Files
MDAF/SourceCode/AlgorithmAnalyser.py
Remi Ehounou 9dd8ccf35a urgency
2021-04-19 09:38:40 -04:00

158 lines
5.9 KiB
Python

# directly running the DOE because existing surrogates can be explored with another workflow
from os import path
import importlib.util
import multiprocessing
import time
import re
from numpy import random as r
import shutil
heuristicpath = "/home/remi/Documents/MDAF-GitLAB/SourceCode/SampleAlgorithms/SimmulatedAnnealing.py"
heuristic_name = "SimmulatedAnnealing"
testfunctionpaths = ["/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin2.py", "/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin4.py", "/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Brown.py"]
funcnames = ["Bukin2", "Bukin4", "Brown"]
# testfunctionpaths = ["/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin4.py"]
# funcnames = ["Bukin4"]
objs = 0
args = {"high": 200, "low": -200, "t": 1000, "p": 0.95}
scale = 2.5
def measure(heuristicpath, heuristic_name, funcpath, funcname, objs, args, scale, connection):
# Seeding the random module for generating the initial point of the optimizer: Utilising random starting point for experimental validity
r.seed(int(time.time()))
# loading the heuristic object into the namespace and memory
spec = importlib.util.spec_from_file_location(heuristic_name, heuristicpath)
heuristic = importlib.util.module_from_spec(spec)
spec.loader.exec_module(heuristic)
testspec = importlib.util.spec_from_file_location(funcname, funcpath)
func = importlib.util.module_from_spec(testspec)
testspec.loader.exec_module(func)
# Defining a random initial point to start testing the algorithms
initpoint = [r.random() * scale, r.random() * scale]
#This timer calculates directly the CPU time of the process (Nanoseconds)
tic = time.process_time_ns()
# running the test by calling the heuritic script with the test function as argument
best = heuristic.main(func, objs, initpoint, args)
toc = time.process_time_ns()
# ^^ The timer ends right above this; the CPU time is then calculated below by simple difference ^^
# Building the response
response = "The optimum point obtained is: " + str(best) + "\nThe CPU time of the process was: " + str((toc - tic)*(10**-9))
connection.send(response)
def writerepresentation(funcpath, charas):
# Save a backup copy of the function file
shutil.copyfile(funcpath, funcpath + '.old')
# create a string format of the representation variables
representation = ''
for line in list(charas):
representation += '\n\t#_# ' + line + ': ' + str(charas[line])
representation+='\n'
# Creating the new docstring to be inserted into the file
with open(funcpath, "r") as file:
content = file.read()
docstrs = re.findall("def main\(.*?\):.*?'''(.*?)'''.*?return\s+.*?", content, re.DOTALL)[0]
docstrs += representation
repl = "\\1"+docstrs+"\t\\2"
# Create the new content of the file to replace the old. Overwriting the whole thing
pattrn = re.compile("(def main\(.*?\):.*?''').*?('''.*?return\s+.*?\n|$)", flags=re.DOTALL)
newContent = pattrn.sub(repl, content, count=1)
# Overwrite the test function file
with open(funcpath,"w") as file:
file.write(newContent)
def representfunc(funcpath):
#defining the function name
funcname = path.splitext(path.basename(funcpath))[0]
# loading the function to be represented
spec = importlib.util.spec_from_file_location(funcname, funcpath)
funcmodule = importlib.util.module_from_spec(spec)
spec.loader.exec_module(funcmodule)
# Finding the function characteristics inside the docstring
if funcmodule.main.__doc__:
regex = re.compile("#_#\s?(\w+):\s?([-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?)")
characs = re.findall(regex, funcmodule.main.__doc__)
results = {}
for charac in characs:
results[charac[0]] = float(charac[1])
# Automatically generate the representation if the docstrings did not return anything
if not results:
print("Calculating the Characteristics")
# Modality
# Basins
# Valleys
# Separability
# Dimensionality
# Writing the calculated representation into the test function file
writerepresentation(funcpath, results)
return results
def doe(heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale):
# logic variables to deal with the processes
proc = []
connections = {}
# loading the test functions into the namespace and memory
for idx, funcpath in enumerate(testfunctionpaths):
funcname = funcnames[idx]
# Creating the connection objects for communication between the heuristic and this module
connections[funcname] = multiprocessing.Pipe(duplex=False)
proc.append(multiprocessing.Process(target=measure, name=funcname, args=(heuristicpath, heuristic_name, funcpath, funcname, objs, args, scale, connections[funcname][1])))
# defining the response variables
responses = {}
failedfunctions = {}
processtiming = {}
# defining some logic variables
for idx,process in enumerate(proc):
process.start()
# Waiting for all the runs to be
# multiprocessing.connection.wait([process.sentinel for process in proc])
for process in proc: process.join()
for process in proc:
run = process.name
if process.exitcode == 0: responses[run] = connections[run][0].recv()
else:
responses[run] = "this run was not successful"
failedfunctions[run] = process.exitcode
connections[run][0].close()
connections[run][1].close()
# display output
print("\n\n||||| Responses |||||")
for process in proc: print(process.name + "____\n" + str(responses[process.name]) + "\n_________________")
#doe (heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale)
representfunc("/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin2.py")