !embedding_model_provider) {
return NextResponse.json(
{ message: 'Missing embedding model or provider' },
{ status: 400 },
);
}
const embeddingModels = await getAvailableEmbeddingModelProviders();
const provider =
embedding_model_provider ?? Object.keys(embeddingModels)[0];
const embeddingModel =
embedding_model ?? Object.keys(embeddingModels[provider as string])[0];
let embeddingsModel =
embeddingModels[provider as string]?.[embeddingModel as string]?.model;
if (!embeddingsModel) {
return NextResponse.json(
{ message: 'Invalid embedding model selected' },
{ status: 400 },
);
}
const processedFiles: FileRes[] = [];
await Promise.all(
files.map(async (file: any) => {
const fileExtension = file.name.split('.').pop();
if (!['pdf', 'docx', 'txt'].includes(fileExtension!)) {
return NextResponse.json(
{ message: 'File type not supported' },
{ status: 400 },
);
}
const uniqueFileName = `${crypto.randomBytes(16).toString('hex')}.${fileExtension}`;
const filePath = path.join(uploadDir, uniqueFileName);
const buffer = Buffer.from(await file.arrayBuffer());
fs.writeFileSync(filePath, new Uint8Array(buffer));
let docs: any[] = [];
if (fileExtension === 'pdf') {
const loader = new PDFLoader(filePath);
docs = await loader.load();
} else if (fileExtension === 'docx') {
const loader = new DocxLoader(filePath);
docs = await loader.load();
} else if (fileExtension === 'txt') {
const text = fs.readFileSync(filePath, 'utf-8');
docs = [
new Document({ pageContent: text, metadata: { title: file.name } }),
];
}
const splitted = await splitter.splitDocuments(docs);
const extractedDataPath = filePath.replace(/\.\w+$/, '-extracted.json');
fs.writeFileSync(
extractedDataPath,
JSON.stringify({
title: file.name,
contents: splitted.map((doc) => doc.pageContent),
}),
);
const embeddings = await embeddingsModel.embedDocuments(
splitted.map((doc) => doc.pageContent),
);
const embeddingsDataPath = filePath.replace(
/\.\w+$/,
'-embeddings.json',
);
fs.writeFileSync(
embeddingsDataPath,
JSON.stringify({
title: file.name,
embeddings,
}),
);
processedFiles.push({
fileName: file.name,
fileExtension: fileExtension,
fileId: uniqueFileName.replace(/\.\w+$/, ''),
});
}),
);
return NextResponse.json({
files: processedFiles,
});
} catch (error) {
console.error('Error uploading file:', error);
return NextResponse.json(
{ message: 'An error has occurred.' },
{ status: 500 },
);
}
}

View File

@ -0,0 +1,83 @@
import handleVideoSearch from '@/lib/chains/videoSearchAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '@/lib/config';
import { getAvailableChatModelProviders } from '@/lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { ChatOpenAI } from '@langchain/openai';
interface ChatModel {
provider: string;
model: string;
}
interface VideoSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
export const POST = async (req: Request) => {
try {
const body: VideoSearchBody = await req.json();
const chatHistory = body.chatHistory
.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
})
.filter((msg) => msg !== undefined) as BaseMessage[];
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
chatModelProviders[
body.chatModel?.provider || Object.keys(chatModelProviders)[0]
];
const chatModel =
chatModelProvider[
body.chatModel?.model || Object.keys(chatModelProvider)[0]
];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
openAIApiKey: getCustomOpenaiApiKey(),
modelName: getCustomOpenaiModelName(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (chatModelProvider && chatModel) {
llm = chatModel.model;
}
if (!llm) {
return Response.json({ error: 'Invalid chat model' }, { status: 400 });
}
const videos = await handleVideoSearch(
{
chat_history: chatHistory,
query: body.query,
},
llm,
);
return Response.json({ videos }, { status: 200 });
} catch (err) {
console.error(`An error occurred while searching videos: ${err}`);
return Response.json(
{ message: 'An error occurred while searching videos' },
{ status: 500 },
);
}
};

View File

@ -0,0 +1,9 @@
import ChatWindow from '@/components/ChatWindow';
import React from 'react';
const Page = ({ params }: { params: Promise<{ chatId: string }> }) => {
const { chatId } = React.use(params);
return <ChatWindow id={chatId} />;
};
export default Page;

113
src/app/discover/page.tsx Normal file
View File

@ -0,0 +1,113 @@
'use client';
import { Search } from 'lucide-react';
import { useEffect, useState } from 'react';
import Link from 'next/link';
import { toast } from 'sonner';
interface Discover {
title: string;
content: string;
url: string;
thumbnail: string;
}
const Page = () => {
const [discover, setDiscover] = useState<Discover[] | null>(null);
const [loading, setLoading] = useState(true);
useEffect(() => {
const fetchData = async () => {
try {
const res = await fetch(`/api/discover`, {
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
});
const data = await res.json();
if (!res.ok) {
throw new Error(data.message);
}
data.blogs = data.blogs.filter((blog: Discover) => blog.thumbnail);
setDiscover(data.blogs);
} catch (err: any) {
console.error('Error fetching data:', err.message);
toast.error('Error fetching data');
} finally {
setLoading(false);
}
};
fetchData();
}, []);
return loading ? (
<div className="flex flex-row items-center justify-center min-h-screen">
<svg
aria-hidden="true"
className="w-8 h-8 text-light-200 fill-light-secondary dark:text-[#202020] animate-spin dark:fill-[#ffffff3b]"
viewBox="0 0 100 101"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
d="M100 50.5908C100.003 78.2051 78.1951 100.003 50.5908 100C22.9765 99.9972 0.997224 78.018 1 50.4037C1.00281 22.7993 22.8108 0.997224 50.4251 1C78.0395 1.00281 100.018 22.8108 100 50.4251ZM9.08164 50.594C9.06312 73.3997 27.7909 92.1272 50.5966 92.1457C73.4023 92.1642 92.1298 73.4365 92.1483 50.6308C92.1669 27.8251 73.4392 9.0973 50.6335 9.07878C27.8278 9.06026 9.10003 27.787 9.08164 50.594Z"
fill="currentColor"
/>
<path
d="M93.9676 39.0409C96.393 38.4037 97.8624 35.9116 96.9801 33.5533C95.1945 28.8227 92.871 24.3692 90.0681 20.348C85.6237 14.1775 79.4473 9.36872 72.0454 6.45794C64.6435 3.54717 56.3134 2.65431 48.3133 3.89319C45.869 4.27179 44.3768 6.77534 45.014 9.20079C45.6512 11.6262 48.1343 13.0956 50.5786 12.717C56.5073 11.8281 62.5542 12.5399 68.0406 14.7911C73.527 17.0422 78.2187 20.7487 81.5841 25.4923C83.7976 28.5886 85.4467 32.059 86.4416 35.7474C87.1273 38.1189 89.5423 39.6781 91.9676 39.0409Z"
fill="currentFill"
/>
</svg>
</div>
) : (
<>
<div>
<div className="flex flex-col pt-4">
<div className="flex items-center">
<Search />
<h1 className="text-3xl font-medium p-2">Discover</h1>
</div>
<hr className="border-t border-[#2B2C2C] my-4 w-full" />
</div>
<div className="grid lg:grid-cols-3 sm:grid-cols-2 grid-cols-1 gap-4 pb-28 lg:pb-8 w-full justify-items-center lg:justify-items-start">
{discover &&
discover?.map((item, i) => (
<Link
href={`/?q=Summary: ${item.url}`}
key={i}
className="max-w-sm rounded-lg overflow-hidden bg-light-secondary dark:bg-dark-secondary hover:-translate-y-[1px] transition duration-200"
target="_blank"
>
<img
className="object-cover w-full aspect-video"
src={
new URL(item.thumbnail).origin +
new URL(item.thumbnail).pathname +
`?id=${new URL(item.thumbnail).searchParams.get('id')}`
}
alt={item.title}
/>
<div className="px-6 py-4">
<div className="font-bold text-lg mb-2">
{item.title.slice(0, 100)}...
</div>
<p className="text-black-70 dark:text-white/70 text-sm">
{item.content.slice(0, 100)}...
</p>
</div>
</Link>
))}
</div>
</div>
</>
);
};
export default Page;

BIN
src/app/favicon.ico Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

13
src/app/globals.css Normal file
View File

@ -0,0 +1,13 @@
@tailwind base;
@tailwind components;
@tailwind utilities;
@layer base {
.overflow-hidden-scrollable {
-ms-overflow-style: none;
}
.overflow-hidden-scrollable::-webkit-scrollbar {
display: none;
}
}

45
src/app/layout.tsx Normal file
View File

@ -0,0 +1,45 @@
import type { Metadata } from 'next';
import { Montserrat } from 'next/font/google';
import './globals.css';
import { cn } from '@/lib/utils';
import Sidebar from '@/components/Sidebar';
import { Toaster } from 'sonner';
import ThemeProvider from '@/components/theme/Provider';
const montserrat = Montserrat({
weight: ['300', '400', '500', '700'],
subsets: ['latin'],
display: 'swap',
fallback: ['Arial', 'sans-serif'],
});
export const metadata: Metadata = {
title: 'Perplexica - Chat with the internet',
description:
'Perplexica is an AI powered chatbot that is connected to the internet.',
};
export default function RootLayout({
children,
}: Readonly<{
children: React.ReactNode;
}>) {
return (
<html className="h-full" lang="en" suppressHydrationWarning>
<body className={cn('h-full', montserrat.className)}>
<ThemeProvider>
<Sidebar>{children}</Sidebar>
<Toaster
toastOptions={{
unstyled: true,
classNames: {
toast:
'bg-light-primary dark:bg-dark-secondary dark:text-white/70 text-black-70 rounded-lg p-4 flex flex-row items-center space-x-2',
},
}}
/>
</ThemeProvider>
</body>
</html>
);
}

View File

@ -0,0 +1,12 @@
import { Metadata } from 'next';
import React from 'react';
export const metadata: Metadata = {
title: 'Library - Perplexica',
};
const Layout = ({ children }: { children: React.ReactNode }) => {
return <div>{children}</div>;
};
export default Layout;

114
src/app/library/page.tsx Normal file
View File

@ -0,0 +1,114 @@
'use client';
import DeleteChat from '@/components/DeleteChat';
import { cn, formatTimeDifference } from '@/lib/utils';
import { BookOpenText, ClockIcon, Delete, ScanEye } from 'lucide-react';
import Link from 'next/link';
import { useEffect, useState } from 'react';
export interface Chat {
id: string;
title: string;
createdAt: string;
focusMode: string;
}
const Page = () => {
const [chats, setChats] = useState<Chat[]>([]);
const [loading, setLoading] = useState(true);
useEffect(() => {
const fetchChats = async () => {
setLoading(true);
const res = await fetch(`/api/chats`, {
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
});
const data = await res.json();
setChats(data.chats);
setLoading(false);
};
fetchChats();
}, []);
return loading ? (
<div className="flex flex-row items-center justify-center min-h-screen">
<svg
aria-hidden="true"
className="w-8 h-8 text-light-200 fill-light-secondary dark:text-[#202020] animate-spin dark:fill-[#ffffff3b]"
viewBox="0 0 100 101"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
d="M100 50.5908C100.003 78.2051 78.1951 100.003 50.5908 100C22.9765 99.9972 0.997224 78.018 1 50.4037C1.00281 22.7993 22.8108 0.997224 50.4251 1C78.0395 1.00281 100.018 22.8108 100 50.4251ZM9.08164 50.594C9.06312 73.3997 27.7909 92.1272 50.5966 92.1457C73.4023 92.1642 92.1298 73.4365 92.1483 50.6308C92.1669 27.8251 73.4392 9.0973 50.6335 9.07878C27.8278 9.06026 9.10003 27.787 9.08164 50.594Z"
fill="currentColor"
/>
<path
d="M93.9676 39.0409C96.393 38.4037 97.8624 35.9116 96.9801 33.5533C95.1945 28.8227 92.871 24.3692 90.0681 20.348C85.6237 14.1775 79.4473 9.36872 72.0454 6.45794C64.6435 3.54717 56.3134 2.65431 48.3133 3.89319C45.869 4.27179 44.3768 6.77534 45.014 9.20079C45.6512 11.6262 48.1343 13.0956 50.5786 12.717C56.5073 11.8281 62.5542 12.5399 68.0406 14.7911C73.527 17.0422 78.2187 20.7487 81.5841 25.4923C83.7976 28.5886 85.4467 32.059 86.4416 35.7474C87.1273 38.1189 89.5423 39.6781 91.9676 39.0409Z"
fill="currentFill"
/>
</svg>
</div>
) : (
<div>
<div className="flex flex-col pt-4">
<div className="flex items-center">
<BookOpenText />
<h1 className="text-3xl font-medium p-2">Library</h1>
</div>
<hr className="border-t border-[#2B2C2C] my-4 w-full" />
</div>
{chats.length === 0 && (
<div className="flex flex-row items-center justify-center min-h-screen">
<p className="text-black/70 dark:text-white/70 text-sm">
No chats found.
</p>
</div>
)}
{chats.length > 0 && (
<div className="flex flex-col pb-20 lg:pb-2">
{chats.map((chat, i) => (
<div
className={cn(
'flex flex-col space-y-4 py-6',
i !== chats.length - 1
? 'border-b border-white-200 dark:border-dark-200'
: '',
)}
key={i}
>
<Link
href={`/c/${chat.id}`}
className="text-black dark:text-white lg:text-xl font-medium truncate transition duration-200 hover:text-[#24A0ED] dark:hover:text-[#24A0ED] cursor-pointer"
>
{chat.title}
</Link>
<div className="flex flex-row items-center justify-between w-full">
<div className="flex flex-row items-center space-x-1 lg:space-x-1.5 text-black/70 dark:text-white/70">
<ClockIcon size={15} />
<p className="text-xs">
{formatTimeDifference(new Date(), chat.createdAt)} Ago
</p>
</div>
<DeleteChat
chatId={chat.id}
chats={chats}
setChats={setChats}
/>
</div>
</div>
))}
</div>
)}
</div>
);
};
export default Page;

20
src/app/page.tsx Normal file
View File

@ -0,0 +1,20 @@
import ChatWindow from '@/components/ChatWindow';
import { Metadata } from 'next';
import { Suspense } from 'react';
export const metadata: Metadata = {
title: 'Chat - Perplexica',
description: 'Chat with the internet, chat with Perplexica.',
};
const Home = () => {
return (
<div>
<Suspense>
<ChatWindow />
</Suspense>
</div>
);
};
export default Home;

981
src/app/settings/page.tsx Normal file
View File

@ -0,0 +1,981 @@
'use client';
import { Settings as SettingsIcon, ArrowLeft, Loader2 } from 'lucide-react';
import { useEffect, useState } from 'react';
import { cn } from '@/lib/utils';
import { Switch } from '@headlessui/react';
import ThemeSwitcher from '@/components/theme/Switcher';
import { ImagesIcon, VideoIcon } from 'lucide-react';
import Link from 'next/link';
import { PROVIDER_METADATA } from '@/lib/providers';
interface SettingsType {
chatModelProviders: {
[key: string]: [Record<string, any>];
};
embeddingModelProviders: {
[key: string]: [Record<string, any>];
};
openaiApiKey: string;
groqApiKey: string;
anthropicApiKey: string;
geminiApiKey: string;
ollamaApiUrl: string;
lmStudioApiUrl: string;
deepseekApiKey: string;
customOpenaiApiKey: string;
customOpenaiApiUrl: string;
customOpenaiModelName: string;
ollamaContextWindow: number;
}
interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
isSaving?: boolean;
onSave?: (value: string) => void;
}
const Input = ({ className, isSaving, onSave, ...restProps }: InputProps) => {
return (
<div className="relative">
<input
{...restProps}
className={cn(
'bg-light-secondary dark:bg-dark-secondary w-full px-3 py-2 flex items-center overflow-hidden border border-light-200 dark:border-dark-200 dark:text-white rounded-lg text-sm',
isSaving && 'pr-10',
className,
)}
onBlur={(e) => onSave?.(e.target.value)}
/>
{isSaving && (
<div className="absolute right-3 top-1/2 -translate-y-1/2">
<Loader2
size={16}
className="animate-spin text-black/70 dark:text-white/70"
/>
</div>
)}
</div>
);
};
interface TextareaProps extends React.InputHTMLAttributes<HTMLTextAreaElement> {
isSaving?: boolean;
onSave?: (value: string) => void;
}
const Textarea = ({
className,
isSaving,
onSave,
...restProps
}: TextareaProps) => {
return (
<div className="relative">
<textarea
placeholder="Any special instructions for the LLM"
className="placeholder:text-sm text-sm w-full flex items-center justify-between p-3 bg-light-secondary dark:bg-dark-secondary rounded-lg hover:bg-light-200 dark:hover:bg-dark-200 transition-colors"
rows={4}
onBlur={(e) => onSave?.(e.target.value)}
{...restProps}
/>
{isSaving && (
<div className="absolute right-3 top-3">
<Loader2
size={16}
className="animate-spin text-black/70 dark:text-white/70"
/>
</div>
)}
</div>
);
};
const Select = ({
className,
options,
...restProps
}: React.SelectHTMLAttributes<HTMLSelectElement> & {
options: { value: string; label: string; disabled?: boolean }[];
}) => {
return (
<select
{...restProps}
className={cn(
'bg-light-secondary dark:bg-dark-secondary px-3 py-2 flex items-center overflow-hidden border border-light-200 dark:border-dark-200 dark:text-white rounded-lg text-sm',
className,
)}
>
{options.map(({ label, value, disabled }) => (
<option key={value} value={value} disabled={disabled}>
{label}
</option>
))}
</select>
);
};
const SettingsSection = ({
title,
children,
}: {
title: string;
children: React.ReactNode;
}) => (
<div className="flex flex-col space-y-4 p-4 bg-light-secondary/50 dark:bg-dark-secondary/50 rounded-xl border border-light-200 dark:border-dark-200">
<h2 className="text-black/90 dark:text-white/90 font-medium">{title}</h2>
{children}
</div>
);
const Page = () => {
const [config, setConfig] = useState<SettingsType | null>(null);
const [chatModels, setChatModels] = useState<Record<string, any>>({});
const [embeddingModels, setEmbeddingModels] = useState<Record<string, any>>(
{},
);
const [selectedChatModelProvider, setSelectedChatModelProvider] = useState<
string | null
>(null);
const [selectedChatModel, setSelectedChatModel] = useState<string | null>(
null,
);
const [selectedEmbeddingModelProvider, setSelectedEmbeddingModelProvider] =
useState<string | null>(null);
const [selectedEmbeddingModel, setSelectedEmbeddingModel] = useState<
string | null
>(null);
const [isLoading, setIsLoading] = useState(false);
const [automaticImageSearch, setAutomaticImageSearch] = useState(false);
const [automaticVideoSearch, setAutomaticVideoSearch] = useState(false);
const [systemInstructions, setSystemInstructions] = useState<string>('');
const [savingStates, setSavingStates] = useState<Record<string, boolean>>({});
const [contextWindowSize, setContextWindowSize] = useState(2048);
const [isCustomContextWindow, setIsCustomContextWindow] = useState(false);
const predefinedContextSizes = [
1024, 2048, 3072, 4096, 8192, 16384, 32768, 65536, 131072,
];
useEffect(() => {
const fetchConfig = async () => {
setIsLoading(true);
const res = await fetch(`/api/config`, {
headers: {
'Content-Type': 'application/json',
},
});
const data = (await res.json()) as SettingsType;
setConfig(data);
const chatModelProvidersKeys = Object.keys(data.chatModelProviders || {});
const embeddingModelProvidersKeys = Object.keys(
data.embeddingModelProviders || {},
);
const defaultChatModelProvider =
chatModelProvidersKeys.length > 0 ? chatModelProvidersKeys[0] : '';
const defaultEmbeddingModelProvider =
embeddingModelProvidersKeys.length > 0
? embeddingModelProvidersKeys[0]
: '';
const chatModelProvider =
localStorage.getItem('chatModelProvider') ||
defaultChatModelProvider ||
'';
const chatModel =
localStorage.getItem('chatModel') ||
(data.chatModelProviders &&
data.chatModelProviders[chatModelProvider]?.length > 0
? data.chatModelProviders[chatModelProvider][0].name
: undefined) ||
'';
const embeddingModelProvider =
localStorage.getItem('embeddingModelProvider') ||
defaultEmbeddingModelProvider ||
'';
const embeddingModel =
localStorage.getItem('embeddingModel') ||
(data.embeddingModelProviders &&
data.embeddingModelProviders[embeddingModelProvider]?.[0].name) ||
'';
setSelectedChatModelProvider(chatModelProvider);
setSelectedChatModel(chatModel);
setSelectedEmbeddingModelProvider(embeddingModelProvider);
setSelectedEmbeddingModel(embeddingModel);
setChatModels(data.chatModelProviders || {});
setEmbeddingModels(data.embeddingModelProviders || {});
setAutomaticImageSearch(
localStorage.getItem('autoImageSearch') === 'true',
);
setAutomaticVideoSearch(
localStorage.getItem('autoVideoSearch') === 'true',
);
const storedContextWindow = parseInt(
localStorage.getItem('ollamaContextWindow') ?? '2048',
);
setContextWindowSize(storedContextWindow);
setIsCustomContextWindow(
!predefinedContextSizes.includes(storedContextWindow),
);
setSystemInstructions(localStorage.getItem('systemInstructions')!);
setIsLoading(false);
};
fetchConfig();
}, []);
const saveConfig = async (key: string, value: any) => {
setSavingStates((prev) => ({ ...prev, [key]: true }));
try {
const updatedConfig = {
...config,
[key]: value,
} as SettingsType;
const response = await fetch(`/api/config`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify(updatedConfig),
});
if (!response.ok) {
throw new Error('Failed to update config');
}
setConfig(updatedConfig);
if (
key.toLowerCase().includes('api') ||
key.toLowerCase().includes('url')
) {
const res = await fetch(`/api/config`, {
headers: {
'Content-Type': 'application/json',
},
});
if (!res.ok) {
throw new Error('Failed to fetch updated config');
}
const data = await res.json();
setChatModels(data.chatModelProviders || {});
setEmbeddingModels(data.embeddingModelProviders || {});
const currentChatProvider = selectedChatModelProvider;
const newChatProviders = Object.keys(data.chatModelProviders || {});
if (!currentChatProvider && newChatProviders.length > 0) {
const firstProvider = newChatProviders[0];
const firstModel = data.chatModelProviders[firstProvider]?.[0]?.name;
if (firstModel) {
setSelectedChatModelProvider(firstProvider);
setSelectedChatModel(firstModel);
localStorage.setItem('chatModelProvider', firstProvider);
localStorage.setItem('chatModel', firstModel);
}
} else if (
currentChatProvider &&
(!data.chatModelProviders ||
!data.chatModelProviders[currentChatProvider] ||
!Array.isArray(data.chatModelProviders[currentChatProvider]) ||
data.chatModelProviders[currentChatProvider].length === 0)
) {
const firstValidProvider = Object.entries(
data.chatModelProviders || {},
).find(
([_, models]) => Array.isArray(models) && models.length > 0,
)?.[0];
if (firstValidProvider) {
setSelectedChatModelProvider(firstValidProvider);
setSelectedChatModel(
data.chatModelProviders[firstValidProvider][0].name,
);
localStorage.setItem('chatModelProvider', firstValidProvider);
localStorage.setItem(
'chatModel',
data.chatModelProviders[firstValidProvider][0].name,
);
} else {
setSelectedChatModelProvider(null);
setSelectedChatModel(null);
localStorage.removeItem('chatModelProvider');
localStorage.removeItem('chatModel');
}
}
const currentEmbeddingProvider = selectedEmbeddingModelProvider;
const newEmbeddingProviders = Object.keys(
data.embeddingModelProviders || {},
);
if (!currentEmbeddingProvider && newEmbeddingProviders.length > 0) {
const firstProvider = newEmbeddingProviders[0];
const firstModel =
data.embeddingModelProviders[firstProvider]?.[0]?.name;
if (firstModel) {
setSelectedEmbeddingModelProvider(firstProvider);
setSelectedEmbeddingModel(firstModel);
localStorage.setItem('embeddingModelProvider', firstProvider);
localStorage.setItem('embeddingModel', firstModel);
}
} else if (
currentEmbeddingProvider &&
(!data.embeddingModelProviders ||
!data.embeddingModelProviders[currentEmbeddingProvider] ||
!Array.isArray(
data.embeddingModelProviders[currentEmbeddingProvider],
) ||
data.embeddingModelProviders[currentEmbeddingProvider].length === 0)
) {
const firstValidProvider = Object.entries(
data.embeddingModelProviders || {},
).find(
([_, models]) => Array.isArray(models) && models.length > 0,
)?.[0];
if (firstValidProvider) {
setSelectedEmbeddingModelProvider(firstValidProvider);
setSelectedEmbeddingModel(
data.embeddingModelProviders[firstValidProvider][0].name,
);
localStorage.setItem('embeddingModelProvider', firstValidProvider);
localStorage.setItem(
'embeddingModel',
data.embeddingModelProviders[firstValidProvider][0].name,
);
} else {
setSelectedEmbeddingModelProvider(null);
setSelectedEmbeddingModel(null);
localStorage.removeItem('embeddingModelProvider');
localStorage.removeItem('embeddingModel');
}
}
setConfig(data);
}
if (key === 'automaticImageSearch') {
localStorage.setItem('autoImageSearch', value.toString());
} else if (key === 'automaticVideoSearch') {
localStorage.setItem('autoVideoSearch', value.toString());
} else if (key === 'chatModelProvider') {
localStorage.setItem('chatModelProvider', value);
} else if (key === 'chatModel') {
localStorage.setItem('chatModel', value);
} else if (key === 'embeddingModelProvider') {
localStorage.setItem('embeddingModelProvider', value);
} else if (key === 'embeddingModel') {
localStorage.setItem('embeddingModel', value);
} else if (key === 'ollamaContextWindow') {
localStorage.setItem('ollamaContextWindow', value.toString());
} else if (key === 'systemInstructions') {
localStorage.setItem('systemInstructions', value);
}
} catch (err) {
console.error('Failed to save:', err);
setConfig((prev) => ({ ...prev! }));
} finally {
setTimeout(() => {
setSavingStates((prev) => ({ ...prev, [key]: false }));
}, 500);
}
};
return (
<div className="max-w-3xl mx-auto">
<div className="flex flex-col pt-4">
<div className="flex items-center space-x-2">
<Link href="/" className="lg:hidden">
<ArrowLeft className="text-black/70 dark:text-white/70" />
</Link>
<div className="flex flex-row space-x-0.5 items-center">
<SettingsIcon size={23} />
<h1 className="text-3xl font-medium p-2">Settings</h1>
</div>
</div>
<hr className="border-t border-[#2B2C2C] my-4 w-full" />
</div>
{isLoading ? (
<div className="flex flex-row items-center justify-center min-h-[50vh]">
<svg
aria-hidden="true"
className="w-8 h-8 text-light-200 fill-light-secondary dark:text-[#202020] animate-spin dark:fill-[#ffffff3b]"
viewBox="0 0 100 101"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
d="M100 50.5908C100.003 78.2051 78.1951 100.003 50.5908 100C22.9765 99.9972 0.997224 78.018 1 50.4037C1.00281 22.7993 22.8108 0.997224 50.4251 1C78.0395 1.00281 100.018 22.8108 100 50.4251ZM9.08164 50.594C9.06312 73.3997 27.7909 92.1272 50.5966 92.1457C73.4023 92.1642 92.1298 73.4365 92.1483 50.6308C92.1669 27.8251 73.4392 9.0973 50.6335 9.07878C27.8278 9.06026 9.10003 27.787 9.08164 50.594Z"
fill="currentColor"
/>
<path
d="M93.9676 39.0409C96.393 38.4037 97.8624 35.9116 96.9801 33.5533C95.1945 28.8227 92.871 24.3692 90.0681 20.348C85.6237 14.1775 79.4473 9.36872 72.0454 6.45794C64.6435 3.54717 56.3134 2.65431 48.3133 3.89319C45.869 4.27179 44.3768 6.77534 45.014 9.20079C45.6512 11.6262 48.1343 13.0956 50.5786 12.717C56.5073 11.8281 62.5542 12.5399 68.0406 14.7911C73.527 17.0422 78.2187 20.7487 81.5841 25.4923C83.7976 28.5886 85.4467 32.059 86.4416 35.7474C87.1273 38.1189 89.5423 39.6781 91.9676 39.0409Z"
fill="currentFill"
/>
</svg>
</div>
) : (
config && (
<div className="flex flex-col space-y-6 pb-28 lg:pb-8">
<SettingsSection title="Appearance">
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Theme
</p>
<ThemeSwitcher />
</div>
</SettingsSection>
<SettingsSection title="Automatic Search">
<div className="flex flex-col space-y-4">
<div className="flex items-center justify-between p-3 bg-light-secondary dark:bg-dark-secondary rounded-lg hover:bg-light-200 dark:hover:bg-dark-200 transition-colors">
<div className="flex items-center space-x-3">
<div className="p-2 bg-light-200 dark:bg-dark-200 rounded-lg">
<ImagesIcon
size={18}
className="text-black/70 dark:text-white/70"
/>
</div>
<div>
<p className="text-sm text-black/90 dark:text-white/90 font-medium">
Automatic Image Search
</p>
<p className="text-xs text-black/60 dark:text-white/60 mt-0.5">
Automatically search for relevant images in chat
responses
</p>
</div>
</div>
<Switch
checked={automaticImageSearch}
onChange={(checked) => {
setAutomaticImageSearch(checked);
saveConfig('automaticImageSearch', checked);
}}
className={cn(
automaticImageSearch
? 'bg-[#24A0ED]'
: 'bg-light-200 dark:bg-dark-200',
'relative inline-flex h-6 w-11 items-center rounded-full transition-colors focus:outline-none',
)}
>
<span
className={cn(
automaticImageSearch
? 'translate-x-6'
: 'translate-x-1',
'inline-block h-4 w-4 transform rounded-full bg-white transition-transform',
)}
/>
</Switch>
</div>
<div className="flex items-center justify-between p-3 bg-light-secondary dark:bg-dark-secondary rounded-lg hover:bg-light-200 dark:hover:bg-dark-200 transition-colors">
<div className="flex items-center space-x-3">
<div className="p-2 bg-light-200 dark:bg-dark-200 rounded-lg">
<VideoIcon
size={18}
className="text-black/70 dark:text-white/70"
/>
</div>
<div>
<p className="text-sm text-black/90 dark:text-white/90 font-medium">
Automatic Video Search
</p>
<p className="text-xs text-black/60 dark:text-white/60 mt-0.5">
Automatically search for relevant videos in chat
responses
</p>
</div>
</div>
<Switch
checked={automaticVideoSearch}
onChange={(checked) => {
setAutomaticVideoSearch(checked);
saveConfig('automaticVideoSearch', checked);
}}
className={cn(
automaticVideoSearch
? 'bg-[#24A0ED]'
: 'bg-light-200 dark:bg-dark-200',
'relative inline-flex h-6 w-11 items-center rounded-full transition-colors focus:outline-none',
)}
>
<span
className={cn(
automaticVideoSearch
? 'translate-x-6'
: 'translate-x-1',
'inline-block h-4 w-4 transform rounded-full bg-white transition-transform',
)}
/>
</Switch>
</div>
</div>
</SettingsSection>
<SettingsSection title="System Instructions">
<div className="flex flex-col space-y-4">
<Textarea
value={systemInstructions}
isSaving={savingStates['systemInstructions']}
onChange={(e) => {
setSystemInstructions(e.target.value);
}}
onSave={(value) => saveConfig('systemInstructions', value)}
/>
</div>
</SettingsSection>
<SettingsSection title="Model Settings">
{config.chatModelProviders && (
<div className="flex flex-col space-y-4">
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Chat Model Provider
</p>
<Select
value={selectedChatModelProvider ?? undefined}
onChange={(e) => {
const value = e.target.value;
setSelectedChatModelProvider(value);
saveConfig('chatModelProvider', value);
const firstModel =
config.chatModelProviders[value]?.[0]?.name;
if (firstModel) {
setSelectedChatModel(firstModel);
saveConfig('chatModel', firstModel);
}
}}
options={Object.keys(config.chatModelProviders).map(
(provider) => ({
value: provider,
label:
(PROVIDER_METADATA as any)[provider]?.displayName ||
provider.charAt(0).toUpperCase() +
provider.slice(1),
}),
)}
/>
</div>
{selectedChatModelProvider &&
selectedChatModelProvider != 'custom_openai' && (
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Chat Model
</p>
<Select
value={selectedChatModel ?? undefined}
onChange={(e) => {
const value = e.target.value;
setSelectedChatModel(value);
saveConfig('chatModel', value);
}}
options={(() => {
const chatModelProvider =
config.chatModelProviders[
selectedChatModelProvider
];
return chatModelProvider
? chatModelProvider.length > 0
? chatModelProvider.map((model) => ({
value: model.name,
label: model.displayName,
}))
: [
{
value: '',
label: 'No models available',
disabled: true,
},
]
: [
{
value: '',
label:
'Invalid provider, please check backend logs',
disabled: true,
},
];
})()}
/>
{selectedChatModelProvider === 'ollama' && (
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Chat Context Window Size
</p>
<Select
value={
isCustomContextWindow
? 'custom'
: contextWindowSize.toString()
}
onChange={(e) => {
const value = e.target.value;
if (value === 'custom') {
setIsCustomContextWindow(true);
} else {
setIsCustomContextWindow(false);
const numValue = parseInt(value);
setContextWindowSize(numValue);
setConfig((prev) => ({
...prev!,
ollamaContextWindow: numValue,
}));
saveConfig('ollamaContextWindow', numValue);
}
}}
options={[
...predefinedContextSizes.map((size) => ({
value: size.toString(),
label: `${size.toLocaleString()} tokens`,
})),
{ value: 'custom', label: 'Custom...' },
]}
/>
{isCustomContextWindow && (
<div className="mt-2">
<Input
type="number"
min={512}
value={contextWindowSize}
placeholder="Custom context window size (minimum 512)"
isSaving={savingStates['ollamaContextWindow']}
onChange={(e) => {
// Allow any value to be typed
const value =
parseInt(e.target.value) ||
contextWindowSize;
setContextWindowSize(value);
}}
onSave={(value) => {
// Validate only when saving
const numValue = Math.max(
512,
parseInt(value) || 2048,
);
setContextWindowSize(numValue);
setConfig((prev) => ({
...prev!,
ollamaContextWindow: numValue,
}));
saveConfig('ollamaContextWindow', numValue);
}}
/>
</div>
)}
<p className="text-xs text-black/60 dark:text-white/60 mt-0.5">
{isCustomContextWindow
? 'Adjust the context window size for Ollama models (minimum 512 tokens)'
: 'Adjust the context window size for Ollama models'}
</p>
</div>
)}
</div>
)}
</div>
)}
{selectedChatModelProvider &&
selectedChatModelProvider === 'custom_openai' && (
<div className="flex flex-col space-y-4">
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Model Name
</p>
<Input
type="text"
placeholder="Model name"
value={config.customOpenaiModelName}
isSaving={savingStates['customOpenaiModelName']}
onChange={(e: React.ChangeEvent<HTMLInputElement>) => {
setConfig((prev) => ({
...prev!,
customOpenaiModelName: e.target.value,
}));
}}
onSave={(value) =>
saveConfig('customOpenaiModelName', value)
}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Custom OpenAI API Key
</p>
<Input
type="text"
placeholder="Custom OpenAI API Key"
value={config.customOpenaiApiKey}
isSaving={savingStates['customOpenaiApiKey']}
onChange={(e: React.ChangeEvent<HTMLInputElement>) => {
setConfig((prev) => ({
...prev!,
customOpenaiApiKey: e.target.value,
}));
}}
onSave={(value) =>
saveConfig('customOpenaiApiKey', value)
}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Custom OpenAI Base URL
</p>
<Input
type="text"
placeholder="Custom OpenAI Base URL"
value={config.customOpenaiApiUrl}
isSaving={savingStates['customOpenaiApiUrl']}
onChange={(e: React.ChangeEvent<HTMLInputElement>) => {
setConfig((prev) => ({
...prev!,
customOpenaiApiUrl: e.target.value,
}));
}}
onSave={(value) =>
saveConfig('customOpenaiApiUrl', value)
}
/>
</div>
</div>
)}
{config.embeddingModelProviders && (
<div className="flex flex-col space-y-4 mt-4 pt-4 border-t border-light-200 dark:border-dark-200">
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Embedding Model Provider
</p>
<Select
value={selectedEmbeddingModelProvider ?? undefined}
onChange={(e) => {
const value = e.target.value;
setSelectedEmbeddingModelProvider(value);
saveConfig('embeddingModelProvider', value);
const firstModel =
config.embeddingModelProviders[value]?.[0]?.name;
if (firstModel) {
setSelectedEmbeddingModel(firstModel);
saveConfig('embeddingModel', firstModel);
}
}}
options={Object.keys(config.embeddingModelProviders).map(
(provider) => ({
value: provider,
label:
(PROVIDER_METADATA as any)[provider]?.displayName ||
provider.charAt(0).toUpperCase() +
provider.slice(1),
}),
)}
/>
</div>
{selectedEmbeddingModelProvider && (
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Embedding Model
</p>
<Select
value={selectedEmbeddingModel ?? undefined}
onChange={(e) => {
const value = e.target.value;
setSelectedEmbeddingModel(value);
saveConfig('embeddingModel', value);
}}
options={(() => {
const embeddingModelProvider =
config.embeddingModelProviders[
selectedEmbeddingModelProvider
];
return embeddingModelProvider
? embeddingModelProvider.length > 0
? embeddingModelProvider.map((model) => ({
value: model.name,
label: model.displayName,
}))
: [
{
value: '',
label: 'No models available',
disabled: true,
},
]
: [
{
value: '',
label:
'Invalid provider, please check backend logs',
disabled: true,
},
];
})()}
/>
</div>
)}
</div>
)}
</SettingsSection>
<SettingsSection title="API Keys">
<div className="flex flex-col space-y-4">
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
OpenAI API Key
</p>
<Input
type="text"
placeholder="OpenAI API Key"
value={config.openaiApiKey}
isSaving={savingStates['openaiApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
openaiApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('openaiApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Ollama API URL
</p>
<Input
type="text"
placeholder="Ollama API URL"
value={config.ollamaApiUrl}
isSaving={savingStates['ollamaApiUrl']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
ollamaApiUrl: e.target.value,
}));
}}
onSave={(value) => saveConfig('ollamaApiUrl', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
GROQ API Key
</p>
<Input
type="text"
placeholder="GROQ API Key"
value={config.groqApiKey}
isSaving={savingStates['groqApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
groqApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('groqApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Anthropic API Key
</p>
<Input
type="text"
placeholder="Anthropic API key"
value={config.anthropicApiKey}
isSaving={savingStates['anthropicApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
anthropicApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('anthropicApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Gemini API Key
</p>
<Input
type="text"
placeholder="Gemini API key"
value={config.geminiApiKey}
isSaving={savingStates['geminiApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
geminiApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('geminiApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
Deepseek API Key
</p>
<Input
type="text"
placeholder="Deepseek API Key"
value={config.deepseekApiKey}
isSaving={savingStates['deepseekApiKey']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
deepseekApiKey: e.target.value,
}));
}}
onSave={(value) => saveConfig('deepseekApiKey', value)}
/>
</div>
<div className="flex flex-col space-y-1">
<p className="text-black/70 dark:text-white/70 text-sm">
LM Studio API URL
</p>
<Input
type="text"
placeholder="LM Studio API URL"
value={config.lmStudioApiUrl}
isSaving={savingStates['lmStudioApiUrl']}
onChange={(e) => {
setConfig((prev) => ({
...prev!,
lmStudioApiUrl: e.target.value,
}));
}}
onSave={(value) => saveConfig('lmStudioApiUrl', value)}
/>
</div>
</div>
</SettingsSection>
</div>
)
)}
</div>
);
};
export default Page;

126
src/components/Chat.tsx Normal file
View File

@ -0,0 +1,126 @@
'use client';
import { Fragment, useEffect, useRef, useState } from 'react';
import MessageInput from './MessageInput';
import { File, Message } from './ChatWindow';
import MessageBox from './MessageBox';
import MessageBoxLoading from './MessageBoxLoading';
const Chat = ({
loading,
messages,
sendMessage,
messageAppeared,
rewrite,
fileIds,
setFileIds,
files,
setFiles,
isCompact,
setIsCompact,
optimizationMode,
setOptimizationMode,
}: {
messages: Message[];
sendMessage: (
message: string,
messageId?: string,
options?: { isCompact?: boolean },
) => void;
loading: boolean;
messageAppeared: boolean;
rewrite: (messageId: string) => void;
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: File[];
setFiles: (files: File[]) => void;
isCompact: boolean;
setIsCompact: (isCompact: boolean) => void;
optimizationMode: string;
setOptimizationMode: (mode: string) => void;
}) => {
const [dividerWidth, setDividerWidth] = useState(0);
const dividerRef = useRef<HTMLDivElement | null>(null);
const messageEnd = useRef<HTMLDivElement | null>(null);
useEffect(() => {
const updateDividerWidth = () => {
if (dividerRef.current) {
setDividerWidth(dividerRef.current.scrollWidth);
}
};
updateDividerWidth();
window.addEventListener('resize', updateDividerWidth);
return () => {
window.removeEventListener('resize', updateDividerWidth);
};
});
useEffect(() => {
const scroll = () => {
messageEnd.current?.scrollIntoView({ behavior: 'smooth' });
};
if (messages.length === 1) {
document.title = `${messages[0].content.substring(0, 30)} - Perplexica`;
}
if (messages[messages.length - 1]?.role == 'user') {
scroll();
}
}, [messages]);
return (
<div className="flex flex-col space-y-6 pt-8 pb-44 lg:pb-32 sm:mx-4 md:mx-8">
{messages.map((msg, i) => {
const isLast = i === messages.length - 1;
return (
<Fragment key={msg.messageId}>
<MessageBox
key={i}
message={msg}
messageIndex={i}
history={messages}
loading={loading}
dividerRef={isLast ? dividerRef : undefined}
isLast={isLast}
rewrite={rewrite}
isCompact={isCompact}
sendMessage={sendMessage}
/>
{!isLast && msg.role === 'assistant' && (
<div className="h-px w-full bg-light-secondary dark:bg-dark-secondary" />
)}
</Fragment>
);
})}
{loading && !messageAppeared && <MessageBoxLoading />}
<div ref={messageEnd} className="h-0" />
{dividerWidth > 0 && (
<div
className="bottom-24 lg:bottom-10 fixed"
style={{ width: dividerWidth }}
>
<MessageInput
loading={loading}
sendMessage={sendMessage}
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
isCompact={isCompact}
setIsCompact={setIsCompact}
optimizationMode={optimizationMode}
setOptimizationMode={setOptimizationMode}
/>
</div>
)}
</div>
);
};
export default Chat;

View File

@ -0,0 +1,652 @@
'use client';
import { useEffect, useRef, useState } from 'react';
import { Document } from '@langchain/core/documents';
import Navbar from './Navbar';
import Chat from './Chat';
import EmptyChat from './EmptyChat';
import crypto from 'crypto';
import { toast } from 'sonner';
import { useSearchParams } from 'next/navigation';
import { getSuggestions } from '@/lib/actions';
import { Settings } from 'lucide-react';
import Link from 'next/link';
import NextError from 'next/error';
export type Message = {
messageId: string;
chatId: string;
createdAt: Date;
content: string;
role: 'user' | 'assistant';
suggestions?: string[];
sources?: Document[];
};
export interface File {
fileName: string;
fileExtension: string;
fileId: string;
}
interface ChatModelProvider {
name: string;
provider: string;
}
interface EmbeddingModelProvider {
name: string;
provider: string;
}
const checkConfig = async (
setChatModelProvider: (provider: ChatModelProvider) => void,
setEmbeddingModelProvider: (provider: EmbeddingModelProvider) => void,
setIsConfigReady: (ready: boolean) => void,
setHasError: (hasError: boolean) => void,
) => {
try {
let chatModel = localStorage.getItem('chatModel');
let chatModelProvider = localStorage.getItem('chatModelProvider');
let embeddingModel = localStorage.getItem('embeddingModel');
let embeddingModelProvider = localStorage.getItem('embeddingModelProvider');
const autoImageSearch = localStorage.getItem('autoImageSearch');
const autoVideoSearch = localStorage.getItem('autoVideoSearch');
if (!autoImageSearch) {
localStorage.setItem('autoImageSearch', 'true');
}
if (!autoVideoSearch) {
localStorage.setItem('autoVideoSearch', 'false');
}
const providers = await fetch(`/api/models`, {
headers: {
'Content-Type': 'application/json',
},
}).then(async (res) => {
if (!res.ok)
throw new Error(
`Failed to fetch models: ${res.status} ${res.statusText}`,
);
return res.json();
});
if (
!chatModel ||
!chatModelProvider ||
!embeddingModel ||
!embeddingModelProvider
) {
if (!chatModel || !chatModelProvider) {
const chatModelProviders = providers.chatModelProviders;
chatModelProvider =
chatModelProvider || Object.keys(chatModelProviders)[0];
chatModel = Object.keys(chatModelProviders[chatModelProvider])[0];
if (!chatModelProviders || Object.keys(chatModelProviders).length === 0)
return toast.error('No chat models available');
}
if (!embeddingModel || !embeddingModelProvider) {
const embeddingModelProviders = providers.embeddingModelProviders;
if (
!embeddingModelProviders ||
Object.keys(embeddingModelProviders).length === 0
)
return toast.error('No embedding models available');
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
embeddingModel = Object.keys(
embeddingModelProviders[embeddingModelProvider],
)[0];
}
localStorage.setItem('chatModel', chatModel!);
localStorage.setItem('chatModelProvider', chatModelProvider);
localStorage.setItem('embeddingModel', embeddingModel!);
localStorage.setItem('embeddingModelProvider', embeddingModelProvider);
} else {
const chatModelProviders = providers.chatModelProviders;
const embeddingModelProviders = providers.embeddingModelProviders;
if (
Object.keys(chatModelProviders).length > 0 &&
!chatModelProviders[chatModelProvider]
) {
const chatModelProvidersKeys = Object.keys(chatModelProviders);
chatModelProvider =
chatModelProvidersKeys.find(
(key) => Object.keys(chatModelProviders[key]).length > 0,
) || chatModelProvidersKeys[0];
localStorage.setItem('chatModelProvider', chatModelProvider);
}
if (
chatModelProvider &&
!chatModelProviders[chatModelProvider][chatModel]
) {
chatModel = Object.keys(
chatModelProviders[
Object.keys(chatModelProviders[chatModelProvider]).length > 0
? chatModelProvider
: Object.keys(chatModelProviders)[0]
],
)[0];
localStorage.setItem('chatModel', chatModel);
}
if (
Object.keys(embeddingModelProviders).length > 0 &&
!embeddingModelProviders[embeddingModelProvider]
) {
embeddingModelProvider = Object.keys(embeddingModelProviders)[0];
localStorage.setItem('embeddingModelProvider', embeddingModelProvider);
}
if (
embeddingModelProvider &&
!embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddingModel = Object.keys(
embeddingModelProviders[embeddingModelProvider],
)[0];
localStorage.setItem('embeddingModel', embeddingModel);
}
}
setChatModelProvider({
name: chatModel!,
provider: chatModelProvider,
});
setEmbeddingModelProvider({
name: embeddingModel!,
provider: embeddingModelProvider,
});
setIsConfigReady(true);
} catch (err) {
console.error('An error occurred while checking the configuration:', err);
setIsConfigReady(false);
setHasError(true);
}
};
const loadMessages = async (
chatId: string,
setMessages: (messages: Message[]) => void,
setIsMessagesLoaded: (loaded: boolean) => void,
setChatHistory: (history: [string, string][]) => void,
setFocusMode: (mode: string) => void,
setNotFound: (notFound: boolean) => void,
setFiles: (files: File[]) => void,
setFileIds: (fileIds: string[]) => void,
) => {
const res = await fetch(`/api/chats/${chatId}`, {
method: 'GET',
headers: {
'Content-Type': 'application/json',
},
});
if (res.status === 404) {
setNotFound(true);
setIsMessagesLoaded(true);
return;
}
const data = await res.json();
const messages = data.messages.map((msg: any) => {
return {
...msg,
...JSON.parse(msg.metadata),
};
}) as Message[];
setMessages(messages);
const history = messages.map((msg) => {
return [msg.role, msg.content];
}) as [string, string][];
console.debug(new Date(), 'app:messages_loaded');
document.title = messages[0].content;
const files = data.chat.files.map((file: any) => {
return {
fileName: file.name,
fileExtension: file.name.split('.').pop(),
fileId: file.fileId,
};
});
setFiles(files);
setFileIds(files.map((file: File) => file.fileId));
setChatHistory(history);
setFocusMode(data.chat.focusMode);
setIsMessagesLoaded(true);
};
const ChatWindow = ({ id }: { id?: string }) => {
const searchParams = useSearchParams();
const initialMessage = searchParams.get('q');
const [chatId, setChatId] = useState<string | undefined>(id);
const [newChatCreated, setNewChatCreated] = useState(false);
const [chatModelProvider, setChatModelProvider] = useState<ChatModelProvider>(
{
name: '',
provider: '',
},
);
const [embeddingModelProvider, setEmbeddingModelProvider] =
useState<EmbeddingModelProvider>({
name: '',
provider: '',
});
const [isConfigReady, setIsConfigReady] = useState(false);
const [hasError, setHasError] = useState(false);
const [isReady, setIsReady] = useState(false);
useEffect(() => {
checkConfig(
setChatModelProvider,
setEmbeddingModelProvider,
setIsConfigReady,
setHasError,
);
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
const [loading, setLoading] = useState(false);
const [messageAppeared, setMessageAppeared] = useState(false);
const [chatHistory, setChatHistory] = useState<[string, string][]>([]);
const [messages, setMessages] = useState<Message[]>([]);
const [files, setFiles] = useState<File[]>([]);
const [fileIds, setFileIds] = useState<string[]>([]);
const [focusMode, setFocusMode] = useState('webSearch');
const [optimizationMode, setOptimizationMode] = useState('speed');
const [isCompact, setIsCompact] = useState(false);
const [isMessagesLoaded, setIsMessagesLoaded] = useState(false);
const [notFound, setNotFound] = useState(false);
useEffect(() => {
const savedCompactMode = localStorage.getItem('compactMode');
const savedOptimizationMode = localStorage.getItem('optimizationMode');
if (savedCompactMode !== null) {
setIsCompact(savedCompactMode === 'true');
}
if (savedOptimizationMode !== null) {
setOptimizationMode(savedOptimizationMode);
} else {
localStorage.setItem('optimizationMode', optimizationMode);
}
}, []);
useEffect(() => {
if (
chatId &&
!newChatCreated &&
!isMessagesLoaded &&
messages.length === 0
) {
loadMessages(
chatId,
setMessages,
setIsMessagesLoaded,
setChatHistory,
setFocusMode,
setNotFound,
setFiles,
setFileIds,
);
} else if (!chatId) {
setNewChatCreated(true);
setIsMessagesLoaded(true);
setChatId(crypto.randomBytes(20).toString('hex'));
}
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
const messagesRef = useRef<Message[]>([]);
useEffect(() => {
messagesRef.current = messages;
}, [messages]);
useEffect(() => {
if (isMessagesLoaded && isConfigReady) {
setIsReady(true);
console.debug(new Date(), 'app:ready');
} else {
setIsReady(false);
}
}, [isMessagesLoaded, isConfigReady]);
const sendMessage = async (
message: string,
messageId?: string,
options?: { isCompact?: boolean; rewriteIndex?: number },
) => {
if (loading) return;
if (!isConfigReady) {
toast.error('Cannot send message before the configuration is ready');
return;
}
setLoading(true);
setMessageAppeared(false);
let sources: Document[] | undefined = undefined;
let recievedMessage = '';
let added = false;
let messageChatHistory = chatHistory;
if (options?.rewriteIndex !== undefined) {
const rewriteIndex = options.rewriteIndex;
setMessages((prev) => {
return [...prev.slice(0, messages.length > 2 ? rewriteIndex - 1 : 0)]
});
messageChatHistory = chatHistory.slice(0, messages.length > 2 ? rewriteIndex - 1 : 0)
setChatHistory(messageChatHistory);
}
messageId = messageId ?? crypto.randomBytes(7).toString('hex');
// let messageData = {
// type: 'message',
// message: {
// messageId: messageId,
// chatId: chatId!,
// content: message,
// },
// files: fileIds,
// focusMode: focusMode,
// optimizationMode: optimizationMode,
// history: [...messageChatHistory, ['human', message]],
// isCompact: options?.isCompact ?? isCompact,
// };
// ws.send(JSON.stringify(messageData));
setMessages((prevMessages) => [
...prevMessages,
{
content: message,
messageId: messageId,
chatId: chatId!,
role: 'user',
createdAt: new Date(),
},
]);
const messageHandler = async (data: any) => {
if (data.type === 'error') {
toast.error(data.data);
setLoading(false);
return;
}
if (data.type === 'sources') {
sources = data.data;
if (!added) {
setMessages((prevMessages) => [
...prevMessages,
{
content: '',
messageId: data.messageId,
chatId: chatId!,
role: 'assistant',
sources: sources,
createdAt: new Date(),
},
]);
added = true;
}
setMessageAppeared(true);
}
if (data.type === 'message') {
if (!added) {
setMessages((prevMessages) => [
...prevMessages,
{
content: data.data,
messageId: data.messageId,
chatId: chatId!,
role: 'assistant',
sources: sources,
createdAt: new Date(),
},
]);
added = true;
}
setMessages((prev) =>
prev.map((message) => {
if (message.messageId === data.messageId) {
return { ...message, content: message.content + data.data };
}
return message;
}),
);
recievedMessage += data.data;
setMessageAppeared(true);
}
if (data.type === 'messageEnd') {
setChatHistory((prevHistory) => [
...prevHistory,
['human', message],
['assistant', recievedMessage],
]);
setLoading(false);
const lastMsg = messagesRef.current[messagesRef.current.length - 1];
const autoImageSearch = localStorage.getItem('autoImageSearch');
const autoVideoSearch = localStorage.getItem('autoVideoSearch');
if (autoImageSearch === 'true') {
document
.getElementById(`search-images-${lastMsg.messageId}`)
?.click();
}
if (autoVideoSearch === 'true') {
document
.getElementById(`search-videos-${lastMsg.messageId}`)
?.click();
}
if (
lastMsg.role === 'assistant' &&
lastMsg.sources &&
lastMsg.sources.length > 0 &&
!lastMsg.suggestions
) {
const suggestions = await getSuggestions(messagesRef.current);
setMessages((prev) =>
prev.map((msg) => {
if (msg.messageId === lastMsg.messageId) {
return { ...msg, suggestions: suggestions };
}
return msg;
}),
);
}
}
};
const res = await fetch('/api/chat', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
content: message,
message: {
messageId: messageId,
chatId: chatId!,
content: message,
},
chatId: chatId!,
files: fileIds,
focusMode: focusMode,
optimizationMode: optimizationMode,
history: chatHistory,
chatModel: {
name: chatModelProvider.name,
provider: chatModelProvider.provider,
},
embeddingModel: {
name: embeddingModelProvider.name,
provider: embeddingModelProvider.provider,
},
systemInstructions: localStorage.getItem('systemInstructions'),
}),
});
if (!res.body) throw new Error('No response body');
const reader = res.body?.getReader();
const decoder = new TextDecoder('utf-8');
let partialChunk = '';
while (true) {
const { value, done } = await reader.read();
if (done) break;
partialChunk += decoder.decode(value, { stream: true });
try {
const messages = partialChunk.split('\n');
for (const msg of messages) {
if (!msg.trim()) continue;
const json = JSON.parse(msg);
messageHandler(json);
}
partialChunk = '';
} catch (error) {
console.warn('Incomplete JSON, waiting for next chunk...');
}
}
};
const rewrite = (messageId: string) => {
const messageIndex = messages.findIndex((msg) => msg.messageId === messageId);
if(messageIndex == -1) return;
sendMessage(messages[messageIndex - 1].content, messageId, { isCompact, rewriteIndex: messageIndex });
};
useEffect(() => {
if (isReady && initialMessage && isConfigReady) {
sendMessage(initialMessage, undefined, { isCompact });
}
// eslint-disable-next-line react-hooks/exhaustive-deps
}, [isConfigReady, isReady, initialMessage]);
if (hasError) {
return (
<div className="relative">
<div className="absolute w-full flex flex-row items-center justify-end mr-5 mt-5">
<Link href="/settings">
<Settings className="cursor-pointer lg:hidden" />
</Link>
</div>
<div className="flex flex-col items-center justify-center min-h-screen">
<p className="dark:text-white/70 text-black/70 text-sm">
Failed to connect to the server. Please try again later.
</p>
</div>
</div>
);
}
return isReady ? (
notFound ? (
<NextError statusCode={404} />
) : (
<div>
{messages.length > 0 ? (
<>
<Navbar chatId={chatId!} messages={messages} />
<Chat
loading={loading}
messages={messages}
sendMessage={sendMessage}
messageAppeared={messageAppeared}
rewrite={rewrite}
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
isCompact={isCompact}
setIsCompact={setIsCompact}
optimizationMode={optimizationMode}
setOptimizationMode={setOptimizationMode}
/>
</>
) : (
<EmptyChat
sendMessage={sendMessage}
focusMode={focusMode}
setFocusMode={setFocusMode}
optimizationMode={optimizationMode}
setOptimizationMode={setOptimizationMode}
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
isCompact={isCompact}
setIsCompact={setIsCompact}
/>
)}
</div>
)
) : (
<div className="flex flex-row items-center justify-center min-h-screen">
<svg
aria-hidden="true"
className="w-8 h-8 text-light-200 fill-light-secondary dark:text-[#202020] animate-spin dark:fill-[#ffffff3b]"
viewBox="0 0 100 101"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<path
d="M100 50.5908C100.003 78.2051 78.1951 100.003 50.5908 100C22.9765 99.9972 0.997224 78.018 1 50.4037C1.00281 22.7993 22.8108 0.997224 50.4251 1C78.0395 1.00281 100.018 22.8108 100 50.4251ZM9.08164 50.594C9.06312 73.3997 27.7909 92.1272 50.5966 92.1457C73.4023 92.1642 92.1298 73.4365 92.1483 50.6308C92.1669 27.8251 73.4392 9.0973 50.6335 9.07878C27.8278 9.06026 9.10003 27.787 9.08164 50.594Z"
fill="currentColor"
/>
<path
d="M93.9676 39.0409C96.393 38.4037 97.8624 35.9116 96.9801 33.5533C95.1945 28.8227 92.871 24.3692 90.0681 20.348C85.6237 14.1775 79.4473 9.36872 72.0454 6.45794C64.6435 3.54717 56.3134 2.65431 48.3133 3.89319C45.869 4.27179 44.3768 6.77534 45.014 9.20079C45.6512 11.6262 48.1343 13.0956 50.5786 12.717C56.5073 11.8281 62.5542 12.5399 68.0406 14.7911C73.527 17.0422 78.2187 20.7487 81.5841 25.4923C83.7976 28.5886 85.4467 32.059 86.4416 35.7474C87.1273 38.1189 89.5423 39.6781 91.9676 39.0409Z"
fill="currentFill"
/>
</svg>
</div>
);
};
export default ChatWindow;

View File

@ -0,0 +1,125 @@
import { Trash } from 'lucide-react';
import {
Description,
Dialog,
DialogBackdrop,
DialogPanel,
DialogTitle,
Transition,
TransitionChild,
} from '@headlessui/react';
import { Fragment, useState } from 'react';
import { toast } from 'sonner';
import { Chat } from '@/app/library/page';
const DeleteChat = ({
chatId,
chats,
setChats,
redirect = false,
}: {
chatId: string;
chats: Chat[];
setChats: (chats: Chat[]) => void;
redirect?: boolean;
}) => {
const [confirmationDialogOpen, setConfirmationDialogOpen] = useState(false);
const [loading, setLoading] = useState(false);
const handleDelete = async () => {
setLoading(true);
try {
const res = await fetch(`/api/chats/${chatId}`, {
method: 'DELETE',
headers: {
'Content-Type': 'application/json',
},
});
if (res.status != 200) {
throw new Error('Failed to delete chat');
}
const newChats = chats.filter((chat) => chat.id !== chatId);
setChats(newChats);
if (redirect) {
window.location.href = '/';
}
} catch (err: any) {
toast.error(err.message);
} finally {
setConfirmationDialogOpen(false);
setLoading(false);
}
};
return (
<>
<button
onClick={() => {
setConfirmationDialogOpen(true);
}}
className="bg-transparent text-red-400 hover:scale-105 transition duration-200"
>
<Trash size={17} />
</button>
<Transition appear show={confirmationDialogOpen} as={Fragment}>
<Dialog
as="div"
className="relative z-50"
onClose={() => {
if (!loading) {
setConfirmationDialogOpen(false);
}
}}
>
<DialogBackdrop className="fixed inset-0 bg-black/30" />
<div className="fixed inset-0 overflow-y-auto">
<div className="flex min-h-full items-center justify-center p-4 text-center">
<TransitionChild
as={Fragment}
enter="ease-out duration-200"
enterFrom="opacity-0 scale-95"
enterTo="opacity-100 scale-100"
leave="ease-in duration-100"
leaveFrom="opacity-100 scale-200"
leaveTo="opacity-0 scale-95"
>
<DialogPanel className="w-full max-w-md transform rounded-2xl bg-light-secondary dark:bg-dark-secondary border border-light-200 dark:border-dark-200 p-6 text-left align-middle shadow-xl transition-all">
<DialogTitle className="text-lg font-medium leading-6 dark:text-white">
Delete Confirmation
</DialogTitle>
<Description className="text-sm dark:text-white/70 text-black/70">
Are you sure you want to delete this chat?
</Description>
<div className="flex flex-row items-end justify-end space-x-4 mt-6">
<button
onClick={() => {
if (!loading) {
setConfirmationDialogOpen(false);
}
}}
className="text-black/50 dark:text-white/50 text-sm hover:text-black/70 hover:dark:text-white/70 transition duration-200"
>
Cancel
</button>
<button
onClick={handleDelete}
className="text-red-400 text-sm hover:text-red-500 transition duration200"
>
Delete
</button>
</div>
</DialogPanel>
</TransitionChild>
</div>
</div>
</Dialog>
</Transition>
</>
);
};
export default DeleteChat;

View File

@ -0,0 +1,63 @@
import { Settings } from 'lucide-react';
import EmptyChatMessageInput from './EmptyChatMessageInput';
import { useState } from 'react';
import { File } from './ChatWindow';
import Link from 'next/link';
const EmptyChat = ({
sendMessage,
focusMode,
setFocusMode,
optimizationMode,
setOptimizationMode,
fileIds,
setFileIds,
files,
setFiles,
isCompact,
setIsCompact,
}: {
sendMessage: (message: string) => void;
focusMode: string;
setFocusMode: (mode: string) => void;
optimizationMode: string;
setOptimizationMode: (mode: string) => void;
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: File[];
setFiles: (files: File[]) => void;
isCompact: boolean;
setIsCompact: (isCompact: boolean) => void;
}) => {
const [isSettingsOpen, setIsSettingsOpen] = useState(false);
return (
<div className="relative">
<div className="absolute w-full flex flex-row items-center justify-end mr-5 mt-5">
<Link href="/settings">
<Settings className="cursor-pointer lg:hidden" />
</Link>
</div>
<div className="flex flex-col items-center justify-center min-h-screen max-w-screen-sm mx-auto p-2 space-y-8">
<h2 className="text-black/70 dark:text-white/70 text-3xl font-medium -mt-8">
Research begins here.
</h2>
<EmptyChatMessageInput
sendMessage={sendMessage}
focusMode={focusMode}
setFocusMode={setFocusMode}
optimizationMode={optimizationMode}
setOptimizationMode={setOptimizationMode}
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
isCompact={isCompact}
setIsCompact={setIsCompact}
/>
</div>
</div>
);
};
export default EmptyChat;

View File

@ -0,0 +1,124 @@
import { ArrowRight } from 'lucide-react';
import { useEffect, useRef, useState } from 'react';
import TextareaAutosize from 'react-textarea-autosize';
import CopilotToggle from './MessageInputActions/Copilot';
import Focus from './MessageInputActions/Focus';
import Optimization from './MessageInputActions/Optimization';
import Attach from './MessageInputActions/Attach';
import { File } from './ChatWindow';
const EmptyChatMessageInput = ({
sendMessage,
focusMode,
setFocusMode,
optimizationMode,
setOptimizationMode,
fileIds,
setFileIds,
files,
setFiles,
isCompact,
setIsCompact,
}: {
sendMessage: (
message: string,
messageId?: string,
options?: { isCompact?: boolean },
) => void;
focusMode: string;
setFocusMode: (mode: string) => void;
optimizationMode: string;
setOptimizationMode: (mode: string) => void;
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: File[];
setFiles: (files: File[]) => void;
isCompact: boolean;
setIsCompact: (isCompact: boolean) => void;
}) => {
const [copilotEnabled, setCopilotEnabled] = useState(false);
const [message, setMessage] = useState('');
const inputRef = useRef<HTMLTextAreaElement | null>(null);
useEffect(() => {
const handleKeyDown = (e: KeyboardEvent) => {
const activeElement = document.activeElement;
const isInputFocused =
activeElement?.tagName === 'INPUT' ||
activeElement?.tagName === 'TEXTAREA' ||
activeElement?.hasAttribute('contenteditable');
if (e.key === '/' && !isInputFocused) {
e.preventDefault();
inputRef.current?.focus();
}
};
document.addEventListener('keydown', handleKeyDown);
inputRef.current?.focus();
return () => {
document.removeEventListener('keydown', handleKeyDown);
};
}, []);
return (
<form
onSubmit={(e) => {
e.preventDefault();
sendMessage(message, undefined, { isCompact });
setMessage('');
}}
onKeyDown={(e) => {
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
sendMessage(message, undefined, { isCompact });
setMessage('');
}
}}
className="w-full"
>
<div className="flex flex-col bg-light-secondary dark:bg-dark-secondary px-5 pt-5 pb-2 rounded-lg w-full border border-light-200 dark:border-dark-200">
<TextareaAutosize
ref={inputRef}
value={message}
onChange={(e) => setMessage(e.target.value)}
minRows={2}
className="bg-transparent placeholder:text-black/50 dark:placeholder:text-white/50 text-sm text-black dark:text-white resize-none focus:outline-none w-full max-h-24 lg:max-h-36 xl:max-h-48"
placeholder="Ask anything..."
/>
<div className="flex flex-row items-center justify-between mt-4">
<div className="flex flex-row items-center space-x-2 lg:space-x-4">
<Focus focusMode={focusMode} setFocusMode={setFocusMode} />
<Attach
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
showText
/>
</div>
<div className="flex flex-row items-center space-x-1 sm:space-x-4">
<Optimization
optimizationMode={optimizationMode}
setOptimizationMode={setOptimizationMode}
isCompact={isCompact}
setIsCompact={setIsCompact}
/>
<button
disabled={message.trim().length === 0}
className="bg-[#24A0ED] text-white disabled:text-black/50 dark:disabled:text-white/50 disabled:bg-[#e0e0dc] dark:disabled:bg-[#ececec21] hover:bg-opacity-85 transition duration-100 rounded-full p-2"
>
<ArrowRight className="bg-background" size={17} />
</button>
</div>
</div>
</div>
</form>
);
};
export default EmptyChatMessageInput;

View File

@ -0,0 +1,9 @@
const Layout = ({ children }: { children: React.ReactNode }) => {
return (
<main className="lg:pl-20 bg-light-primary dark:bg-dark-primary min-h-screen">
<div className="max-w-screen-lg lg:mx-auto mx-4">{children}</div>
</main>
);
};
export default Layout;

View File

@ -0,0 +1,29 @@
import { Check, ClipboardList } from 'lucide-react';
import { Message } from '../ChatWindow';
import { useState } from 'react';
const Copy = ({
message,
initialMessage,
}: {
message: Message;
initialMessage: string;
}) => {
const [copied, setCopied] = useState(false);
return (
<button
onClick={() => {
const contentToCopy = `${initialMessage}${message.sources && message.sources.length > 0 && `\n\nCitations:\n${message.sources?.map((source: any, i: any) => `[${i + 1}] ${source.metadata.url}`).join(`\n`)}`}`;
navigator.clipboard.writeText(contentToCopy);
setCopied(true);
setTimeout(() => setCopied(false), 1000);
}}
className="p-2 text-black/70 dark:text-white/70 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white"
>
{copied ? <Check size={18} /> : <ClipboardList size={18} />}
</button>
);
};
export default Copy;

View File

@ -0,0 +1,21 @@
import { ArrowLeftRight } from 'lucide-react';
const Rewrite = ({
rewrite,
messageId,
}: {
rewrite: (messageId: string) => void;
messageId: string;
}) => {
return (
<button
onClick={() => rewrite(messageId)}
className="py-2 px-3 text-black/70 dark:text-white/70 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white flex flex-row items-center space-x-1"
>
<ArrowLeftRight size={18} />
<p className="text-xs font-medium">Rewrite</p>
</button>
);
};
export default Rewrite;

View File

@ -0,0 +1,272 @@
'use client';
/* eslint-disable @next/next/no-img-element */
import React, { MutableRefObject, useEffect, useState } from 'react';
import { Message } from './ChatWindow';
import { cn } from '@/lib/utils';
import {
BookCopy,
Disc3,
Volume2,
StopCircle,
Layers3,
Plus,
} from 'lucide-react';
import Markdown, { MarkdownToJSX } from 'markdown-to-jsx';
import Copy from './MessageActions/Copy';
import Rewrite from './MessageActions/Rewrite';
import MessageSources from './MessageSources';
import SearchImages from './SearchImages';
import SearchVideos from './SearchVideos';
import { useSpeech } from 'react-text-to-speech';
import ThinkBox from './ThinkBox';
const ThinkTagProcessor = ({ children }: { children: React.ReactNode }) => {
return <ThinkBox content={children as string} />;
};
const MessageBox = ({
message,
messageIndex,
history,
loading,
dividerRef,
isLast,
rewrite,
isCompact,
sendMessage,
}: {
message: Message;
messageIndex: number;
history: Message[];
loading: boolean;
dividerRef?: MutableRefObject<HTMLDivElement | null>;
isLast: boolean;
rewrite: (messageId: string) => void;
isCompact: boolean;
sendMessage: (
message: string,
messageId?: string,
options?: { isCompact?: boolean },
) => void;
}) => {
const [parsedMessage, setParsedMessage] = useState(message.content);
const [speechMessage, setSpeechMessage] = useState(message.content);
useEffect(() => {
const citationRegex = /\[([^\]]+)\]/g;
const regex = /\[(\d+)\]/g;
let processedMessage = message.content;
if (message.role === 'assistant' && message.content.includes('<think>')) {
const openThinkTag = processedMessage.match(/<think>/g)?.length || 0;
const closeThinkTag = processedMessage.match(/<\/think>/g)?.length || 0;
if (openThinkTag > closeThinkTag) {
processedMessage += '</think> <a> </a>'; // The extra <a> </a> is to prevent the the think component from looking bad
}
}
if (
message.role === 'assistant' &&
message?.sources &&
message.sources.length > 0
) {
setParsedMessage(
processedMessage.replace(
citationRegex,
(_, capturedContent: string) => {
const numbers = capturedContent
.split(',')
.map((numStr) => numStr.trim());
const linksHtml = numbers
.map((numStr) => {
const number = parseInt(numStr);
if (isNaN(number) || number <= 0) {
return `[${numStr}]`;
}
const source = message.sources?.[number - 1];
const url = source?.metadata?.url;
if (url) {
return `<a href="${url}" target="_blank" className="bg-light-secondary dark:bg-dark-secondary px-1 rounded ml-1 no-underline text-xs text-black/70 dark:text-white/70 relative">${numStr}</a>`;
} else {
return `[${numStr}]`;
}
})
.join('');
return linksHtml;
},
),
);
setSpeechMessage(message.content.replace(regex, ''));
return;
}
setSpeechMessage(message.content.replace(regex, ''));
setParsedMessage(processedMessage);
}, [message.content, message.sources, message.role]);
const { speechStatus, start, stop } = useSpeech({ text: speechMessage });
const handleSuggestionClick = (suggestion: string) => {
sendMessage(suggestion, undefined, { isCompact });
};
const markdownOverrides: MarkdownToJSX.Options = {
overrides: {
think: {
component: ThinkTagProcessor,
},
},
};
return (
<div>
{message.role === 'user' && (
<div
className={cn(
'w-full',
messageIndex === 0 ? 'pt-16' : 'pt-8',
'break-words',
)}
>
<h2 className="text-black dark:text-white font-medium text-3xl lg:w-9/12">
{message.content}
</h2>
</div>
)}
{message.role === 'assistant' && (
<div className="flex flex-col space-y-9 lg:space-y-0 lg:flex-row lg:justify-between lg:space-x-9">
<div
ref={dividerRef}
className="flex flex-col space-y-6 w-full lg:w-9/12"
>
{message.sources && message.sources.length > 0 && (
<div className="flex flex-col space-y-2">
<div className="flex flex-row items-center space-x-2">
<BookCopy className="text-black dark:text-white" size={20} />
<h3 className="text-black dark:text-white font-medium text-xl">
Sources
</h3>
</div>
<MessageSources sources={message.sources} />
</div>
)}
<div className="flex flex-col space-y-2">
<div className="flex flex-row items-center space-x-2">
<Disc3
className={cn(
'text-black dark:text-white',
isLast && loading ? 'animate-spin' : 'animate-none',
)}
size={20}
/>
<h3 className="text-black dark:text-white font-medium text-xl">
Answer
</h3>
</div>
<Markdown
className={cn(
'prose prose-h1:mb-3 prose-h2:mb-2 prose-h2:mt-6 prose-h2:font-[800] prose-h3:mt-4 prose-h3:mb-1.5 prose-h3:font-[600] dark:prose-invert prose-p:leading-relaxed prose-pre:p-0 font-[400]',
'max-w-none break-words text-black dark:text-white',
)}
options={markdownOverrides}
>
{parsedMessage}
</Markdown>
{loading && isLast ? null : (
<div className="flex flex-row items-center justify-between w-full text-black dark:text-white py-4 -mx-2">
<div className="flex flex-row items-center space-x-1">
{/* <button className="p-2 text-black/70 dark:text-white/70 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black text-black dark:hover:text-white">
<Share size={18} />
</button> */}
<Rewrite rewrite={rewrite} messageId={message.messageId} />
</div>
<div className="flex flex-row items-center space-x-1">
<Copy initialMessage={message.content} message={message} />
<button
onClick={() => {
if (speechStatus === 'started') {
stop();
} else {
start();
}
}}
className="p-2 text-black/70 dark:text-white/70 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white"
>
{speechStatus === 'started' ? (
<StopCircle size={18} />
) : (
<Volume2 size={18} />
)}
</button>
</div>
</div>
)}
{isLast &&
message.suggestions &&
message.suggestions.length > 0 &&
message.role === 'assistant' &&
!loading && (
<>
<div className="h-px w-full bg-light-secondary dark:bg-dark-secondary" />
<div className="flex flex-col space-y-3 text-black dark:text-white">
<div className="flex flex-row items-center space-x-2 mt-4">
<Layers3 />
<h3 className="text-xl font-medium">Related</h3>
</div>
<div className="flex flex-col space-y-3">
{message.suggestions.map((suggestion, i) => (
<div
className="flex flex-col space-y-3 text-sm"
key={i}
>
<div className="h-px w-full bg-light-secondary dark:bg-dark-secondary" />
<div
onClick={() => {
handleSuggestionClick(suggestion);
}}
className="cursor-pointer flex flex-row justify-between font-medium space-x-2 items-center"
>
<p className="transition duration-200 hover:text-[#24A0ED]">
{suggestion}
</p>
<Plus
size={20}
className="text-[#24A0ED] flex-shrink-0"
/>
</div>
</div>
))}
</div>
</div>
</>
)}
</div>
</div>
<div className="lg:sticky lg:top-20 flex flex-col items-center space-y-3 w-full lg:w-3/12 z-30 h-full pb-4">
<SearchImages
query={history[messageIndex - 1].content}
chatHistory={history.slice(0, messageIndex - 1)}
messageId={message.messageId}
/>
<SearchVideos
chatHistory={history.slice(0, messageIndex - 1)}
query={history[messageIndex - 1].content}
messageId={message.messageId}
/>
</div>
</div>
)}
</div>
);
};
export default MessageBox;

View File

@ -0,0 +1,11 @@
const MessageBoxLoading = () => {
return (
<div className="flex flex-col space-y-2 w-full lg:w-9/12 bg-light-primary dark:bg-dark-primary animate-pulse rounded-lg py-3">
<div className="h-2 rounded-full w-full bg-light-secondary dark:bg-dark-secondary" />
<div className="h-2 rounded-full w-9/12 bg-light-secondary dark:bg-dark-secondary" />
<div className="h-2 rounded-full w-10/12 bg-light-secondary dark:bg-dark-secondary" />
</div>
);
};
export default MessageBoxLoading;

View File

@ -0,0 +1,165 @@
import { cn } from '@/lib/utils';
import { ArrowUp } from 'lucide-react';
import { useEffect, useRef, useState } from 'react';
import TextareaAutosize from 'react-textarea-autosize';
import Attach from './MessageInputActions/Attach';
import CopilotToggle from './MessageInputActions/Copilot';
import Optimization from './MessageInputActions/Optimization';
import { File } from './ChatWindow';
import AttachSmall from './MessageInputActions/AttachSmall';
const MessageInput = ({
sendMessage,
loading,
fileIds,
setFileIds,
files,
setFiles,
isCompact,
setIsCompact,
optimizationMode,
setOptimizationMode,
}: {
sendMessage: (
message: string,
messageId?: string,
options?: { isCompact?: boolean },
) => void;
loading: boolean;
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: File[];
setFiles: (files: File[]) => void;
isCompact: boolean;
setIsCompact: (isCompact: boolean) => void;
optimizationMode: string;
setOptimizationMode: (mode: string) => void;
}) => {
const [copilotEnabled, setCopilotEnabled] = useState(false);
const [message, setMessage] = useState('');
const [textareaRows, setTextareaRows] = useState(1);
const [mode, setMode] = useState<'multi' | 'single'>('single');
useEffect(() => {
if (textareaRows >= 2 && message && mode === 'single') {
setMode('multi');
} else if (!message && mode === 'multi') {
setMode('single');
}
}, [textareaRows, mode, message]);
const inputRef = useRef<HTMLTextAreaElement | null>(null);
useEffect(() => {
const handleKeyDown = (e: KeyboardEvent) => {
const activeElement = document.activeElement;
const isInputFocused =
activeElement?.tagName === 'INPUT' ||
activeElement?.tagName === 'TEXTAREA' ||
activeElement?.hasAttribute('contenteditable');
if (e.key === '/' && !isInputFocused) {
e.preventDefault();
inputRef.current?.focus();
}
};
document.addEventListener('keydown', handleKeyDown);
return () => {
document.removeEventListener('keydown', handleKeyDown);
};
}, []);
return (
<form
onSubmit={(e) => {
if (loading) return;
e.preventDefault();
sendMessage(message, undefined, { isCompact });
setMessage('');
}}
onKeyDown={(e) => {
if (e.key === 'Enter' && !e.shiftKey && !loading) {
e.preventDefault();
sendMessage(message, undefined, { isCompact });
setMessage('');
}
}}
className={cn(
'bg-light-secondary dark:bg-dark-secondary p-4 flex items-center border border-light-200 dark:border-dark-200',
mode === 'multi' ? 'flex-col rounded-lg' : 'flex-row rounded-full',
)}
>
{mode === 'single' && (
<div className="flex flex-row items-center space-x-2">
<AttachSmall
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
/>
<Optimization
optimizationMode={optimizationMode}
setOptimizationMode={setOptimizationMode}
isCompact={isCompact}
setIsCompact={setIsCompact}
/>
</div>
)}
<TextareaAutosize
ref={inputRef}
value={message}
onChange={(e) => setMessage(e.target.value)}
onHeightChange={(height, props) => {
setTextareaRows(Math.ceil(height / props.rowHeight));
}}
className="transition bg-transparent dark:placeholder:text-white/50 placeholder:text-sm text-sm dark:text-white resize-none focus:outline-none w-full px-2 max-h-24 lg:max-h-36 xl:max-h-48 flex-grow flex-shrink"
placeholder="Ask a follow-up"
/>
{mode === 'single' && (
<div className="flex flex-row items-center space-x-4">
<CopilotToggle
copilotEnabled={copilotEnabled}
setCopilotEnabled={setCopilotEnabled}
/>
<button
disabled={message.trim().length === 0 || loading}
className="bg-[#24A0ED] text-white disabled:text-black/50 dark:disabled:text-white/50 hover:bg-opacity-85 transition duration-100 disabled:bg-[#e0e0dc79] dark:disabled:bg-[#ececec21] rounded-full p-2"
>
<ArrowUp className="bg-background" size={17} />
</button>
</div>
)}
{mode === 'multi' && (
<div className="flex flex-row items-center justify-between w-full pt-2">
<div className="flex flex-row items-center space-x-2">
<AttachSmall
fileIds={fileIds}
setFileIds={setFileIds}
files={files}
setFiles={setFiles}
/>
<Optimization
optimizationMode={optimizationMode}
setOptimizationMode={setOptimizationMode}
isCompact={isCompact}
setIsCompact={setIsCompact}
/>
</div>
<div className="flex flex-row items-center space-x-4">
<CopilotToggle
copilotEnabled={copilotEnabled}
setCopilotEnabled={setCopilotEnabled}
/>
<button
disabled={message.trim().length === 0 || loading}
className="bg-[#24A0ED] text-white text-black/50 dark:disabled:text-white/50 hover:bg-opacity-85 transition duration-100 disabled:bg-[#e0e0dc79] dark:disabled:bg-[#ececec21] rounded-full p-2"
>
<ArrowUp className="bg-background" size={17} />
</button>
</div>
</div>
)}
</form>
);
};
export default MessageInput;

View File

@ -0,0 +1,185 @@
import { cn } from '@/lib/utils';
import {
Popover,
PopoverButton,
PopoverPanel,
Transition,
} from '@headlessui/react';
import { CopyPlus, File, LoaderCircle, Plus, Trash } from 'lucide-react';
import { Fragment, useRef, useState } from 'react';
import { File as FileType } from '../ChatWindow';
const Attach = ({
fileIds,
setFileIds,
showText,
files,
setFiles,
}: {
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
showText?: boolean;
files: FileType[];
setFiles: (files: FileType[]) => void;
}) => {
const [loading, setLoading] = useState(false);
const fileInputRef = useRef<any>();
const handleChange = async (e: React.ChangeEvent<HTMLInputElement>) => {
setLoading(true);
const data = new FormData();
for (let i = 0; i < e.target.files!.length; i++) {
data.append('files', e.target.files![i]);
}
const embeddingModelProvider = localStorage.getItem(
'embeddingModelProvider',
);
const embeddingModel = localStorage.getItem('embeddingModel');
data.append('embedding_model_provider', embeddingModelProvider!);
data.append('embedding_model', embeddingModel!);
const res = await fetch(`/api/uploads`, {
method: 'POST',
body: data,
});
const resData = await res.json();
setFiles([...files, ...resData.files]);
setFileIds([...fileIds, ...resData.files.map((file: any) => file.fileId)]);
setLoading(false);
};
return loading ? (
<div className="flex flex-row items-center justify-between space-x-1">
<LoaderCircle size={18} className="text-sky-400 animate-spin" />
<p className="text-sky-400 inline whitespace-nowrap text-xs font-medium">
Uploading..
</p>
</div>
) : files.length > 0 ? (
<Popover className="relative w-full max-w-[15rem] md:max-w-md lg:max-w-lg">
<PopoverButton
type="button"
className={cn(
'flex flex-row items-center justify-between space-x-1 p-2 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary active:scale-95 transition duration-200 hover:text-black dark:hover:text-white',
files.length > 0 ? '-ml-2 lg:-ml-3' : '',
)}
>
{files.length > 1 && (
<>
<File size={19} className="text-sky-400" />
<p className="text-sky-400 inline whitespace-nowrap text-xs font-medium">
{files.length} files
</p>
</>
)}
{files.length === 1 && (
<>
<File size={18} className="text-sky-400" />
<p className="text-sky-400 text-xs font-medium">
{files[0].fileName.length > 10
? files[0].fileName.replace(/\.\w+$/, '').substring(0, 3) +
'...' +
files[0].fileExtension
: files[0].fileName}
</p>
</>
)}
</PopoverButton>
<Transition
as={Fragment}
enter="transition ease-out duration-150"
enterFrom="opacity-0 translate-y-1"
enterTo="opacity-100 translate-y-0"
leave="transition ease-in duration-150"
leaveFrom="opacity-100 translate-y-0"
leaveTo="opacity-0 translate-y-1"
>
<PopoverPanel className="absolute z-10 w-64 md:w-[350px] right-0">
<div className="bg-light-primary dark:bg-dark-primary border rounded-md border-light-200 dark:border-dark-200 w-full max-h-[200px] md:max-h-none overflow-y-auto flex flex-col">
<div className="flex flex-row items-center justify-between px-3 py-2">
<h4 className="text-black dark:text-white font-medium text-sm">
Attached files
</h4>
<div className="flex flex-row items-center space-x-4">
<button
type="button"
onClick={() => fileInputRef.current.click()}
className="flex flex-row items-center space-x-1 text-black/70 dark:text-white/70 hover:text-black hover:dark:text-white transition duration-200"
>
<input
type="file"
onChange={handleChange}
ref={fileInputRef}
accept=".pdf,.docx,.txt"
multiple
hidden
/>
<Plus size={18} />
<p className="text-xs">Add</p>
</button>
<button
onClick={() => {
setFiles([]);
setFileIds([]);
}}
className="flex flex-row items-center space-x-1 text-black/70 dark:text-white/70 hover:text-black hover:dark:text-white transition duration-200"
>
<Trash size={14} />
<p className="text-xs">Clear</p>
</button>
</div>
</div>
<div className="h-[0.5px] mx-2 bg-white/10" />
<div className="flex flex-col items-center">
{files.map((file, i) => (
<div
key={i}
className="flex flex-row items-center justify-start w-full space-x-3 p-3"
>
<div className="bg-dark-100 flex items-center justify-center w-10 h-10 rounded-md">
<File size={16} className="text-white/70" />
</div>
<p className="text-black/70 dark:text-white/70 text-sm">
{file.fileName.length > 25
? file.fileName.replace(/\.\w+$/, '').substring(0, 25) +
'...' +
file.fileExtension
: file.fileName}
</p>
</div>
))}
</div>
</div>
</PopoverPanel>
</Transition>
</Popover>
) : (
<button
type="button"
onClick={() => fileInputRef.current.click()}
className={cn(
'flex flex-row items-center space-x-1 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white',
showText ? '' : 'p-2',
)}
>
<input
type="file"
onChange={handleChange}
ref={fileInputRef}
accept=".pdf,.docx,.txt"
multiple
hidden
/>
<CopyPlus size={showText ? 18 : undefined} />
{showText && <p className="text-xs font-medium pl-[1px]">Attach</p>}
</button>
);
};
export default Attach;

View File

@ -0,0 +1,153 @@
import { cn } from '@/lib/utils';
import {
Popover,
PopoverButton,
PopoverPanel,
Transition,
} from '@headlessui/react';
import { CopyPlus, File, LoaderCircle, Plus, Trash } from 'lucide-react';
import { Fragment, useRef, useState } from 'react';
import { File as FileType } from '../ChatWindow';
const AttachSmall = ({
fileIds,
setFileIds,
files,
setFiles,
}: {
fileIds: string[];
setFileIds: (fileIds: string[]) => void;
files: FileType[];
setFiles: (files: FileType[]) => void;
}) => {
const [loading, setLoading] = useState(false);
const fileInputRef = useRef<any>();
const handleChange = async (e: React.ChangeEvent<HTMLInputElement>) => {
setLoading(true);
const data = new FormData();
for (let i = 0; i < e.target.files!.length; i++) {
data.append('files', e.target.files![i]);
}
const embeddingModelProvider = localStorage.getItem(
'embeddingModelProvider',
);
const embeddingModel = localStorage.getItem('embeddingModel');
data.append('embedding_model_provider', embeddingModelProvider!);
data.append('embedding_model', embeddingModel!);
const res = await fetch(`/api/uploads`, {
method: 'POST',
body: data,
});
const resData = await res.json();
setFiles([...files, ...resData.files]);
setFileIds([...fileIds, ...resData.files.map((file: any) => file.fileId)]);
setLoading(false);
};
return loading ? (
<div className="flex flex-row items-center justify-between space-x-1 p-1">
<LoaderCircle size={20} className="text-sky-400 animate-spin" />
</div>
) : files.length > 0 ? (
<Popover className="max-w-[15rem] md:max-w-md lg:max-w-lg">
<PopoverButton
type="button"
className="flex flex-row items-center justify-between space-x-1 p-1 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary active:scale-95 transition duration-200 hover:text-black dark:hover:text-white"
>
<File size={20} className="text-sky-400" />
</PopoverButton>
<Transition
as={Fragment}
enter="transition ease-out duration-150"
enterFrom="opacity-0 translate-y-1"
enterTo="opacity-100 translate-y-0"
leave="transition ease-in duration-150"
leaveFrom="opacity-100 translate-y-0"
leaveTo="opacity-0 translate-y-1"
>
<PopoverPanel className="absolute z-10 w-64 md:w-[350px] bottom-14 -ml-3">
<div className="bg-light-primary dark:bg-dark-primary border rounded-md border-light-200 dark:border-dark-200 w-full max-h-[200px] md:max-h-none overflow-y-auto flex flex-col">
<div className="flex flex-row items-center justify-between px-3 py-2">
<h4 className="text-black dark:text-white font-medium text-sm">
Attached files
</h4>
<div className="flex flex-row items-center space-x-4">
<button
type="button"
onClick={() => fileInputRef.current.click()}
className="flex flex-row items-center space-x-1 text-black/70 dark:text-white/70 hover:text-black hover:dark:text-white transition duration-200"
>
<input
type="file"
onChange={handleChange}
ref={fileInputRef}
accept=".pdf,.docx,.txt"
multiple
hidden
/>
<Plus size={18} />
<p className="text-xs">Add</p>
</button>
<button
onClick={() => {
setFiles([]);
setFileIds([]);
}}
className="flex flex-row items-center space-x-1 text-black/70 dark:text-white/70 hover:text-black hover:dark:text-white transition duration-200"
>
<Trash size={14} />
<p className="text-xs">Clear</p>
</button>
</div>
</div>
<div className="h-[0.5px] mx-2 bg-white/10" />
<div className="flex flex-col items-center">
{files.map((file, i) => (
<div
key={i}
className="flex flex-row items-center justify-start w-full space-x-3 p-3"
>
<div className="bg-dark-100 flex items-center justify-center w-10 h-10 rounded-md">
<File size={16} className="text-white/70" />
</div>
<p className="text-black/70 dark:text-white/70 text-sm">
{file.fileName.length > 25
? file.fileName.replace(/\.\w+$/, '').substring(0, 25) +
'...' +
file.fileExtension
: file.fileName}
</p>
</div>
))}
</div>
</div>
</PopoverPanel>
</Transition>
</Popover>
) : (
<button
type="button"
onClick={() => fileInputRef.current.click()}
className="flex flex-row items-center space-x-1 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary transition duration-200 hover:text-black dark:hover:text-white p-1"
>
<input
type="file"
onChange={handleChange}
ref={fileInputRef}
accept=".pdf,.docx,.txt"
multiple
hidden
/>
<CopyPlus size={20} />
</button>
);
};
export default AttachSmall;

View File

@ -0,0 +1,43 @@
import { cn } from '@/lib/utils';
import { Switch } from '@headlessui/react';
const CopilotToggle = ({
copilotEnabled,
setCopilotEnabled,
}: {
copilotEnabled: boolean;
setCopilotEnabled: (enabled: boolean) => void;
}) => {
return (
<div className="group flex flex-row items-center space-x-1 active:scale-95 duration-200 transition cursor-pointer">
<Switch
checked={copilotEnabled}
onChange={setCopilotEnabled}
className="bg-light-secondary dark:bg-dark-secondary border border-light-200/70 dark:border-dark-200 relative inline-flex h-5 w-10 sm:h-6 sm:w-11 items-center rounded-full"
>
<span className="sr-only">Copilot</span>
<span
className={cn(
copilotEnabled
? 'translate-x-6 bg-[#24A0ED]'
: 'translate-x-1 bg-black/50 dark:bg-white/50',
'inline-block h-3 w-3 sm:h-4 sm:w-4 transform rounded-full transition-all duration-200',
)}
/>
</Switch>
<p
onClick={() => setCopilotEnabled(!copilotEnabled)}
className={cn(
'text-xs font-medium transition-colors duration-150 ease-in-out',
copilotEnabled
? 'text-[#24A0ED]'
: 'text-black/50 dark:text-white/50 group-hover:text-black dark:group-hover:text-white',
)}
>
Copilot
</p>
</div>
);
};
export default CopilotToggle;

View File

@ -0,0 +1,131 @@
import {
BadgePercent,
ChevronDown,
Globe,
Pencil,
ScanEye,
SwatchBook,
} from 'lucide-react';
import { cn } from '@/lib/utils';
import {
Popover,
PopoverButton,
PopoverPanel,
Transition,
} from '@headlessui/react';
import { SiReddit, SiYoutube } from '@icons-pack/react-simple-icons';
import { Fragment } from 'react';
const focusModes = [
{
key: 'webSearch',
title: 'All',
description: 'Searches across all of the internet',
icon: <Globe size={20} />,
},
{
key: 'academicSearch',
title: 'Academic',
description: 'Search in published academic papers',
icon: <SwatchBook size={20} />,
},
{
key: 'writingAssistant',
title: 'Writing',
description: 'Chat without searching the web',
icon: <Pencil size={16} />,
},
{
key: 'wolframAlphaSearch',
title: 'Wolfram Alpha',
description: 'Computational knowledge engine',
icon: <BadgePercent size={20} />,
},
{
key: 'youtubeSearch',
title: 'Youtube',
description: 'Search and watch videos',
icon: <SiYoutube className="h-5 w-auto mr-0.5" />,
},
{
key: 'redditSearch',
title: 'Reddit',
description: 'Search for discussions and opinions',
icon: <SiReddit className="h-5 w-auto mr-0.5" />,
},
];
const Focus = ({
focusMode,
setFocusMode,
}: {
focusMode: string;
setFocusMode: (mode: string) => void;
}) => {
return (
<Popover className="relative w-full max-w-[15rem] md:max-w-md lg:max-w-lg mt-[6.5px]">
<PopoverButton
type="button"
className=" text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary active:scale-95 transition duration-200 hover:text-black dark:hover:text-white"
>
{focusMode !== 'webSearch' ? (
<div className="flex flex-row items-center space-x-1">
{focusModes.find((mode) => mode.key === focusMode)?.icon}
<p className="text-xs font-medium hidden lg:block">
{focusModes.find((mode) => mode.key === focusMode)?.title}
</p>
<ChevronDown size={20} className="-translate-x-1" />
</div>
) : (
<div className="flex flex-row items-center space-x-1">
<ScanEye size={20} />
<p className="text-xs font-medium hidden lg:block">Focus</p>
</div>
)}
</PopoverButton>
<Transition
as={Fragment}
enter="transition ease-out duration-150"
enterFrom="opacity-0 translate-y-1"
enterTo="opacity-100 translate-y-0"
leave="transition ease-in duration-150"
leaveFrom="opacity-100 translate-y-0"
leaveTo="opacity-0 translate-y-1"
>
<PopoverPanel className="absolute z-10 w-64 md:w-[500px] left-0">
<div className="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-3 gap-2 bg-light-primary dark:bg-dark-primary border rounded-lg border-light-200 dark:border-dark-200 w-full p-4 max-h-[200px] md:max-h-none overflow-y-auto">
{focusModes.map((mode, i) => (
<PopoverButton
onClick={() => setFocusMode(mode.key)}
key={i}
className={cn(
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-2 duration-200 cursor-pointer transition',
focusMode === mode.key
? 'bg-light-secondary dark:bg-dark-secondary'
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
)}
>
<div
className={cn(
'flex flex-row items-center space-x-1',
focusMode === mode.key
? 'text-[#24A0ED]'
: 'text-black dark:text-white',
)}
>
{mode.icon}
<p className="text-sm font-medium">{mode.title}</p>
</div>
<p className="text-black/70 dark:text-white/70 text-xs">
{mode.description}
</p>
</PopoverButton>
))}
</div>
</PopoverPanel>
</Transition>
</Popover>
);
};
export default Focus;

View File

@ -0,0 +1,156 @@
import { ChevronDown, Minimize2, Sliders, Star, Zap } from 'lucide-react';
import { cn } from '@/lib/utils';
import {
Popover,
PopoverButton,
PopoverPanel,
Transition,
} from '@headlessui/react';
import { Fragment, useEffect } from 'react';
const OptimizationModes = [
{
key: 'speed',
title: 'Speed',
description: 'Prioritize speed and get the quickest possible answer.',
icon: <Zap size={20} className="text-[#FF9800]" />,
},
{
key: 'balanced',
title: 'Balanced',
description: 'Find the right balance between speed and accuracy',
icon: <Sliders size={20} className="text-[#4CAF50]" />,
},
{
key: 'quality',
title: 'Quality (Soon)',
description: 'Get the most thorough and accurate answer',
icon: (
<Star
size={16}
className="text-[#2196F3] dark:text-[#BBDEFB] fill-[#BBDEFB] dark:fill-[#2196F3]"
/>
),
},
];
const Optimization = ({
optimizationMode,
setOptimizationMode,
isCompact,
setIsCompact,
}: {
optimizationMode: string;
setOptimizationMode: (mode: string) => void;
isCompact: boolean;
setIsCompact: (isCompact: boolean) => void;
}) => {
useEffect(() => {
const savedCompactMode = localStorage.getItem('compactMode');
if (savedCompactMode === null) {
localStorage.setItem('compactMode', String(isCompact));
} else {
setIsCompact(savedCompactMode === 'true');
}
}, [setIsCompact]);
const handleCompactChange = (checked: boolean) => {
setIsCompact(checked);
localStorage.setItem('compactMode', String(checked));
};
const handleOptimizationChange = (mode: string) => {
setOptimizationMode(mode);
localStorage.setItem('optimizationMode', mode);
};
return (
<Popover className="relative w-full max-w-[15rem] md:max-w-md lg:max-w-lg">
<PopoverButton
type="button"
className="p-2 text-black/50 dark:text-white/50 rounded-xl hover:bg-light-secondary dark:hover:bg-dark-secondary active:scale-95 transition duration-200 hover:text-black dark:hover:text-white"
>
<div className="flex flex-row items-center space-x-1">
{isCompact && (
<Minimize2
size={16}
className="text-gray-600 dark:text-gray-400"
/>
)}
{
OptimizationModes.find((mode) => mode.key === optimizationMode)
?.icon
}
<p className="text-xs font-medium">
{
OptimizationModes.find((mode) => mode.key === optimizationMode)
?.title
}
</p>
<ChevronDown size={20} />
</div>
</PopoverButton>
<Transition
as={Fragment}
enter="transition ease-out duration-150"
enterFrom="opacity-0 translate-y-1"
enterTo="opacity-100 translate-y-0"
leave="transition ease-in duration-150"
leaveFrom="opacity-100 translate-y-0"
leaveTo="opacity-0 translate-y-1"
>
<PopoverPanel className="absolute z-10 w-64 md:w-[250px] right-0 bottom-[100%] mb-2">
<div className="flex flex-col gap-2 bg-light-primary dark:bg-dark-primary border rounded-lg border-light-200 dark:border-dark-200 w-full p-4 max-h-[200px] md:max-h-none overflow-y-auto">
{OptimizationModes.map((mode, i) => (
<PopoverButton
onClick={() => handleOptimizationChange(mode.key)}
key={i}
disabled={mode.key === 'quality'}
className={cn(
'p-2 rounded-lg flex flex-col items-start justify-start text-start space-y-1 duration-200 cursor-pointer transition',
optimizationMode === mode.key
? 'bg-light-secondary dark:bg-dark-secondary'
: 'hover:bg-light-secondary dark:hover:bg-dark-secondary',
mode.key === 'quality' && 'opacity-50 cursor-not-allowed',
)}
>
<div className="flex flex-row items-center space-x-1 text-black dark:text-white">
{mode.icon}
<p className="text-sm font-medium">{mode.title}</p>
</div>
<p className="text-black/70 dark:text-white/70 text-xs">
{mode.description}
</p>
</PopoverButton>
))}
<div className="border-t border-light-200 dark:border-dark-200 pt-2 mt-1">
<label className="flex items-center space-x-2 p-2 rounded-lg cursor-pointer hover:bg-light-secondary dark:hover:bg-dark-secondary">
<input
type="checkbox"
checked={isCompact}
onChange={(e) => handleCompactChange(e.target.checked)}
className="form-checkbox h-4 w-4 text-blue-600 transition duration-150 ease-in-out"
/>
<div className="flex items-center space-x-2">
<Minimize2
size={16}
className="text-gray-600 dark:text-gray-400"
/>
<div>
<p className="text-sm font-medium text-black dark:text-white">
Compact Mode
</p>
<p className="text-xs text-black/70 dark:text-white/70">
Generate more concise responses
</p>
</div>
</div>
</label>
</div>
</div>
</PopoverPanel>
</Transition>
</Popover>
);
};
export default Optimization;

View File

@ -0,0 +1,163 @@
/* eslint-disable @next/next/no-img-element */
import {
Dialog,
DialogPanel,
DialogTitle,
Transition,
TransitionChild,
} from '@headlessui/react';
import { Document } from '@langchain/core/documents';
import { File } from 'lucide-react';
import { Fragment, useState } from 'react';
const MessageSources = ({ sources }: { sources: Document[] }) => {
const [isDialogOpen, setIsDialogOpen] = useState(false);
const closeModal = () => {
setIsDialogOpen(false);
document.body.classList.remove('overflow-hidden-scrollable');
};
const openModal = () => {
setIsDialogOpen(true);
document.body.classList.add('overflow-hidden-scrollable');
};
return (
<div className="grid grid-cols-2 lg:grid-cols-4 gap-2">
{sources.slice(0, 3).map((source, i) => (
<a
className="bg-light-100 hover:bg-light-200 dark:bg-dark-100 dark:hover:bg-dark-200 transition duration-200 rounded-lg p-3 flex flex-col space-y-2 font-medium"
key={i}
href={source.metadata.url}
target="_blank"
>
<p className="dark:text-white text-xs overflow-hidden whitespace-nowrap text-ellipsis">
{source.metadata.title}
</p>
<div className="flex flex-row items-center justify-between">
<div className="flex flex-row items-center space-x-1">
{source.metadata.url === 'File' ? (
<div className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full">
<File size={12} className="text-white/70" />
</div>
) : (
<img
src={`https://s2.googleusercontent.com/s2/favicons?domain_url=${source.metadata.url}`}
width={16}
height={16}
alt="favicon"
className="rounded-lg h-4 w-4"
/>
)}
<p className="text-xs text-black/50 dark:text-white/50 overflow-hidden whitespace-nowrap text-ellipsis">
{source.metadata.url.replace(/.+\/\/|www.|\..+/g, '')}
</p>
</div>
<div className="flex flex-row items-center space-x-1 text-black/50 dark:text-white/50 text-xs">
<div className="bg-black/50 dark:bg-white/50 h-[4px] w-[4px] rounded-full" />
<span>{i + 1}</span>
</div>
</div>
</a>
))}
{sources.length > 3 && (
<button
onClick={openModal}
className="bg-light-100 hover:bg-light-200 dark:bg-dark-100 dark:hover:bg-dark-200 transition duration-200 rounded-lg p-3 flex flex-col space-y-2 font-medium"
>
<div className="flex flex-row items-center space-x-1">
{sources.slice(3, 6).map((source, i) => {
return source.metadata.url === 'File' ? (
<div
key={i}
className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full"
>
<File size={12} className="text-white/70" />
</div>
) : (
<img
key={i}
src={`https://s2.googleusercontent.com/s2/favicons?domain_url=${source.metadata.url}`}
width={16}
height={16}
alt="favicon"
className="rounded-lg h-4 w-4"
/>
);
})}
</div>
<p className="text-xs text-black/50 dark:text-white/50">
View {sources.length - 3} more
</p>
</button>
)}
<Transition appear show={isDialogOpen} as={Fragment}>
<Dialog as="div" className="relative z-50" onClose={closeModal}>
<div className="fixed inset-0 overflow-y-auto">
<div className="flex min-h-full items-center justify-center p-4 text-center">
<TransitionChild
as={Fragment}
enter="ease-out duration-200"
enterFrom="opacity-0 scale-95"
enterTo="opacity-100 scale-100"
leave="ease-in duration-100"
leaveFrom="opacity-100 scale-200"
leaveTo="opacity-0 scale-95"
>
<DialogPanel className="w-full max-w-md transform rounded-2xl bg-light-secondary dark:bg-dark-secondary border border-light-200 dark:border-dark-200 p-6 text-left align-middle shadow-xl transition-all">
<DialogTitle className="text-lg font-medium leading-6 dark:text-white">
Sources
</DialogTitle>
<div className="grid grid-cols-2 gap-2 overflow-auto max-h-[300px] mt-2 pr-2">
{sources.map((source, i) => (
<a
className="bg-light-secondary hover:bg-light-200 dark:bg-dark-secondary dark:hover:bg-dark-200 border border-light-200 dark:border-dark-200 transition duration-200 rounded-lg p-3 flex flex-col space-y-2 font-medium"
key={i}
href={source.metadata.url}
target="_blank"
>
<p className="dark:text-white text-xs overflow-hidden whitespace-nowrap text-ellipsis">
{source.metadata.title}
</p>
<div className="flex flex-row items-center justify-between">
<div className="flex flex-row items-center space-x-1">
{source.metadata.url === 'File' ? (
<div className="bg-dark-200 hover:bg-dark-100 transition duration-200 flex items-center justify-center w-6 h-6 rounded-full">
<File size={12} className="text-white/70" />
</div>
) : (
<img
src={`https://s2.googleusercontent.com/s2/favicons?domain_url=${source.metadata.url}`}
width={16}
height={16}
alt="favicon"
className="rounded-lg h-4 w-4"
/>
)}
<p className="text-xs text-black/50 dark:text-white/50 overflow-hidden whitespace-nowrap text-ellipsis">
{source.metadata.url.replace(
/.+\/\/|www.|\..+/g,
'',
)}
</p>
</div>
<div className="flex flex-row items-center space-x-1 text-black/50 dark:text-white/50 text-xs">
<div className="bg-black/50 dark:bg-white/50 h-[4px] w-[4px] rounded-full" />
<span>{i + 1}</span>
</div>
</div>
</a>
))}
</div>
</DialogPanel>
</TransitionChild>
</div>
</div>
</Dialog>
</Transition>
</div>
);
};
export default MessageSources;

72
src/components/Navbar.tsx Normal file
View File

@ -0,0 +1,72 @@
import { Clock, Edit, Share, Trash } from 'lucide-react';
import { Message } from './ChatWindow';
import { useEffect, useState } from 'react';
import { formatTimeDifference } from '@/lib/utils';
import DeleteChat from './DeleteChat';
const Navbar = ({
chatId,
messages,
}: {
messages: Message[];
chatId: string;
}) => {
const [title, setTitle] = useState<string>('');
const [timeAgo, setTimeAgo] = useState<string>('');
useEffect(() => {
if (messages.length > 0) {
const newTitle =
messages[0].content.length > 20
? `${messages[0].content.substring(0, 20).trim()}...`
: messages[0].content;
setTitle(newTitle);
const newTimeAgo = formatTimeDifference(
new Date(),
messages[0].createdAt,
);
setTimeAgo(newTimeAgo);
}
}, [messages]);
useEffect(() => {
const intervalId = setInterval(() => {
if (messages.length > 0) {
const newTimeAgo = formatTimeDifference(
new Date(),
messages[0].createdAt,
);
setTimeAgo(newTimeAgo);
}
}, 1000);
return () => clearInterval(intervalId);
// eslint-disable-next-line react-hooks/exhaustive-deps
}, []);
return (
<div className="fixed z-40 top-0 left-0 right-0 px-4 lg:pl-[104px] lg:pr-6 lg:px-8 flex flex-row items-center justify-between w-full py-4 text-sm text-black dark:text-white/70 border-b bg-light-primary dark:bg-dark-primary border-light-100 dark:border-dark-200">
<a
href="/"
className="active:scale-95 transition duration-100 cursor-pointer lg:hidden"
>
<Edit size={17} />
</a>
<div className="hidden lg:flex flex-row items-center justify-center space-x-2">
<Clock size={17} />
<p className="text-xs">{timeAgo} ago</p>
</div>
<p className="hidden lg:flex">{title}</p>
<div className="flex flex-row items-center space-x-4">
<Share
size={17}
className="active:scale-95 transition duration-100 cursor-pointer"
/>
<DeleteChat redirect chatId={chatId} chats={[]} setChats={() => {}} />
</div>
</div>
);
};
export default Navbar;

View File

@ -0,0 +1,161 @@
/* eslint-disable @next/next/no-img-element */
import { ImagesIcon, PlusIcon } from 'lucide-react';
import { useState } from 'react';
import Lightbox from 'yet-another-react-lightbox';
import 'yet-another-react-lightbox/styles.css';
import { Message } from './ChatWindow';
type Image = {
url: string;
img_src: string;
title: string;
};
const SearchImages = ({
query,
chatHistory,
messageId,
}: {
query: string;
chatHistory: Message[];
messageId: string;
}) => {
const [images, setImages] = useState<Image[] | null>(null);
const [loading, setLoading] = useState(false);
const [open, setOpen] = useState(false);
const [slides, setSlides] = useState<any[]>([]);
return (
<>
{!loading && images === null && (
<button
id={`search-images-${messageId}`}
onClick={async () => {
setLoading(true);
const chatModelProvider = localStorage.getItem('chatModelProvider');
const chatModel = localStorage.getItem('chatModel');
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
const customOpenAIKey = localStorage.getItem('openAIApiKey');
const ollamaContextWindow =
localStorage.getItem('ollamaContextWindow') || '2048';
const res = await fetch(`/api/images`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
query: query,
chatHistory: chatHistory,
chatModel: {
provider: chatModelProvider,
model: chatModel,
...(chatModelProvider === 'custom_openai' && {
customOpenAIBaseURL: customOpenAIBaseURL,
customOpenAIKey: customOpenAIKey,
}),
...(chatModelProvider === 'ollama' && {
ollamaContextWindow: parseInt(ollamaContextWindow),
}),
},
}),
});
const data = await res.json();
const images = data.images ?? [];
setImages(images);
setSlides(
images.map((image: Image) => {
return {
src: image.img_src,
};
}),
);
setLoading(false);
}}
className="border border-dashed border-light-200 dark:border-dark-200 hover:bg-light-200 dark:hover:bg-dark-200 active:scale-95 duration-200 transition px-4 py-2 flex flex-row items-center justify-between rounded-lg dark:text-white text-sm w-full"
>
<div className="flex flex-row items-center space-x-2">
<ImagesIcon size={17} />
<p>Search images</p>
</div>
<PlusIcon className="text-[#24A0ED]" size={17} />
</button>
)}
{loading && (
<div className="grid grid-cols-2 gap-2">
{[...Array(4)].map((_, i) => (
<div
key={i}
className="bg-light-secondary dark:bg-dark-secondary h-32 w-full rounded-lg animate-pulse aspect-video object-cover"
/>
))}
</div>
)}
{images !== null && images.length > 0 && (
<>
<div className="grid grid-cols-2 gap-2">
{images.length > 4
? images.slice(0, 3).map((image, i) => (
<img
onClick={() => {
setOpen(true);
setSlides([
slides[i],
...slides.slice(0, i),
...slides.slice(i + 1),
]);
}}
key={i}
src={image.img_src}
alt={image.title}
className="h-full w-full aspect-video object-cover rounded-lg transition duration-200 active:scale-95 hover:scale-[1.02] cursor-zoom-in"
/>
))
: images.map((image, i) => (
<img
onClick={() => {
setOpen(true);
setSlides([
slides[i],
...slides.slice(0, i),
...slides.slice(i + 1),
]);
}}
key={i}
src={image.img_src}
alt={image.title}
className="h-full w-full aspect-video object-cover rounded-lg transition duration-200 active:scale-95 hover:scale-[1.02] cursor-zoom-in"
/>
))}
{images.length > 4 && (
<button
onClick={() => setOpen(true)}
className="bg-light-100 hover:bg-light-200 dark:bg-dark-100 dark:hover:bg-dark-200 transition duration-200 active:scale-95 hover:scale-[1.02] h-auto w-full rounded-lg flex flex-col justify-between text-white p-2"
>
<div className="flex flex-row items-center space-x-1">
{images.slice(3, 6).map((image, i) => (
<img
key={i}
src={image.img_src}
alt={image.title}
className="h-6 w-12 rounded-md lg:h-3 lg:w-6 lg:rounded-sm aspect-video object-cover"
/>
))}
</div>
<p className="text-black/70 dark:text-white/70 text-xs">
View {images.length - 3} more
</p>
</button>
)}
</div>
<Lightbox open={open} close={() => setOpen(false)} slides={slides} />
</>
)}
</>
);
};
export default SearchImages;

View File

@ -0,0 +1,232 @@
/* eslint-disable @next/next/no-img-element */
import { PlayCircle, PlayIcon, PlusIcon, VideoIcon } from 'lucide-react';
import { useRef, useState } from 'react';
import Lightbox, { GenericSlide, VideoSlide } from 'yet-another-react-lightbox';
import 'yet-another-react-lightbox/styles.css';
import { Message } from './ChatWindow';
type Video = {
url: string;
img_src: string;
title: string;
iframe_src: string;
};
declare module 'yet-another-react-lightbox' {
export interface VideoSlide extends GenericSlide {
type: 'video-slide';
src: string;
iframe_src: string;
}
interface SlideTypes {
'video-slide': VideoSlide;
}
}
const Searchvideos = ({
query,
chatHistory,
messageId,
}: {
query: string;
chatHistory: Message[];
messageId: string;
}) => {
const [videos, setVideos] = useState<Video[] | null>(null);
const [loading, setLoading] = useState(false);
const [open, setOpen] = useState(false);
const [slides, setSlides] = useState<VideoSlide[]>([]);
const [currentIndex, setCurrentIndex] = useState(0);
const videoRefs = useRef<(HTMLIFrameElement | null)[]>([]);
return (
<>
{!loading && videos === null && (
<button
id={`search-videos-${messageId}`}
onClick={async () => {
setLoading(true);
const chatModelProvider = localStorage.getItem('chatModelProvider');
const chatModel = localStorage.getItem('chatModel');
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
const customOpenAIKey = localStorage.getItem('openAIApiKey');
const ollamaContextWindow =
localStorage.getItem('ollamaContextWindow') || '2048';
const res = await fetch(`/api/videos`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
query: query,
chatHistory: chatHistory,
chatModel: {
provider: chatModelProvider,
model: chatModel,
...(chatModelProvider === 'custom_openai' && {
customOpenAIBaseURL: customOpenAIBaseURL,
customOpenAIKey: customOpenAIKey,
}),
...(chatModelProvider === 'ollama' && {
ollamaContextWindow: parseInt(ollamaContextWindow),
}),
},
}),
});
const data = await res.json();
const videos = data.videos ?? [];
setVideos(videos);
setSlides(
videos.map((video: Video) => {
return {
type: 'video-slide',
iframe_src: video.iframe_src,
src: video.img_src,
};
}),
);
setLoading(false);
}}
className="border border-dashed border-light-200 dark:border-dark-200 hover:bg-light-200 dark:hover:bg-dark-200 active:scale-95 duration-200 transition px-4 py-2 flex flex-row items-center justify-between rounded-lg dark:text-white text-sm w-full"
>
<div className="flex flex-row items-center space-x-2">
<VideoIcon size={17} />
<p>Search videos</p>
</div>
<PlusIcon className="text-[#24A0ED]" size={17} />
</button>
)}
{loading && (
<div className="grid grid-cols-2 gap-2">
{[...Array(4)].map((_, i) => (
<div
key={i}
className="bg-light-secondary dark:bg-dark-secondary h-32 w-full rounded-lg animate-pulse aspect-video object-cover"
/>
))}
</div>
)}
{videos !== null && videos.length > 0 && (
<>
<div className="grid grid-cols-2 gap-2">
{videos.length > 4
? videos.slice(0, 3).map((video, i) => (
<div
onClick={() => {
setOpen(true);
setSlides([
slides[i],
...slides.slice(0, i),
...slides.slice(i + 1),
]);
}}
className="relative transition duration-200 active:scale-95 hover:scale-[1.02] cursor-pointer"
key={i}
>
<img
src={video.img_src}
alt={video.title}
className="relative h-full w-full aspect-video object-cover rounded-lg"
/>
<div className="absolute bg-white/70 dark:bg-black/70 text-black/70 dark:text-white/70 px-2 py-1 flex flex-row items-center space-x-1 bottom-1 right-1 rounded-md">
<PlayCircle size={15} />
<p className="text-xs">Video</p>
</div>
</div>
))
: videos.map((video, i) => (
<div
onClick={() => {
setOpen(true);
setSlides([
slides[i],
...slides.slice(0, i),
...slides.slice(i + 1),
]);
}}
className="relative transition duration-200 active:scale-95 hover:scale-[1.02] cursor-pointer"
key={i}
>
<img
src={video.img_src}
alt={video.title}
className="relative h-full w-full aspect-video object-cover rounded-lg"
/>
<div className="absolute bg-white/70 dark:bg-black/70 text-black/70 dark:text-white/70 px-2 py-1 flex flex-row items-center space-x-1 bottom-1 right-1 rounded-md">
<PlayCircle size={15} />
<p className="text-xs">Video</p>
</div>
</div>
))}
{videos.length > 4 && (
<button
onClick={() => setOpen(true)}
className="bg-light-100 hover:bg-light-200 dark:bg-dark-100 dark:hover:bg-dark-200 transition duration-200 active:scale-95 hover:scale-[1.02] h-auto w-full rounded-lg flex flex-col justify-between text-white p-2"
>
<div className="flex flex-row items-center space-x-1">
{videos.slice(3, 6).map((video, i) => (
<img
key={i}
src={video.img_src}
alt={video.title}
className="h-6 w-12 rounded-md lg:h-3 lg:w-6 lg:rounded-sm aspect-video object-cover"
/>
))}
</div>
<p className="text-black/70 dark:text-white/70 text-xs">
View {videos.length - 3} more
</p>
</button>
)}
</div>
<Lightbox
open={open}
close={() => setOpen(false)}
slides={slides}
index={currentIndex}
on={{
view: ({ index }) => {
const previousIframe = videoRefs.current[currentIndex];
if (previousIframe?.contentWindow) {
previousIframe.contentWindow.postMessage(
'{"event":"command","func":"pauseVideo","args":""}',
'*',
);
}
setCurrentIndex(index);
},
}}
render={{
slide: ({ slide }) => {
const index = slides.findIndex((s) => s === slide);
return slide.type === 'video-slide' ? (
<div className="h-full w-full flex flex-row items-center justify-center">
<iframe
src={`${slide.iframe_src}${slide.iframe_src.includes('?') ? '&' : '?'}enablejsapi=1`}
ref={(el) => {
if (el) {
videoRefs.current[index] = el;
}
}}
className="aspect-video max-h-[95vh] w-[95vw] rounded-2xl md:w-[80vw]"
allowFullScreen
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
/>
</div>
) : null;
},
}}
/>
</>
)}
</>
);
};
export default Searchvideos;

View File

@ -0,0 +1,99 @@
'use client';
import { cn } from '@/lib/utils';
import { BookOpenText, Home, Search, SquarePen, Settings } from 'lucide-react';
import Link from 'next/link';
import { useSelectedLayoutSegments } from 'next/navigation';
import React, { useState, type ReactNode } from 'react';
import Layout from './Layout';
const VerticalIconContainer = ({ children }: { children: ReactNode }) => {
return (
<div className="flex flex-col items-center gap-y-3 w-full">{children}</div>
);
};
const Sidebar = ({ children }: { children: React.ReactNode }) => {
const segments = useSelectedLayoutSegments();
const navLinks = [
{
icon: Home,
href: '/',
active: segments.length === 0 || segments.includes('c'),
label: 'Home',
},
{
icon: Search,
href: '/discover',
active: segments.includes('discover'),
label: 'Discover',
},
{
icon: BookOpenText,
href: '/library',
active: segments.includes('library'),
label: 'Library',
},
];
return (
<div>
<div className="hidden lg:fixed lg:inset-y-0 lg:z-50 lg:flex lg:w-20 lg:flex-col">
<div className="flex grow flex-col items-center justify-between gap-y-5 overflow-y-auto bg-light-secondary dark:bg-dark-secondary px-2 py-8">
<a href="/">
<SquarePen className="cursor-pointer" />
</a>
<VerticalIconContainer>
{navLinks.map((link, i) => (
<Link
key={i}
href={link.href}
className={cn(
'relative flex flex-row items-center justify-center cursor-pointer hover:bg-black/10 dark:hover:bg-white/10 duration-150 transition w-full py-2 rounded-lg',
link.active
? 'text-black dark:text-white'
: 'text-black/70 dark:text-white/70',
)}
>
<link.icon />
{link.active && (
<div className="absolute right-0 -mr-2 h-full w-1 rounded-l-lg bg-black dark:bg-white" />
)}
</Link>
))}
</VerticalIconContainer>
<Link href="/settings">
<Settings className="cursor-pointer" />
</Link>
</div>
</div>
<div className="fixed bottom-0 w-full z-50 flex flex-row items-center gap-x-6 bg-light-primary dark:bg-dark-primary px-4 py-4 shadow-sm lg:hidden">
{navLinks.map((link, i) => (
<Link
href={link.href}
key={i}
className={cn(
'relative flex flex-col items-center space-y-1 text-center w-full',
link.active
? 'text-black dark:text-white'
: 'text-black dark:text-white/70',
)}
>
{link.active && (
<div className="absolute top-0 -mt-4 h-1 w-full rounded-b-lg bg-black dark:bg-white" />
)}
<link.icon />
<p className="text-xs">{link.label}</p>
</Link>
))}
</div>
<Layout>{children}</Layout>
</div>
);
};
export default Sidebar;

View File

@ -0,0 +1,43 @@
'use client';
import { useState } from 'react';
import { cn } from '@/lib/utils';
import { ChevronDown, ChevronUp, BrainCircuit } from 'lucide-react';
interface ThinkBoxProps {
content: string;
}
const ThinkBox = ({ content }: ThinkBoxProps) => {
const [isExpanded, setIsExpanded] = useState(false);
return (
<div className="my-4 bg-light-secondary/50 dark:bg-dark-secondary/50 rounded-xl border border-light-200 dark:border-dark-200 overflow-hidden">
<button
onClick={() => setIsExpanded(!isExpanded)}
className="w-full flex items-center justify-between px-4 py-1 text-black/90 dark:text-white/90 hover:bg-light-200 dark:hover:bg-dark-200 transition duration-200"
>
<div className="flex items-center space-x-2">
<BrainCircuit
size={20}
className="text-[#9C27B0] dark:text-[#CE93D8]"
/>
<p className="font-medium text-sm">Thinking Process</p>
</div>
{isExpanded ? (
<ChevronUp size={18} className="text-black/70 dark:text-white/70" />
) : (
<ChevronDown size={18} className="text-black/70 dark:text-white/70" />
)}
</button>
{isExpanded && (
<div className="px-4 py-3 text-black/80 dark:text-white/80 text-sm border-t border-light-200 dark:border-dark-200 bg-light-100/50 dark:bg-dark-100/50 whitespace-pre-wrap">
{content}
</div>
)}
</div>
);
};
export default ThinkBox;

View File

@ -0,0 +1,16 @@
'use client';
import { ThemeProvider } from 'next-themes';
const ThemeProviderComponent = ({
children,
}: {
children: React.ReactNode;
}) => {
return (
<ThemeProvider attribute="class" enableSystem={false} defaultTheme="dark">
{children}
</ThemeProvider>
);
};
export default ThemeProviderComponent;

View File

@ -0,0 +1,60 @@
'use client';
import { useTheme } from 'next-themes';
import { useCallback, useEffect, useState } from 'react';
import Select from '../ui/Select';
type Theme = 'dark' | 'light' | 'system';
const ThemeSwitcher = ({ className }: { className?: string }) => {
const [mounted, setMounted] = useState(false);
const { theme, setTheme } = useTheme();
const isTheme = useCallback((t: Theme) => t === theme, [theme]);
const handleThemeSwitch = (theme: Theme) => {
setTheme(theme);
};
useEffect(() => {
setMounted(true);
}, []);
useEffect(() => {
if (isTheme('system')) {
const preferDarkScheme = window.matchMedia(
'(prefers-color-scheme: dark)',
);
const detectThemeChange = (event: MediaQueryListEvent) => {
const theme: Theme = event.matches ? 'dark' : 'light';
setTheme(theme);
};
preferDarkScheme.addEventListener('change', detectThemeChange);
return () => {
preferDarkScheme.removeEventListener('change', detectThemeChange);
};
}
}, [isTheme, setTheme, theme]);
// Avoid Hydration Mismatch
if (!mounted) {
return null;
}
return (
<Select
className={className}
value={theme}
onChange={(e) => handleThemeSwitch(e.target.value as Theme)}
options={[
{ value: 'light', label: 'Light' },
{ value: 'dark', label: 'Dark' },
]}
/>
);
};
export default ThemeSwitcher;

View File

@ -0,0 +1,28 @@
import { cn } from '@/lib/utils';
import { SelectHTMLAttributes } from 'react';
interface SelectProps extends SelectHTMLAttributes<HTMLSelectElement> {
options: { value: string; label: string; disabled?: boolean }[];
}
export const Select = ({ className, options, ...restProps }: SelectProps) => {
return (
<select
{...restProps}
className={cn(
'bg-light-secondary dark:bg-dark-secondary px-3 py-2 flex items-center overflow-hidden border border-light-200 dark:border-dark-200 dark:text-white rounded-lg text-sm',
className,
)}
>
{options.map(({ label, value, disabled }) => {
return (
<option key={value} value={value} disabled={disabled}>
{label}
</option>
);
})}
</select>
);
};
export default Select;

36
src/lib/actions.ts Normal file
View File

@ -0,0 +1,36 @@
import { Message } from '@/components/ChatWindow';
export const getSuggestions = async (chatHisory: Message[]) => {
const chatModel = localStorage.getItem('chatModel');
const chatModelProvider = localStorage.getItem('chatModelProvider');
const customOpenAIKey = localStorage.getItem('openAIApiKey');
const customOpenAIBaseURL = localStorage.getItem('openAIBaseURL');
const ollamaContextWindow =
localStorage.getItem('ollamaContextWindow') || '2048';
const res = await fetch(`/api/suggestions`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
chatHistory: chatHisory,
chatModel: {
provider: chatModelProvider,
model: chatModel,
...(chatModelProvider === 'custom_openai' && {
customOpenAIKey,
customOpenAIBaseURL,
}),
...(chatModelProvider === 'ollama' && {
ollamaContextWindow: parseInt(ollamaContextWindow),
}),
},
}),
});
const data = (await res.json()) as { suggestions: string[] };
return data.suggestions;
};

View File

@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../lib/searxng';
import { searchSearxng } from '../searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const imageSearchChainPrompt = `
@ -36,6 +36,12 @@ type ImageSearchChainInput = {
query: string;
};
interface ImageSearchResult {
img_src: string;
url: string;
title: string;
}
const strParser = new StringOutputParser();
const createImageSearchChain = (llm: BaseChatModel) => {
@ -52,11 +58,13 @@ const createImageSearchChain = (llm: BaseChatModel) => {
llm,
strParser,
RunnableLambda.from(async (input: string) => {
input = input.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(input, {
engines: ['bing images', 'google images'],
});
const images = [];
const images: ImageSearchResult[] = [];
res.results.forEach((result) => {
if (result.img_src && result.url && result.title) {

View File

@ -1,5 +1,5 @@
import { RunnableSequence, RunnableMap } from '@langchain/core/runnables';
import ListLineOutputParser from '../lib/outputParsers/listLineOutputParser';
import ListLineOutputParser from '../outputParsers/listLineOutputParser';
import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';

View File

@ -7,7 +7,7 @@ import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { searchSearxng } from '../lib/searxng';
import { searchSearxng } from '../searxng';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
const VideoSearchChainPrompt = `
@ -36,6 +36,13 @@ type VideoSearchChainInput = {
query: string;
};
interface VideoSearchResult {
img_src: string;
url: string;
title: string;
iframe_src: string;
}
const strParser = new StringOutputParser();
const createVideoSearchChain = (llm: BaseChatModel) => {
@ -52,11 +59,13 @@ const createVideoSearchChain = (llm: BaseChatModel) => {
llm,
strParser,
RunnableLambda.from(async (input: string) => {
input = input.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(input, {
engines: ['youtube'],
});
const videos = [];
const videos: VideoSearchResult[] = [];
res.results.forEach((result) => {
if (

View File

@ -1,12 +1,18 @@
import fs from 'fs';
import path from 'path';
import toml from '@iarna/toml';
// Use dynamic imports for Node.js modules to prevent client-side errors
let fs: any;
let path: any;
if (typeof window === 'undefined') {
// We're on the server
fs = require('fs');
path = require('path');
}
const configFileName = 'config.toml';
interface Config {
GENERAL: {
PORT: number;
SIMILARITY_MEASURE: string;
KEEP_ALIVE: string;
};
@ -26,6 +32,12 @@ interface Config {
OLLAMA: {
API_URL: string;
};
DEEPSEEK: {
API_KEY: string;
};
LM_STUDIO: {
API_URL: string;
};
CUSTOM_OPENAI: {
API_URL: string;
API_KEY: string;
@ -41,12 +53,17 @@ type RecursivePartial<T> = {
[P in keyof T]?: RecursivePartial<T[P]>;
};
const loadConfig = () =>
toml.parse(
fs.readFileSync(path.join(__dirname, `../${configFileName}`), 'utf-8'),
) as any as Config;
const loadConfig = () => {
// Server-side only
if (typeof window === 'undefined') {
return toml.parse(
fs.readFileSync(path.join(process.cwd(), `${configFileName}`), 'utf-8'),
) as any as Config;
}
export const getPort = () => loadConfig().GENERAL.PORT;
// Client-side fallback - settings will be loaded via API
return {} as Config;
};
export const getSimilarityMeasure = () =>
loadConfig().GENERAL.SIMILARITY_MEASURE;
@ -66,6 +83,8 @@ export const getSearxngApiEndpoint = () =>
export const getOllamaApiEndpoint = () => loadConfig().MODELS.OLLAMA.API_URL;
export const getDeepseekApiKey = () => loadConfig().MODELS.DEEPSEEK.API_KEY;
export const getCustomOpenaiApiKey = () =>
loadConfig().MODELS.CUSTOM_OPENAI.API_KEY;
@ -75,6 +94,9 @@ export const getCustomOpenaiApiUrl = () =>
export const getCustomOpenaiModelName = () =>
loadConfig().MODELS.CUSTOM_OPENAI.MODEL_NAME;
export const getLMStudioApiEndpoint = () =>
loadConfig().MODELS.LM_STUDIO.API_URL;
const mergeConfigs = (current: any, update: any): any => {
if (update === null || update === undefined) {
return current;
@ -107,11 +129,13 @@ const mergeConfigs = (current: any, update: any): any => {
};
export const updateConfig = (config: RecursivePartial<Config>) => {
const currentConfig = loadConfig();
const mergedConfig = mergeConfigs(currentConfig, config);
fs.writeFileSync(
path.join(__dirname, `../${configFileName}`),
toml.stringify(mergedConfig),
);
// Server-side only
if (typeof window === 'undefined') {
const currentConfig = loadConfig();
const mergedConfig = mergeConfigs(currentConfig, config);
fs.writeFileSync(
path.join(path.join(process.cwd(), `${configFileName}`)),
toml.stringify(mergedConfig),
);
}
};

View File

@ -1,8 +1,9 @@
import { drizzle } from 'drizzle-orm/better-sqlite3';
import Database from 'better-sqlite3';
import * as schema from './schema';
import path from 'path';
const sqlite = new Database('data/db.sqlite');
const sqlite = new Database(path.join(process.cwd(), 'data/db.sqlite'));
const db = drizzle(sqlite, {
schema: schema,
});

View File

@ -28,7 +28,7 @@ export class HuggingFaceTransformersEmbeddings
timeout?: number;
private pipelinePromise: Promise<any>;
private pipelinePromise: Promise<any> | undefined;
constructor(fields?: Partial<HuggingFaceTransformersEmbeddingsParams>) {
super(fields ?? {});

View File

@ -9,7 +9,7 @@ class LineOutputParser extends BaseOutputParser<string> {
constructor(args?: LineOutputParserArgs) {
super();
this.key = args.key ?? this.key;
this.key = args?.key ?? this.key;
}
static lc_name() {

View File

@ -9,7 +9,7 @@ class LineListOutputParser extends BaseOutputParser<string[]> {
constructor(args?: LineListOutputParserArgs) {
super();
this.key = args.key ?? this.key;
this.key = args?.key ?? this.key;
}
static lc_name() {

View File

@ -51,6 +51,10 @@ export const academicSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Academic', this means you will be searching for academic papers and articles on the web.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -51,6 +51,10 @@ export const redditSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Reddit', this means you will be searching for information, opinions and discussions on the web using Reddit.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -1,6 +1,6 @@
export const webSearchRetrieverPrompt = `
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it.
If it is a smple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic).
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block.
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response.
@ -92,6 +92,10 @@ export const webSearchResponsePrompt = `
- If the user provides vague input or if relevant information is missing, explain what additional details might help refine the search.
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -51,6 +51,10 @@ export const wolframAlphaSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Wolfram Alpha', this means you will be searching for information on the web using Wolfram Alpha. It is a computational knowledge engine that can answer factual queries and perform computations.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -7,6 +7,10 @@ You have to cite the answer using [number] notation. You must cite the sentences
Place these citations at the end of that particular sentence. You can cite the same sentence multiple times if it is relevant to the user's query like [number1][number2].
However you do not need to cite it using the same number. You can use different numbers to cite the same sentence multiple times. The number refers to the number of the search result (passed in the context) used to generate that part of the answer.
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
<context>
{context}
</context>

View File

@ -51,6 +51,10 @@ export const youtubeSearchResponsePrompt = `
- If no relevant information is found, say: "Hmm, sorry I could not find any relevant information on this topic. Would you like me to search again or ask something else?" Be transparent about limitations and suggest alternatives or ways to reframe the query.
- You are set on focus mode 'Youtube', this means you will be searching for videos on the web using Youtube and providing information based on the video's transcrip
### User instructions
These instructions are shared to you by the user and not by the system. You will have to follow them but give them less priority than the above instructions. If the user has provided specific instructions or preferences, incorporate them into your response while adhering to the overall guidelines.
{systemInstructions}
### Example Output
- Begin with a brief introduction summarizing the event or query topic.
- Follow with detailed sections under clear headings, covering all aspects of the query if possible.

View File

@ -1,6 +1,43 @@
import { ChatAnthropic } from '@langchain/anthropic';
import { getAnthropicApiKey } from '../../config';
import logger from '../../utils/logger';
import { ChatModel } from '.';
import { getAnthropicApiKey } from '../config';
export const PROVIDER_INFO = {
key: 'anthropic',
displayName: 'Anthropic',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const anthropicChatModels: Record<string, string>[] = [
{
displayName: 'Claude 3.7 Sonnet',
key: 'claude-3-7-sonnet-20250219',
},
{
displayName: 'Claude 3.5 Haiku',
key: 'claude-3-5-haiku-20241022',
},
{
displayName: 'Claude 3.5 Sonnet v2',
key: 'claude-3-5-sonnet-20241022',
},
{
displayName: 'Claude 3.5 Sonnet',
key: 'claude-3-5-sonnet-20240620',
},
{
displayName: 'Claude 3 Opus',
key: 'claude-3-opus-20240229',
},
{
displayName: 'Claude 3 Sonnet',
key: 'claude-3-sonnet-20240229',
},
{
displayName: 'Claude 3 Haiku',
key: 'claude-3-haiku-20240307',
},
];
export const loadAnthropicChatModels = async () => {
const anthropicApiKey = getAnthropicApiKey();
@ -8,52 +45,22 @@ export const loadAnthropicChatModels = async () => {
if (!anthropicApiKey) return {};
try {
const chatModels = {
'claude-3-5-sonnet-20241022': {
displayName: 'Claude 3.5 Sonnet',
const chatModels: Record<string, ChatModel> = {};
anthropicChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatAnthropic({
apiKey: anthropicApiKey,
modelName: model.key,
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-sonnet-20241022',
}),
},
'claude-3-5-haiku-20241022': {
displayName: 'Claude 3.5 Haiku',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-5-haiku-20241022',
}),
},
'claude-3-opus-20240229': {
displayName: 'Claude 3 Opus',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-opus-20240229',
}),
},
'claude-3-sonnet-20240229': {
displayName: 'Claude 3 Sonnet',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-sonnet-20240229',
}),
},
'claude-3-haiku-20240307': {
displayName: 'Claude 3 Haiku',
model: new ChatAnthropic({
temperature: 0.7,
anthropicApiKey: anthropicApiKey,
model: 'claude-3-haiku-20240307',
}),
},
};
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
logger.error(`Error loading Anthropic models: ${err}`);
console.error(`Error loading Anthropic models: ${err}`);
return {};
}
};

View File

@ -0,0 +1,49 @@
import { ChatOpenAI } from '@langchain/openai';
import { getDeepseekApiKey } from '../config';
import { ChatModel } from '.';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
export const PROVIDER_INFO = {
key: 'deepseek',
displayName: 'Deepseek AI',
};
const deepseekChatModels: Record<string, string>[] = [
{
displayName: 'Deepseek Chat (Deepseek V3)',
key: 'deepseek-chat',
},
{
displayName: 'Deepseek Reasoner (Deepseek R1)',
key: 'deepseek-reasoner',
},
];
export const loadDeepseekChatModels = async () => {
const deepseekApiKey = getDeepseekApiKey();
if (!deepseekApiKey) return {};
try {
const chatModels: Record<string, ChatModel> = {};
deepseekChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: deepseekApiKey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://api.deepseek.com',
},
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
console.error(`Error loading Deepseek models: ${err}`);
return {};
}
};

View File

@ -2,8 +2,57 @@ import {
ChatGoogleGenerativeAI,
GoogleGenerativeAIEmbeddings,
} from '@langchain/google-genai';
import { getGeminiApiKey } from '../../config';
import logger from '../../utils/logger';
import { getGeminiApiKey } from '../config';
import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'gemini',
displayName: 'Google Gemini',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
const geminiChatModels: Record<string, string>[] = [
{
displayName: 'Gemini 2.5 Pro Experimental',
key: 'gemini-2.5-pro-exp-03-25',
},
{
displayName: 'Gemini 2.0 Flash',
key: 'gemini-2.0-flash',
},
{
displayName: 'Gemini 2.0 Flash-Lite',
key: 'gemini-2.0-flash-lite',
},
{
displayName: 'Gemini 2.0 Flash Thinking Experimental',
key: 'gemini-2.0-flash-thinking-exp-01-21',
},
{
displayName: 'Gemini 1.5 Flash',
key: 'gemini-1.5-flash',
},
{
displayName: 'Gemini 1.5 Flash-8B',
key: 'gemini-1.5-flash-8b',
},
{
displayName: 'Gemini 1.5 Pro',
key: 'gemini-1.5-pro',
},
];
const geminiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Text Embedding 004',
key: 'models/text-embedding-004',
},
{
displayName: 'Embedding 001',
key: 'models/embedding-001',
},
];
export const loadGeminiChatModels = async () => {
const geminiApiKey = getGeminiApiKey();
@ -11,75 +60,47 @@ export const loadGeminiChatModels = async () => {
if (!geminiApiKey) return {};
try {
const chatModels = {
'gemini-1.5-flash': {
displayName: 'Gemini 1.5 Flash',
const chatModels: Record<string, ChatModel> = {};
geminiChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-flash',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-1.5-flash-8b': {
displayName: 'Gemini 1.5 Flash 8B',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-flash-8b',
modelName: model.key,
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-1.5-pro': {
displayName: 'Gemini 1.5 Pro',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-1.5-pro',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-2.0-flash-exp': {
displayName: 'Gemini 2.0 Flash Exp',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-2.0-flash-exp',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
'gemini-2.0-flash-thinking-exp-01-21': {
displayName: 'Gemini 2.0 Flash Thinking Exp 01-21',
model: new ChatGoogleGenerativeAI({
modelName: 'gemini-2.0-flash-thinking-exp-01-21',
temperature: 0.7,
apiKey: geminiApiKey,
}),
},
};
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
logger.error(`Error loading Gemini models: ${err}`);
console.error(`Error loading Gemini models: ${err}`);
return {};
}
};
export const loadGeminiEmbeddingsModels = async () => {
export const loadGeminiEmbeddingModels = async () => {
const geminiApiKey = getGeminiApiKey();
if (!geminiApiKey) return {};
try {
const embeddingModels = {
'text-embedding-004': {
displayName: 'Text Embedding',
const embeddingModels: Record<string, EmbeddingModel> = {};
geminiEmbeddingModels.forEach((model) => {
embeddingModels[model.key] = {
displayName: model.displayName,
model: new GoogleGenerativeAIEmbeddings({
apiKey: geminiApiKey,
modelName: 'text-embedding-004',
}),
},
};
modelName: model.key,
}) as unknown as Embeddings,
};
});
return embeddingModels;
} catch (err) {
logger.error(`Error loading Gemini embeddings model: ${err}`);
console.error(`Error loading OpenAI embeddings models: ${err}`);
return {};
}
};

View File

@ -1,6 +1,91 @@
import { ChatOpenAI } from '@langchain/openai';
import { getGroqApiKey } from '../../config';
import logger from '../../utils/logger';
import { getGroqApiKey } from '../config';
import { ChatModel } from '.';
export const PROVIDER_INFO = {
key: 'groq',
displayName: 'Groq',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
const groqChatModels: Record<string, string>[] = [
{
displayName: 'Gemma2 9B IT',
key: 'gemma2-9b-it',
},
{
displayName: 'Llama 3.3 70B Versatile',
key: 'llama-3.3-70b-versatile',
},
{
displayName: 'Llama 3.1 8B Instant',
key: 'llama-3.1-8b-instant',
},
{
displayName: 'Llama3 70B 8192',
key: 'llama3-70b-8192',
},
{
displayName: 'Llama3 8B 8192',
key: 'llama3-8b-8192',
},
{
displayName: 'Mixtral 8x7B 32768',
key: 'mixtral-8x7b-32768',
},
{
displayName: 'Qwen QWQ 32B (Preview)',
key: 'qwen-qwq-32b',
},
{
displayName: 'Mistral Saba 24B (Preview)',
key: 'mistral-saba-24b',
},
{
displayName: 'Qwen 2.5 Coder 32B (Preview)',
key: 'qwen-2.5-coder-32b',
},
{
displayName: 'Qwen 2.5 32B (Preview)',
key: 'qwen-2.5-32b',
},
{
displayName: 'DeepSeek R1 Distill Qwen 32B (Preview)',
key: 'deepseek-r1-distill-qwen-32b',
},
{
displayName: 'DeepSeek R1 Distill Llama 70B (Preview)',
key: 'deepseek-r1-distill-llama-70b',
},
{
displayName: 'Llama 3.3 70B SpecDec (Preview)',
key: 'llama-3.3-70b-specdec',
},
{
displayName: 'Llama 3.2 1B Preview (Preview)',
key: 'llama-3.2-1b-preview',
},
{
displayName: 'Llama 3.2 3B Preview (Preview)',
key: 'llama-3.2-3b-preview',
},
{
displayName: 'Llama 3.2 11B Vision Preview (Preview)',
key: 'llama-3.2-11b-vision-preview',
},
{
displayName: 'Llama 3.2 90B Vision Preview (Preview)',
key: 'llama-3.2-90b-vision-preview',
},
/* {
displayName: 'Llama 4 Maverick 17B 128E Instruct (Preview)',
key: 'meta-llama/llama-4-maverick-17b-128e-instruct',
}, */
{
displayName: 'Llama 4 Scout 17B 16E Instruct (Preview)',
key: 'meta-llama/llama-4-scout-17b-16e-instruct',
},
];
export const loadGroqChatModels = async () => {
const groqApiKey = getGroqApiKey();
@ -8,129 +93,25 @@ export const loadGroqChatModels = async () => {
if (!groqApiKey) return {};
try {
const chatModels = {
'llama-3.3-70b-versatile': {
displayName: 'Llama 3.3 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.3-70b-versatile',
temperature: 0.7,
},
{
const chatModels: Record<string, ChatModel> = {};
groqChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey: groqApiKey,
modelName: model.key,
temperature: 0.7,
configuration: {
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.2-3b-preview': {
displayName: 'Llama 3.2 3B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.2-3b-preview',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.2-11b-vision-preview': {
displayName: 'Llama 3.2 11B Vision',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.2-11b-vision-preview',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.2-90b-vision-preview': {
displayName: 'Llama 3.2 90B Vision',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.2-90b-vision-preview',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama-3.1-8b-instant': {
displayName: 'Llama 3.1 8B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama-3.1-8b-instant',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama3-8b-8192': {
displayName: 'LLaMA3 8B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-8b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'llama3-70b-8192': {
displayName: 'LLaMA3 70B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'llama3-70b-8192',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'mixtral-8x7b-32768': {
displayName: 'Mixtral 8x7B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'mixtral-8x7b-32768',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
'gemma2-9b-it': {
displayName: 'Gemma2 9B',
model: new ChatOpenAI(
{
openAIApiKey: groqApiKey,
modelName: 'gemma2-9b-it',
temperature: 0.7,
},
{
baseURL: 'https://api.groq.com/openai/v1',
},
),
},
};
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
logger.error(`Error loading Groq models: ${err}`);
console.error(`Error loading Groq models: ${err}`);
return {};
}
};

View File

@ -1,33 +1,97 @@
import { loadGroqChatModels } from './groq';
import { loadOllamaChatModels, loadOllamaEmbeddingsModels } from './ollama';
import { loadOpenAIChatModels, loadOpenAIEmbeddingsModels } from './openai';
import { loadAnthropicChatModels } from './anthropic';
import { loadTransformersEmbeddingsModels } from './transformers';
import { loadGeminiChatModels, loadGeminiEmbeddingsModels } from './gemini';
import { Embeddings } from '@langchain/core/embeddings';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import {
loadOpenAIChatModels,
loadOpenAIEmbeddingModels,
PROVIDER_INFO as OpenAIInfo,
PROVIDER_INFO,
} from './openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../../config';
} from '../config';
import { ChatOpenAI } from '@langchain/openai';
import {
loadOllamaChatModels,
loadOllamaEmbeddingModels,
PROVIDER_INFO as OllamaInfo,
} from './ollama';
import { loadGroqChatModels, PROVIDER_INFO as GroqInfo } from './groq';
import {
loadAnthropicChatModels,
PROVIDER_INFO as AnthropicInfo,
} from './anthropic';
import {
loadGeminiChatModels,
loadGeminiEmbeddingModels,
PROVIDER_INFO as GeminiInfo,
} from './gemini';
import {
loadTransformersEmbeddingsModels,
PROVIDER_INFO as TransformersInfo,
} from './transformers';
import {
loadDeepseekChatModels,
PROVIDER_INFO as DeepseekInfo,
} from './deepseek';
import {
loadLMStudioChatModels,
loadLMStudioEmbeddingsModels,
PROVIDER_INFO as LMStudioInfo,
} from './lmstudio';
const chatModelProviders = {
openai: loadOpenAIChatModels,
groq: loadGroqChatModels,
ollama: loadOllamaChatModels,
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
export const PROVIDER_METADATA = {
openai: OpenAIInfo,
ollama: OllamaInfo,
groq: GroqInfo,
anthropic: AnthropicInfo,
gemini: GeminiInfo,
transformers: TransformersInfo,
deepseek: DeepseekInfo,
lmstudio: LMStudioInfo,
custom_openai: {
key: 'custom_openai',
displayName: 'Custom OpenAI',
},
};
const embeddingModelProviders = {
openai: loadOpenAIEmbeddingsModels,
local: loadTransformersEmbeddingsModels,
ollama: loadOllamaEmbeddingsModels,
gemini: loadGeminiEmbeddingsModels,
export interface ChatModel {
displayName: string;
model: BaseChatModel;
}
export interface EmbeddingModel {
displayName: string;
model: Embeddings;
}
export const chatModelProviders: Record<
string,
() => Promise<Record<string, ChatModel>>
> = {
openai: loadOpenAIChatModels,
ollama: loadOllamaChatModels,
groq: loadGroqChatModels,
anthropic: loadAnthropicChatModels,
gemini: loadGeminiChatModels,
deepseek: loadDeepseekChatModels,
lmstudio: loadLMStudioChatModels,
};
export const embeddingModelProviders: Record<
string,
() => Promise<Record<string, EmbeddingModel>>
> = {
openai: loadOpenAIEmbeddingModels,
ollama: loadOllamaEmbeddingModels,
gemini: loadGeminiEmbeddingModels,
transformers: loadTransformersEmbeddingsModels,
lmstudio: loadLMStudioEmbeddingsModels,
};
export const getAvailableChatModelProviders = async () => {
const models = {};
const models: Record<string, Record<string, ChatModel>> = {};
for (const provider in chatModelProviders) {
const providerModels = await chatModelProviders[provider]();
@ -52,7 +116,7 @@ export const getAvailableChatModelProviders = async () => {
configuration: {
baseURL: customOpenAiApiUrl,
},
}),
}) as unknown as BaseChatModel,
},
}
: {}),
@ -62,7 +126,7 @@ export const getAvailableChatModelProviders = async () => {
};
export const getAvailableEmbeddingModelProviders = async () => {
const models = {};
const models: Record<string, Record<string, EmbeddingModel>> = {};
for (const provider in embeddingModelProviders) {
const providerModels = await embeddingModelProviders[provider]();

View File

@ -0,0 +1,100 @@
import { getKeepAlive, getLMStudioApiEndpoint } from '../config';
import axios from 'axios';
import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'lmstudio',
displayName: 'LM Studio',
};
import { ChatOpenAI } from '@langchain/openai';
import { OpenAIEmbeddings } from '@langchain/openai';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
interface LMStudioModel {
id: string;
name?: string;
}
const ensureV1Endpoint = (endpoint: string): string =>
endpoint.endsWith('/v1') ? endpoint : `${endpoint}/v1`;
const checkServerAvailability = async (endpoint: string): Promise<boolean> => {
try {
await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
headers: { 'Content-Type': 'application/json' },
});
return true;
} catch {
return false;
}
};
export const loadLMStudioChatModels = async () => {
const endpoint = getLMStudioApiEndpoint();
if (!endpoint) return {};
if (!(await checkServerAvailability(endpoint))) return {};
try {
const response = await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
headers: { 'Content-Type': 'application/json' },
});
const chatModels: Record<string, ChatModel> = {};
response.data.data.forEach((model: LMStudioModel) => {
chatModels[model.id] = {
displayName: model.name || model.id,
model: new ChatOpenAI({
openAIApiKey: 'lm-studio',
configuration: {
baseURL: ensureV1Endpoint(endpoint),
},
modelName: model.id,
temperature: 0.7,
streaming: true,
maxRetries: 3,
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
console.error(`Error loading LM Studio models: ${err}`);
return {};
}
};
export const loadLMStudioEmbeddingsModels = async () => {
const endpoint = getLMStudioApiEndpoint();
if (!endpoint) return {};
if (!(await checkServerAvailability(endpoint))) return {};
try {
const response = await axios.get(`${ensureV1Endpoint(endpoint)}/models`, {
headers: { 'Content-Type': 'application/json' },
});
const embeddingsModels: Record<string, EmbeddingModel> = {};
response.data.data.forEach((model: LMStudioModel) => {
embeddingsModels[model.id] = {
displayName: model.name || model.id,
model: new OpenAIEmbeddings({
openAIApiKey: 'lm-studio',
configuration: {
baseURL: ensureV1Endpoint(endpoint),
},
modelName: model.id,
}) as unknown as Embeddings,
};
});
return embeddingsModels;
} catch (err) {
console.error(`Error loading LM Studio embeddings model: ${err}`);
return {};
}
};

View File

@ -1,74 +1,78 @@
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
import { getKeepAlive, getOllamaApiEndpoint } from '../../config';
import logger from '../../utils/logger';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import axios from 'axios';
import { getKeepAlive, getOllamaApiEndpoint } from '../config';
import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'ollama',
displayName: 'Ollama',
};
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
export const loadOllamaChatModels = async () => {
const ollamaEndpoint = getOllamaApiEndpoint();
const keepAlive = getKeepAlive();
const ollamaApiEndpoint = getOllamaApiEndpoint();
if (!ollamaEndpoint) return {};
if (!ollamaApiEndpoint) return {};
try {
const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = response.data;
const { models } = res.data;
const chatModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = {
const chatModels: Record<string, ChatModel> = {};
models.forEach((model: any) => {
chatModels[model.model] = {
displayName: model.name,
model: new ChatOllama({
baseUrl: ollamaEndpoint,
baseUrl: ollamaApiEndpoint,
model: model.model,
temperature: 0.7,
keepAlive: keepAlive,
keepAlive: getKeepAlive(),
}),
};
return acc;
}, {});
});
return chatModels;
} catch (err) {
logger.error(`Error loading Ollama models: ${err}`);
console.error(`Error loading Ollama models: ${err}`);
return {};
}
};
export const loadOllamaEmbeddingsModels = async () => {
const ollamaEndpoint = getOllamaApiEndpoint();
export const loadOllamaEmbeddingModels = async () => {
const ollamaApiEndpoint = getOllamaApiEndpoint();
if (!ollamaEndpoint) return {};
if (!ollamaApiEndpoint) return {};
try {
const response = await axios.get(`${ollamaEndpoint}/api/tags`, {
const res = await axios.get(`${ollamaApiEndpoint}/api/tags`, {
headers: {
'Content-Type': 'application/json',
},
});
const { models: ollamaModels } = response.data;
const { models } = res.data;
const embeddingsModels = ollamaModels.reduce((acc, model) => {
acc[model.model] = {
const embeddingModels: Record<string, EmbeddingModel> = {};
models.forEach((model: any) => {
embeddingModels[model.model] = {
displayName: model.name,
model: new OllamaEmbeddings({
baseUrl: ollamaEndpoint,
baseUrl: ollamaApiEndpoint,
model: model.model,
}),
};
});
return acc;
}, {});
return embeddingsModels;
return embeddingModels;
} catch (err) {
logger.error(`Error loading Ollama embeddings model: ${err}`);
console.error(`Error loading Ollama embeddings models: ${err}`);
return {};
}
};

View File

@ -1,89 +1,95 @@
import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { getOpenaiApiKey } from '../../config';
import logger from '../../utils/logger';
import { getOpenaiApiKey } from '../config';
import { ChatModel, EmbeddingModel } from '.';
export const PROVIDER_INFO = {
key: 'openai',
displayName: 'OpenAI',
};
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { Embeddings } from '@langchain/core/embeddings';
const openaiChatModels: Record<string, string>[] = [
{
displayName: 'GPT-3.5 Turbo',
key: 'gpt-3.5-turbo',
},
{
displayName: 'GPT-4',
key: 'gpt-4',
},
{
displayName: 'GPT-4 turbo',
key: 'gpt-4-turbo',
},
{
displayName: 'GPT-4 omni',
key: 'gpt-4o',
},
{
displayName: 'GPT-4 omni mini',
key: 'gpt-4o-mini',
},
];
const openaiEmbeddingModels: Record<string, string>[] = [
{
displayName: 'Text Embedding 3 Small',
key: 'text-embedding-3-small',
},
{
displayName: 'Text Embedding 3 Large',
key: 'text-embedding-3-large',
},
];
export const loadOpenAIChatModels = async () => {
const openAIApiKey = getOpenaiApiKey();
const openaiApiKey = getOpenaiApiKey();
if (!openAIApiKey) return {};
if (!openaiApiKey) return {};
try {
const chatModels = {
'gpt-3.5-turbo': {
displayName: 'GPT-3.5 Turbo',
const chatModels: Record<string, ChatModel> = {};
openaiChatModels.forEach((model) => {
chatModels[model.key] = {
displayName: model.displayName,
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-3.5-turbo',
openAIApiKey: openaiApiKey,
modelName: model.key,
temperature: 0.7,
}),
},
'gpt-4': {
displayName: 'GPT-4',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4',
temperature: 0.7,
}),
},
'gpt-4-turbo': {
displayName: 'GPT-4 turbo',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4-turbo',
temperature: 0.7,
}),
},
'gpt-4o': {
displayName: 'GPT-4 omni',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o',
temperature: 0.7,
}),
},
'gpt-4o-mini': {
displayName: 'GPT-4 omni mini',
model: new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o-mini',
temperature: 0.7,
}),
},
};
}) as unknown as BaseChatModel,
};
});
return chatModels;
} catch (err) {
logger.error(`Error loading OpenAI models: ${err}`);
console.error(`Error loading OpenAI models: ${err}`);
return {};
}
};
export const loadOpenAIEmbeddingsModels = async () => {
const openAIApiKey = getOpenaiApiKey();
export const loadOpenAIEmbeddingModels = async () => {
const openaiApiKey = getOpenaiApiKey();
if (!openAIApiKey) return {};
if (!openaiApiKey) return {};
try {
const embeddingModels = {
'text-embedding-3-small': {
displayName: 'Text Embedding 3 Small',
const embeddingModels: Record<string, EmbeddingModel> = {};
openaiEmbeddingModels.forEach((model) => {
embeddingModels[model.key] = {
displayName: model.displayName,
model: new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-small',
}),
},
'text-embedding-3-large': {
displayName: 'Text Embedding 3 Large',
model: new OpenAIEmbeddings({
openAIApiKey,
modelName: 'text-embedding-3-large',
}),
},
};
openAIApiKey: openaiApiKey,
modelName: model.key,
}) as unknown as Embeddings,
};
});
return embeddingModels;
} catch (err) {
logger.error(`Error loading OpenAI embeddings model: ${err}`);
console.error(`Error loading OpenAI embeddings models: ${err}`);
return {};
}
};

View File

@ -1,6 +1,10 @@
import logger from '../../utils/logger';
import { HuggingFaceTransformersEmbeddings } from '../huggingfaceTransformer';
export const PROVIDER_INFO = {
key: 'transformers',
displayName: 'Hugging Face',
};
export const loadTransformersEmbeddingsModels = async () => {
try {
const embeddingModels = {
@ -26,7 +30,7 @@ export const loadTransformersEmbeddingsModels = async () => {
return embeddingModels;
} catch (err) {
logger.error(`Error loading Transformers embeddings model: ${err}`);
console.error(`Error loading Transformers embeddings model: ${err}`);
return {};
}
};

59
src/lib/search/index.ts Normal file
View File

@ -0,0 +1,59 @@
import MetaSearchAgent from '@/lib/search/metaSearchAgent';
import prompts from '../prompts';
export const searchHandlers: Record<string, MetaSearchAgent> = {
webSearch: new MetaSearchAgent({
activeEngines: [],
queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
responsePrompt: prompts.webSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: true,
}),
academicSearch: new MetaSearchAgent({
activeEngines: ['arxiv', 'google scholar', 'pubmed'],
queryGeneratorPrompt: prompts.academicSearchRetrieverPrompt,
responsePrompt: prompts.academicSearchResponsePrompt,
rerank: true,
rerankThreshold: 0,
searchWeb: true,
summarizer: false,
}),
writingAssistant: new MetaSearchAgent({
activeEngines: [],
queryGeneratorPrompt: '',
responsePrompt: prompts.writingAssistantPrompt,
rerank: true,
rerankThreshold: 0,
searchWeb: false,
summarizer: false,
}),
wolframAlphaSearch: new MetaSearchAgent({
activeEngines: ['wolframalpha'],
queryGeneratorPrompt: prompts.wolframAlphaSearchRetrieverPrompt,
responsePrompt: prompts.wolframAlphaSearchResponsePrompt,
rerank: false,
rerankThreshold: 0,
searchWeb: true,
summarizer: false,
}),
youtubeSearch: new MetaSearchAgent({
activeEngines: ['youtube'],
queryGeneratorPrompt: prompts.youtubeSearchRetrieverPrompt,
responsePrompt: prompts.youtubeSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: false,
}),
redditSearch: new MetaSearchAgent({
activeEngines: ['reddit'],
queryGeneratorPrompt: prompts.redditSearchRetrieverPrompt,
responsePrompt: prompts.redditSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: false,
}),
};

View File

@ -13,18 +13,17 @@ import {
} from '@langchain/core/runnables';
import { BaseMessage } from '@langchain/core/messages';
import { StringOutputParser } from '@langchain/core/output_parsers';
import LineListOutputParser from '../lib/outputParsers/listLineOutputParser';
import LineOutputParser from '../lib/outputParsers/lineOutputParser';
import LineListOutputParser from '../outputParsers/listLineOutputParser';
import LineOutputParser from '../outputParsers/lineOutputParser';
import { getDocumentsFromLinks } from '../utils/documents';
import { Document } from 'langchain/document';
import { searchSearxng } from '../lib/searxng';
import path from 'path';
import fs from 'fs';
import { searchSearxng } from '../searxng';
import path from 'node:path';
import fs from 'node:fs';
import computeSimilarity from '../utils/computeSimilarity';
import formatChatHistoryAsString from '../utils/formatHistory';
import eventEmitter from 'events';
import { StreamEvent } from '@langchain/core/tracers/log_stream';
import { IterableReadableStream } from '@langchain/core/utils/stream';
export interface MetaSearchAgentType {
searchAndAnswer: (
@ -34,6 +33,7 @@ export interface MetaSearchAgentType {
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
fileIds: string[],
systemInstructions: string,
isCompact?: boolean,
) => Promise<eventEmitter>;
}
@ -92,7 +92,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
question = 'summarize';
}
let docs = [];
let docs: Document[] = [];
const linkDocs = await getDocumentsFromLinks({ links });
@ -205,6 +205,8 @@ class MetaSearchAgent implements MetaSearchAgentType {
return { query: question, docs: docs };
} else {
question = question.replace(/<think>.*?<\/think>/g, '');
const res = await searchSearxng(question, {
language: 'en',
engines: this.config.activeEngines,
@ -237,10 +239,12 @@ class MetaSearchAgent implements MetaSearchAgentType {
fileIds: string[],
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
systemInstructions: string,
isCompact?: boolean,
) {
return RunnableSequence.from([
RunnableMap.from({
systemInstructions: () => systemInstructions,
query: (input: BasicChainInput) => input.query,
chat_history: (input: BasicChainInput) => input.chat_history,
date: () => new Date().toISOString(),
@ -319,7 +323,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
const embeddings = JSON.parse(fs.readFileSync(embeddingsPath, 'utf8'));
const fileSimilaritySearchObject = content.contents.map(
(c: string, i) => {
(c: string, i: number) => {
return {
fileName: content.title,
content: c,
@ -422,6 +426,8 @@ class MetaSearchAgent implements MetaSearchAgentType {
return sortedDocs;
}
return [];
}
private processDocs(docs: Document[]) {
@ -434,7 +440,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
}
private async handleStream(
stream: IterableReadableStream<StreamEvent>,
stream: AsyncGenerator<StreamEvent, any, any>,
emitter: eventEmitter,
) {
for await (const event of stream) {
@ -473,6 +479,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
embeddings: Embeddings,
optimizationMode: 'speed' | 'balanced' | 'quality',
fileIds: string[],
systemInstructions: string,
isCompact?: boolean,
) {
const emitter = new eventEmitter();
@ -482,6 +489,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
fileIds,
embeddings,
optimizationMode,
systemInstructions,
isCompact,
);

View File

@ -1,5 +1,5 @@
import axios from 'axios';
import { getSearxngApiEndpoint } from '../config';
import { getSearxngApiEndpoint } from './config';
interface SearxngSearchOptions {
categories?: string[];
@ -30,11 +30,12 @@ export const searchSearxng = async (
if (opts) {
Object.keys(opts).forEach((key) => {
if (Array.isArray(opts[key])) {
url.searchParams.append(key, opts[key].join(','));
const value = opts[key as keyof SearxngSearchOptions];
if (Array.isArray(value)) {
url.searchParams.append(key, value.join(','));
return;
}
url.searchParams.append(key, opts[key]);
url.searchParams.append(key, value as string);
});
}

5
src/lib/types/compute-dot.d.ts vendored Normal file
View File

@ -0,0 +1,5 @@
declare function computeDot(vectorA: number[], vectorB: number[]): number;
declare module 'compute-dot' {
export default computeDot;
}

27
src/lib/utils.ts Normal file
View File

@ -0,0 +1,27 @@
import clsx, { ClassValue } from 'clsx';
import { twMerge } from 'tailwind-merge';
export const cn = (...classes: ClassValue[]) => twMerge(clsx(...classes));
export const formatTimeDifference = (
date1: Date | string,
date2: Date | string,
): string => {
date1 = new Date(date1);
date2 = new Date(date2);
const diffInSeconds = Math.floor(
Math.abs(date2.getTime() - date1.getTime()) / 1000,
);
if (diffInSeconds < 60)
return `${diffInSeconds} second${diffInSeconds !== 1 ? 's' : ''}`;
else if (diffInSeconds < 3600)
return `${Math.floor(diffInSeconds / 60)} minute${Math.floor(diffInSeconds / 60) !== 1 ? 's' : ''}`;
else if (diffInSeconds < 86400)
return `${Math.floor(diffInSeconds / 3600)} hour${Math.floor(diffInSeconds / 3600) !== 1 ? 's' : ''}`;
else if (diffInSeconds < 31536000)
return `${Math.floor(diffInSeconds / 86400)} day${Math.floor(diffInSeconds / 86400) !== 1 ? 's' : ''}`;
else
return `${Math.floor(diffInSeconds / 31536000)} year${Math.floor(diffInSeconds / 31536000) !== 1 ? 's' : ''}`;
};

View File

@ -6,7 +6,7 @@ const computeSimilarity = (x: number[], y: number[]): number => {
const similarityMeasure = getSimilarityMeasure();
if (similarityMeasure === 'cosine') {
return cosineSimilarity(x, y);
return cosineSimilarity(x, y) as number;
} else if (similarityMeasure === 'dot') {
return dot(x, y);
}

View File

@ -3,7 +3,6 @@ import { htmlToText } from 'html-to-text';
import { RecursiveCharacterTextSplitter } from 'langchain/text_splitter';
import { Document } from '@langchain/core/documents';
import pdfParse from 'pdf-parse';
import logger from './logger';
export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
const splitter = new RecursiveCharacterTextSplitter();
@ -79,12 +78,13 @@ export const getDocumentsFromLinks = async ({ links }: { links: string[] }) => {
docs.push(...linkDocs);
} catch (err) {
logger.error(
`Error at generating documents from links: ${err.message}`,
console.error(
'An error occurred while getting documents from links: ',
err,
);
docs.push(
new Document({
pageContent: `Failed to retrieve content from the link: ${err.message}`,
pageContent: `Failed to retrieve content from the link: ${err}`,
metadata: {
title: 'Failed to retrieve content',
url: link,

View File

@ -1,66 +0,0 @@
import express from 'express';
import logger from '../utils/logger';
import db from '../db/index';
import { eq } from 'drizzle-orm';
import { chats, messages } from '../db/schema';
const router = express.Router();
router.get('/', async (_, res) => {
try {
let chats = await db.query.chats.findMany();
chats = chats.reverse();
return res.status(200).json({ chats: chats });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in getting chats: ${err.message}`);
}
});
router.get('/:id', async (req, res) => {
try {
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, req.params.id),
});
if (!chatExists) {
return res.status(404).json({ message: 'Chat not found' });
}
const chatMessages = await db.query.messages.findMany({
where: eq(messages.chatId, req.params.id),
});
return res.status(200).json({ chat: chatExists, messages: chatMessages });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in getting chat: ${err.message}`);
}
});
router.delete(`/:id`, async (req, res) => {
try {
const chatExists = await db.query.chats.findFirst({
where: eq(chats.id, req.params.id),
});
if (!chatExists) {
return res.status(404).json({ message: 'Chat not found' });
}
await db.delete(chats).where(eq(chats.id, req.params.id)).execute();
await db
.delete(messages)
.where(eq(messages.chatId, req.params.id))
.execute();
return res.status(200).json({ message: 'Chat deleted successfully' });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in deleting chat: ${err.message}`);
}
});
export default router;

View File

@ -1,104 +0,0 @@
import express from 'express';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '../lib/providers';
import {
getGroqApiKey,
getOllamaApiEndpoint,
getAnthropicApiKey,
getGeminiApiKey,
getOpenaiApiKey,
updateConfig,
getCustomOpenaiApiUrl,
getCustomOpenaiApiKey,
getCustomOpenaiModelName,
} from '../config';
import logger from '../utils/logger';
const router = express.Router();
router.get('/', async (_, res) => {
try {
const config = {};
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
config['chatModelProviders'] = {};
config['embeddingModelProviders'] = {};
for (const provider in chatModelProviders) {
config['chatModelProviders'][provider] = Object.keys(
chatModelProviders[provider],
).map((model) => {
return {
name: model,
displayName: chatModelProviders[provider][model].displayName,
};
});
}
for (const provider in embeddingModelProviders) {
config['embeddingModelProviders'][provider] = Object.keys(
embeddingModelProviders[provider],
).map((model) => {
return {
name: model,
displayName: embeddingModelProviders[provider][model].displayName,
};
});
}
config['openaiApiKey'] = getOpenaiApiKey();
config['ollamaApiUrl'] = getOllamaApiEndpoint();
config['anthropicApiKey'] = getAnthropicApiKey();
config['groqApiKey'] = getGroqApiKey();
config['geminiApiKey'] = getGeminiApiKey();
config['customOpenaiApiUrl'] = getCustomOpenaiApiUrl();
config['customOpenaiApiKey'] = getCustomOpenaiApiKey();
config['customOpenaiModelName'] = getCustomOpenaiModelName();
res.status(200).json(config);
} catch (err: any) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error getting config: ${err.message}`);
}
});
router.post('/', async (req, res) => {
const config = req.body;
const updatedConfig = {
MODELS: {
OPENAI: {
API_KEY: config.openaiApiKey,
},
GROQ: {
API_KEY: config.groqApiKey,
},
ANTHROPIC: {
API_KEY: config.anthropicApiKey,
},
GEMINI: {
API_KEY: config.geminiApiKey,
},
OLLAMA: {
API_URL: config.ollamaApiUrl,
},
CUSTOM_OPENAI: {
API_URL: config.customOpenaiApiUrl,
API_KEY: config.customOpenaiApiKey,
MODEL_NAME: config.customOpenaiModelName,
},
},
};
updateConfig(updatedConfig);
res.status(200).json({ message: 'Config updated' });
});
export default router;

View File

@ -1,48 +0,0 @@
import express from 'express';
import { searchSearxng } from '../lib/searxng';
import logger from '../utils/logger';
const router = express.Router();
router.get('/', async (req, res) => {
try {
const data = (
await Promise.all([
searchSearxng('site:businessinsider.com AI', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:www.exchangewire.com AI', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:yahoo.com AI', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:businessinsider.com tech', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:www.exchangewire.com tech', {
engines: ['bing news'],
pageno: 1,
}),
searchSearxng('site:yahoo.com tech', {
engines: ['bing news'],
pageno: 1,
}),
])
)
.map((result) => result.results)
.flat()
.sort(() => Math.random() - 0.5);
return res.json({ blogs: data });
} catch (err: any) {
logger.error(`Error in discover route: ${err.message}`);
return res.status(500).json({ message: 'An error has occurred' });
}
});
export default router;

View File

@ -1,88 +0,0 @@
import express from 'express';
import handleImageSearch from '../chains/imageSearchAgent';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
import { ChatOpenAI } from '@langchain/openai';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
const router = express.Router();
interface ChatModel {
provider: string;
model: string;
ollamaContextWindow?: number;
}
interface ImageSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
router.post('/', async (req, res) => {
try {
let body: ImageSearchBody = req.body;
const chatHistory = body.chatHistory.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
});
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: getCustomOpenaiModelName(),
openAIApiKey: getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
if (llm instanceof ChatOllama) {
llm.numCtx = body.chatModel?.ollamaContextWindow || 2048;
}
}
if (!llm) {
return res.status(400).json({ message: 'Invalid model selected' });
}
const images = await handleImageSearch(
{ query: body.query, chat_history: chatHistory },
llm,
);
res.status(200).json({ images });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in image search: ${err.message}`);
}
});
export default router;

View File

@ -1,24 +0,0 @@
import express from 'express';
import imagesRouter from './images';
import videosRouter from './videos';
import configRouter from './config';
import modelsRouter from './models';
import suggestionsRouter from './suggestions';
import chatsRouter from './chats';
import searchRouter from './search';
import discoverRouter from './discover';
import uploadsRouter from './uploads';
const router = express.Router();
router.use('/images', imagesRouter);
router.use('/videos', videosRouter);
router.use('/config', configRouter);
router.use('/models', modelsRouter);
router.use('/suggestions', suggestionsRouter);
router.use('/chats', chatsRouter);
router.use('/search', searchRouter);
router.use('/discover', discoverRouter);
router.use('/uploads', uploadsRouter);
export default router;

View File

@ -1,36 +0,0 @@
import express from 'express';
import logger from '../utils/logger';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '../lib/providers';
const router = express.Router();
router.get('/', async (req, res) => {
try {
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
Object.keys(chatModelProviders).forEach((provider) => {
Object.keys(chatModelProviders[provider]).forEach((model) => {
delete chatModelProviders[provider][model].model;
});
});
Object.keys(embeddingModelProviders).forEach((provider) => {
Object.keys(embeddingModelProviders[provider]).forEach((model) => {
delete embeddingModelProviders[provider][model].model;
});
});
res.status(200).json({ chatModelProviders, embeddingModelProviders });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(err.message);
}
});
export default router;

View File

@ -1,164 +0,0 @@
import express from 'express';
import logger from '../utils/logger';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import { ChatOpenAI } from '@langchain/openai';
import {
getAvailableChatModelProviders,
getAvailableEmbeddingModelProviders,
} from '../lib/providers';
import { searchHandlers } from '../websocket/messageHandler';
import { AIMessage, BaseMessage, HumanMessage } from '@langchain/core/messages';
import { MetaSearchAgentType } from '../search/metaSearchAgent';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
const router = express.Router();
interface chatModel {
provider: string;
model: string;
ollamaContextWindow?: number;
customOpenAIKey?: string;
customOpenAIBaseURL?: string;
}
interface embeddingModel {
provider: string;
model: string;
}
interface ChatRequestBody {
optimizationMode: 'speed' | 'balanced';
focusMode: string;
chatModel?: chatModel;
embeddingModel?: embeddingModel;
query: string;
history: Array<[string, string]>;
}
router.post('/', async (req, res) => {
try {
const body: ChatRequestBody = req.body;
if (!body.focusMode || !body.query) {
return res.status(400).json({ message: 'Missing focus mode or query' });
}
body.history = body.history || [];
body.optimizationMode = body.optimizationMode || 'balanced';
const history: BaseMessage[] = body.history.map((msg) => {
if (msg[0] === 'human') {
return new HumanMessage({
content: msg[1],
});
} else {
return new AIMessage({
content: msg[1],
});
}
});
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
const embeddingModelProvider =
body.embeddingModel?.provider || Object.keys(embeddingModelProviders)[0];
const embeddingModel =
body.embeddingModel?.model ||
Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
const ollamaContextWindow = body.chatModel?.ollamaContextWindow || 2048;
let llm: BaseChatModel | undefined;
let embeddings: Embeddings | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: body.chatModel?.model || getCustomOpenaiModelName(),
openAIApiKey:
body.chatModel?.customOpenAIKey || getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL:
body.chatModel?.customOpenAIBaseURL || getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
if (llm instanceof ChatOllama) {
llm.numCtx = ollamaContextWindow;
}
}
if (
embeddingModelProviders[embeddingModelProvider] &&
embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddings = embeddingModelProviders[embeddingModelProvider][
embeddingModel
].model as Embeddings | undefined;
}
if (!llm || !embeddings) {
return res.status(400).json({ message: 'Invalid model selected' });
}
const searchHandler: MetaSearchAgentType = searchHandlers[body.focusMode];
if (!searchHandler) {
return res.status(400).json({ message: 'Invalid focus mode' });
}
const emitter = await searchHandler.searchAndAnswer(
body.query,
history,
llm,
embeddings,
body.optimizationMode,
[],
);
let message = '';
let sources = [];
emitter.on('data', (data) => {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
message += parsedData.data;
} else if (parsedData.type === 'sources') {
sources = parsedData.data;
}
});
emitter.on('end', () => {
res.status(200).json({ message, sources });
});
emitter.on('error', (data) => {
const parsedData = JSON.parse(data);
res.status(500).json({ message: parsedData.data });
});
} catch (err: any) {
logger.error(`Error in getting search results: ${err.message}`);
res.status(500).json({ message: 'An error has occurred.' });
}
});
export default router;

View File

@ -1,86 +0,0 @@
import express from 'express';
import generateSuggestions from '../chains/suggestionGeneratorAgent';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
import { ChatOpenAI } from '@langchain/openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
const router = express.Router();
interface ChatModel {
provider: string;
model: string;
ollamaContextWindow?: number;
}
interface SuggestionsBody {
chatHistory: any[];
chatModel?: ChatModel;
}
router.post('/', async (req, res) => {
try {
let body: SuggestionsBody = req.body;
const chatHistory = body.chatHistory.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
});
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: getCustomOpenaiModelName(),
openAIApiKey: getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
if (llm instanceof ChatOllama) {
llm.numCtx = body.chatModel?.ollamaContextWindow || 2048;
}
}
if (!llm) {
return res.status(400).json({ message: 'Invalid model selected' });
}
const suggestions = await generateSuggestions(
{ chat_history: chatHistory },
llm,
);
res.status(200).json({ suggestions: suggestions });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in generating suggestions: ${err.message}`);
}
});
export default router;

View File

@ -1,151 +0,0 @@
import express from 'express';
import logger from '../utils/logger';
import multer from 'multer';
import path from 'path';
import crypto from 'crypto';
import fs from 'fs';
import { Embeddings } from '@langchain/core/embeddings';
import { getAvailableEmbeddingModelProviders } from '../lib/providers';
import { PDFLoader } from '@langchain/community/document_loaders/fs/pdf';
import { DocxLoader } from '@langchain/community/document_loaders/fs/docx';
import { RecursiveCharacterTextSplitter } from '@langchain/textsplitters';
import { Document } from 'langchain/document';
const router = express.Router();
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 500,
chunkOverlap: 100,
});
const storage = multer.diskStorage({
destination: (req, file, cb) => {
cb(null, path.join(process.cwd(), './uploads'));
},
filename: (req, file, cb) => {
const splitedFileName = file.originalname.split('.');
const fileExtension = splitedFileName[splitedFileName.length - 1];
if (!['pdf', 'docx', 'txt'].includes(fileExtension)) {
return cb(new Error('File type is not supported'), '');
}
cb(null, `${crypto.randomBytes(16).toString('hex')}.${fileExtension}`);
},
});
const upload = multer({ storage });
router.post(
'/',
upload.fields([
{ name: 'files' },
{ name: 'embedding_model', maxCount: 1 },
{ name: 'embedding_model_provider', maxCount: 1 },
]),
async (req, res) => {
try {
const { embedding_model, embedding_model_provider } = req.body;
if (!embedding_model || !embedding_model_provider) {
res
.status(400)
.json({ message: 'Missing embedding model or provider' });
return;
}
const embeddingModels = await getAvailableEmbeddingModelProviders();
const provider =
embedding_model_provider ?? Object.keys(embeddingModels)[0];
const embeddingModel: Embeddings =
embedding_model ?? Object.keys(embeddingModels[provider])[0];
let embeddingsModel: Embeddings | undefined;
if (
embeddingModels[provider] &&
embeddingModels[provider][embeddingModel]
) {
embeddingsModel = embeddingModels[provider][embeddingModel].model as
| Embeddings
| undefined;
}
if (!embeddingsModel) {
res.status(400).json({ message: 'Invalid LLM model selected' });
return;
}
const files = req.files['files'] as Express.Multer.File[];
if (!files || files.length === 0) {
res.status(400).json({ message: 'No files uploaded' });
return;
}
await Promise.all(
files.map(async (file) => {
let docs: Document[] = [];
if (file.mimetype === 'application/pdf') {
const loader = new PDFLoader(file.path);
docs = await loader.load();
} else if (
file.mimetype ===
'application/vnd.openxmlformats-officedocument.wordprocessingml.document'
) {
const loader = new DocxLoader(file.path);
docs = await loader.load();
} else if (file.mimetype === 'text/plain') {
const text = fs.readFileSync(file.path, 'utf-8');
docs = [
new Document({
pageContent: text,
metadata: {
title: file.originalname,
},
}),
];
}
const splitted = await splitter.splitDocuments(docs);
const json = JSON.stringify({
title: file.originalname,
contents: splitted.map((doc) => doc.pageContent),
});
const pathToSave = file.path.replace(/\.\w+$/, '-extracted.json');
fs.writeFileSync(pathToSave, json);
const embeddings = await embeddingsModel.embedDocuments(
splitted.map((doc) => doc.pageContent),
);
const embeddingsJSON = JSON.stringify({
title: file.originalname,
embeddings: embeddings,
});
const pathToSaveEmbeddings = file.path.replace(
/\.\w+$/,
'-embeddings.json',
);
fs.writeFileSync(pathToSaveEmbeddings, embeddingsJSON);
}),
);
res.status(200).json({
files: files.map((file) => {
return {
fileName: file.originalname,
fileExtension: file.filename.split('.').pop(),
fileId: file.filename.replace(/\.\w+$/, ''),
};
}),
});
} catch (err: any) {
logger.error(`Error in uploading file results: ${err.message}`);
res.status(500).json({ message: 'An error has occurred.' });
}
},
);
export default router;

View File

@ -1,88 +0,0 @@
import express from 'express';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
import handleVideoSearch from '../chains/videoSearchAgent';
import { ChatOpenAI } from '@langchain/openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
const router = express.Router();
interface ChatModel {
provider: string;
model: string;
ollamaContextWindow?: number;
}
interface VideoSearchBody {
query: string;
chatHistory: any[];
chatModel?: ChatModel;
}
router.post('/', async (req, res) => {
try {
let body: VideoSearchBody = req.body;
const chatHistory = body.chatHistory.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
});
const chatModelProviders = await getAvailableChatModelProviders();
const chatModelProvider =
body.chatModel?.provider || Object.keys(chatModelProviders)[0];
const chatModel =
body.chatModel?.model ||
Object.keys(chatModelProviders[chatModelProvider])[0];
let llm: BaseChatModel | undefined;
if (body.chatModel?.provider === 'custom_openai') {
llm = new ChatOpenAI({
modelName: getCustomOpenaiModelName(),
openAIApiKey: getCustomOpenaiApiKey(),
temperature: 0.7,
configuration: {
baseURL: getCustomOpenaiApiUrl(),
},
}) as unknown as BaseChatModel;
} else if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel]
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
if (llm instanceof ChatOllama) {
llm.numCtx = body.chatModel?.ollamaContextWindow || 2048;
}
}
if (!llm) {
return res.status(400).json({ message: 'Invalid model selected' });
}
const videos = await handleVideoSearch(
{ chat_history: chatHistory, query: body.query },
llm,
);
res.status(200).json({ videos });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in video search: ${err.message}`);
}
});
export default router;

View File

@ -1,22 +0,0 @@
import winston from 'winston';
const logger = winston.createLogger({
level: 'info',
transports: [
new winston.transports.Console({
format: winston.format.combine(
winston.format.colorize(),
winston.format.simple(),
),
}),
new winston.transports.File({
filename: 'app.log',
format: winston.format.combine(
winston.format.timestamp(),
winston.format.json(),
),
}),
],
});
export default logger;

View File

@ -1,128 +0,0 @@
import { WebSocket } from 'ws';
import { handleMessage } from './messageHandler';
import {
getAvailableEmbeddingModelProviders,
getAvailableChatModelProviders,
} from '../lib/providers';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import type { IncomingMessage } from 'http';
import logger from '../utils/logger';
import { ChatOpenAI } from '@langchain/openai';
import {
getCustomOpenaiApiKey,
getCustomOpenaiApiUrl,
getCustomOpenaiModelName,
} from '../config';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
export const handleConnection = async (
ws: WebSocket,
request: IncomingMessage,
) => {
try {
const searchParams = new URL(request.url, `http://${request.headers.host}`)
.searchParams;
const [chatModelProviders, embeddingModelProviders] = await Promise.all([
getAvailableChatModelProviders(),
getAvailableEmbeddingModelProviders(),
]);
const chatModelProvider =
searchParams.get('chatModelProvider') ||
Object.keys(chatModelProviders)[0];
const chatModel =
searchParams.get('chatModel') ||
Object.keys(chatModelProviders[chatModelProvider])[0];
const embeddingModelProvider =
searchParams.get('embeddingModelProvider') ||
Object.keys(embeddingModelProviders)[0];
const embeddingModel =
searchParams.get('embeddingModel') ||
Object.keys(embeddingModelProviders[embeddingModelProvider])[0];
const ollamaContextWindow = searchParams.get('ollamaContextWindow');
let llm: BaseChatModel | undefined;
let embeddings: Embeddings | undefined;
if (
chatModelProviders[chatModelProvider] &&
chatModelProviders[chatModelProvider][chatModel] &&
chatModelProvider != 'custom_openai'
) {
llm = chatModelProviders[chatModelProvider][chatModel]
.model as unknown as BaseChatModel | undefined;
if (llm instanceof ChatOllama) {
llm.numCtx = ollamaContextWindow ? parseInt(ollamaContextWindow) : 2048;
}
} else if (chatModelProvider == 'custom_openai') {
const customOpenaiApiKey = getCustomOpenaiApiKey();
const customOpenaiApiUrl = getCustomOpenaiApiUrl();
const customOpenaiModelName = getCustomOpenaiModelName();
if (customOpenaiApiKey && customOpenaiApiUrl && customOpenaiModelName) {
llm = new ChatOpenAI({
modelName: customOpenaiModelName,
openAIApiKey: customOpenaiApiKey,
temperature: 0.7,
configuration: {
baseURL: customOpenaiApiUrl,
},
}) as unknown as BaseChatModel;
}
}
if (
embeddingModelProviders[embeddingModelProvider] &&
embeddingModelProviders[embeddingModelProvider][embeddingModel]
) {
embeddings = embeddingModelProviders[embeddingModelProvider][
embeddingModel
].model as Embeddings | undefined;
}
if (!llm || !embeddings) {
ws.send(
JSON.stringify({
type: 'error',
data: 'Invalid LLM or embeddings model selected, please refresh the page and try again.',
key: 'INVALID_MODEL_SELECTED',
}),
);
ws.close();
}
const interval = setInterval(() => {
if (ws.readyState === ws.OPEN) {
ws.send(
JSON.stringify({
type: 'signal',
data: 'open',
}),
);
clearInterval(interval);
}
}, 5);
ws.on(
'message',
async (message) =>
await handleMessage(message.toString(), ws, llm, embeddings),
);
ws.on('close', () => logger.debug('Connection closed'));
} catch (err) {
ws.send(
JSON.stringify({
type: 'error',
data: 'Internal server error.',
key: 'INTERNAL_SERVER_ERROR',
}),
);
ws.close();
logger.error(err);
}
};

View File

@ -1,8 +0,0 @@
import { initServer } from './websocketServer';
import http from 'http';
export const startWebSocketServer = (
server: http.Server<typeof http.IncomingMessage, typeof http.ServerResponse>,
) => {
initServer(server);
};

View File

@ -1,282 +0,0 @@
import { EventEmitter, WebSocket } from 'ws';
import { BaseMessage, AIMessage, HumanMessage } from '@langchain/core/messages';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import type { Embeddings } from '@langchain/core/embeddings';
import logger from '../utils/logger';
import db from '../db';
import { chats, messages as messagesSchema } from '../db/schema';
import { eq, asc, gt, and } from 'drizzle-orm';
import crypto from 'crypto';
import { getFileDetails } from '../utils/files';
import MetaSearchAgent, {
MetaSearchAgentType,
} from '../search/metaSearchAgent';
import prompts from '../prompts';
type Message = {
messageId: string;
chatId: string;
content: string;
};
type WSMessage = {
message: Message;
optimizationMode: 'speed' | 'balanced' | 'quality';
type: string;
focusMode: string;
history: Array<[string, string]>;
files: Array<string>;
isCompact?: boolean;
};
export const searchHandlers = {
webSearch: new MetaSearchAgent({
activeEngines: [],
queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
responsePrompt: prompts.webSearchResponsePrompt,
preciseResponsePrompt: prompts.preciseWebSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: true,
}),
academicSearch: new MetaSearchAgent({
activeEngines: ['arxiv', 'google scholar', 'pubmed'],
queryGeneratorPrompt: prompts.academicSearchRetrieverPrompt,
responsePrompt: prompts.academicSearchResponsePrompt,
preciseResponsePrompt: prompts.preciseWebSearchResponsePrompt,
rerank: true,
rerankThreshold: 0,
searchWeb: true,
summarizer: false,
}),
writingAssistant: new MetaSearchAgent({
activeEngines: [],
queryGeneratorPrompt: '',
responsePrompt: prompts.writingAssistantPrompt,
preciseResponsePrompt: prompts.preciseWebSearchResponsePrompt,
rerank: true,
rerankThreshold: 0,
searchWeb: false,
summarizer: false,
}),
wolframAlphaSearch: new MetaSearchAgent({
activeEngines: ['wolframalpha'],
queryGeneratorPrompt: prompts.wolframAlphaSearchRetrieverPrompt,
responsePrompt: prompts.wolframAlphaSearchResponsePrompt,
preciseResponsePrompt: prompts.preciseWebSearchResponsePrompt,
rerank: false,
rerankThreshold: 0,
searchWeb: true,
summarizer: false,
}),
youtubeSearch: new MetaSearchAgent({
activeEngines: ['youtube'],
queryGeneratorPrompt: prompts.youtubeSearchRetrieverPrompt,
responsePrompt: prompts.youtubeSearchResponsePrompt,
preciseResponsePrompt: prompts.preciseWebSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: false,
}),
redditSearch: new MetaSearchAgent({
activeEngines: ['reddit'],
queryGeneratorPrompt: prompts.redditSearchRetrieverPrompt,
responsePrompt: prompts.redditSearchResponsePrompt,
preciseResponsePrompt: prompts.preciseWebSearchResponsePrompt,
rerank: true,
rerankThreshold: 0.3,
searchWeb: true,
summarizer: false,
}),
};
const handleEmitterEvents = (
emitter: EventEmitter,
ws: WebSocket,
messageId: string,
chatId: string,
) => {
let recievedMessage = '';
let sources = [];
emitter.on('data', (data) => {
const parsedData = JSON.parse(data);
if (parsedData.type === 'response') {
ws.send(
JSON.stringify({
type: 'message',
data: parsedData.data,
messageId: messageId,
}),
);
recievedMessage += parsedData.data;
} else if (parsedData.type === 'sources') {
ws.send(
JSON.stringify({
type: 'sources',
data: parsedData.data,
messageId: messageId,
}),
);
sources = parsedData.data;
}
});
emitter.on('end', () => {
ws.send(JSON.stringify({ type: 'messageEnd', messageId: messageId }));
db.insert(messagesSchema)
.values({
content: recievedMessage,
chatId: chatId,
messageId: messageId,
role: 'assistant',
metadata: JSON.stringify({
createdAt: new Date(),
...(sources && sources.length > 0 && { sources }),
}),
})
.execute();
});
emitter.on('error', (data) => {
const parsedData = JSON.parse(data);
ws.send(
JSON.stringify({
type: 'error',
data: parsedData.data,
key: 'CHAIN_ERROR',
}),
);
});
};
export const handleMessage = async (
message: string,
ws: WebSocket,
llm: BaseChatModel,
embeddings: Embeddings,
) => {
try {
const parsedWSMessage = JSON.parse(message) as WSMessage;
const parsedMessage = parsedWSMessage.message;
if (parsedWSMessage.files.length > 0) {
/* TODO: Implement uploads in other classes/single meta class system*/
parsedWSMessage.focusMode = 'webSearch';
}
const humanMessageId =
parsedMessage.messageId ?? crypto.randomBytes(7).toString('hex');
const aiMessageId = crypto.randomBytes(7).toString('hex');
if (!parsedMessage.content)
return ws.send(
JSON.stringify({
type: 'error',
data: 'Invalid message format',
key: 'INVALID_FORMAT',
}),
);
const history: BaseMessage[] = parsedWSMessage.history.map((msg) => {
if (msg[0] === 'human') {
return new HumanMessage({
content: msg[1],
});
} else {
return new AIMessage({
content: msg[1],
});
}
});
if (parsedWSMessage.type === 'message') {
const handler: MetaSearchAgentType =
searchHandlers[parsedWSMessage.focusMode];
if (handler) {
try {
const emitter = await handler.searchAndAnswer(
parsedMessage.content,
history,
llm,
embeddings,
parsedWSMessage.optimizationMode,
parsedWSMessage.files,
parsedWSMessage.isCompact,
);
handleEmitterEvents(emitter, ws, aiMessageId, parsedMessage.chatId);
const chat = await db.query.chats.findFirst({
where: eq(chats.id, parsedMessage.chatId),
});
if (!chat) {
await db
.insert(chats)
.values({
id: parsedMessage.chatId,
title: parsedMessage.content,
createdAt: new Date().toString(),
focusMode: parsedWSMessage.focusMode,
files: parsedWSMessage.files.map(getFileDetails),
})
.execute();
}
const messageExists = await db.query.messages.findFirst({
where: eq(messagesSchema.messageId, humanMessageId),
});
if (!messageExists) {
await db
.insert(messagesSchema)
.values({
content: parsedMessage.content,
chatId: parsedMessage.chatId,
messageId: humanMessageId,
role: 'user',
metadata: JSON.stringify({
createdAt: new Date(),
}),
})
.execute();
} else {
await db
.delete(messagesSchema)
.where(
and(
gt(messagesSchema.id, messageExists.id),
eq(messagesSchema.chatId, parsedMessage.chatId),
),
)
.execute();
}
} catch (err) {
console.log(err);
}
} else {
ws.send(
JSON.stringify({
type: 'error',
data: 'Invalid focus mode',
key: 'INVALID_FOCUS_MODE',
}),
);
}
}
} catch (err) {
ws.send(
JSON.stringify({
type: 'error',
data: 'Invalid message format',
key: 'INVALID_FORMAT',
}),
);
logger.error(`Failed to handle message: ${err}`);
}
};

View File

@ -1,16 +0,0 @@
import { WebSocketServer } from 'ws';
import { handleConnection } from './connectionManager';
import http from 'http';
import { getPort } from '../config';
import logger from '../utils/logger';
export const initServer = (
server: http.Server<typeof http.IncomingMessage, typeof http.ServerResponse>,
) => {
const port = getPort();
const wss = new WebSocketServer({ server });
wss.on('connection', handleConnection);
logger.info(`WebSocket server started on port ${port}`);
};