
CIS Technical Repor t 070125A January 2007 page 1 of 6

A Note on Research Methodology and
Benchmarking Optimization Algor ithms

JASON BROWNLEE
Technical Report 070125A

Complex Intelligent Systems Laboratory, Centre for Information Technology Research,
Faculty of Information Communication Technology, Swinburne University of Technology

Melbourne, Australia
jbrownlee@ict.swin.edu.au

Abstract-A pervasive problem in the field of optimization

algor ithms is the lack of meaningful and consistent algorithm
benchmarking methodology. This includes but is not limited to
issues of the selection of problem instances, the selection of
algor ithm specifications, the algorithm configuration parameters,
and interpretation of results. The intention of this paper is to
summar ize the literature related to benchmarking optimization
algor ithms, with a focus on benchmarking in the face of the “ no
free lunch” theorem, and useful statistical tools for interpreting
results. This context for this review is biologically inspired
optimization algor ithms applied to continuous function
optimization, although the pr inciples extend beyond these
themes.

Keywords- No Free Lunch, Optimization Algorithm
Benchmarking, Statistics, Experimental Design, Problem Classes,
Sensitivity Analysis, Parameter Tuning

I. INTRODUCTION
When it comes to evaluating an optimization

algorithm, every researcher has their own thoughts on
the way it should be done. Unfortunately, many
empirical evaluations of optimization algorithms are
performed and reported without addressing basic
experimental design considerations. Perhaps before an
experimental methodology can be adopted, a
researcher/practitioner may be paralyzed by the
perceived pessimism of the

�

no free lunch
�

 theorem that
contends the futility of the benchmarking exercise. This
work will provide a summary of the literature on
experimental design and empirical algorithm comparison
methodology. This summary will contain rules of thumb
and perhaps the seeds of best practice when attempting
to configure and compare optimization algorithms,
specifically in the face of the no free lunch theorem.

Section II will provide a terse summary of the no free
lunch theorem for search and optimization, highlighting
the generalized implications and the real-world
considerations related to reporting benchmark results.
Section III provides a review of the literature of
benchmark methodology drawn primarily from the fields
of optimization heuristics and evolutionary computation.
Discussed in this section are 1) a summary of common
problems and concerns when experimentally evaluating
and reporting on algorithm results, 2) the imperative of
tuning an algorithm before benchmarking, 3) issues
related to selecting benchmark problem instances,

specifically from the perspective of continuous function
optimization, and 4) the concerns related to selecting
useful measures of performance and the use of statistical
methods for testing benchmark hypotheses.

II. THE
�

NO FREE LUNCH
�

 THEROEM
The so called

�

no free lunch
�

 theorem (NFLT) of
search and optimization1 [11,15] is more than 10 years
old and as important a contribution as it is to the field,
has caused a lot of pessamisim and misunderstanding,
particulary in related to the evaluation and comparison
of optimization algorithms. See [40] for a precise
summary of the theory, and [59,60] for a simple
explanation. In simplest terms the theory indicates when
searching for an extremum of a cost function, all
algorithms perform the same when averaged over all
possible cost functions. The implication is that the often
perused general-purpose optimization algorithm is
theoretically impossible.

The theory applies to stochastic and deterministic
optimization algorithms, and to algorithms that learn and
adjust their search strategy over time. It is invariant to
the performance measure used as well as the
representation selected. It indicates that random search is
no better than a genetic algorithm or enumerating the
search space. Further, the geometric proof implies that
observed behavior of a search strategy is no indication
for predicting its future behavior. Perhaps the catalyst
for benchmarking cynicism [11];

“ [�] comparisons reporting the performance of a
particular algorithm with a particular parameter setting
on a few sample problems are of limited utility”.

The theorem is an important contribution to computer
science, although its implications are theoretical. The
original paper was produced at a time when grandiose
generalizations were being made as to algorithm or
configuration superiority. The practical impact of the
theory is to bound claims of applicability. This advise
was suggested by Wolpert and Macready; besides
indicating that there is much work to do on the theory
[35], they encourage effort be put into devising practical
problem classes and the matching of suitable algorithms
to problem classes. Further they compel the exploitation

1 See the [36] and [58] websites for archives of NFLT publications.

CIS Technical Repor t 070125A January 2007 page 2 of 6

of domain knowledge in optimization algorithm design
[27], a axiom of modern applied optimization (and
machine learning).

The theory simplifies search [26], algorithms are
considered to only visit new points in the search space
(no re-sampling), and the overhead of generating
samples is not considered. Further the implications of
the theory arise from a uniform distribution of cost
functions and algorithm behaviors that assume no a
priori knowledge of the searched cost function. The
reality of applied optimization is that we do not deal
with all possible cost functions, but rather subsets of
problem instances, usually with similar structural aspects
[46,47]. Further, algorithms are already matched to
problem classes based (on the most part) there
empirically observed behaviors.

In summary; 1) bound claims of algorithm or
parameter suitability to the problem instances being
tested, 2) research into devising problem classes and
matching suitable algorithms to classes is a good thing
3) be cautious about generalizing performance to other
problem instances, and 4) be very cautious about
generalizing performance to other problem classes or
domains.

III.ISSUES OF BENCHMARKING METHODOLOGY
Empirically comparing the performance of

algorithms on optimization problem instances is a staple
for the fields of heuristics and biologically inspired
computation, and the problems of effective comparison
methodology have been discussed since the inception of
these fields. Johnson is an excellent place to start
suggesting that the coding of an algorithm is the easy
part of the process, that the difficult work is getting
meaningful and publishable results [12]. He goes on to
provide a very through list of questions to consider
before racing algorithms, as well as what he describes as
his

�

pet peeves
�

 within the field of empirical algorithm
research.

Hooker [24] (among others) practically condemns
what he refers to as

�

competitive testing
�

 of heuristic
algorithms, calling it

�

fundamentally anti-intellectual
�

 .
He goes on to strongly encouraging a rigorous
methodology of what he refers to as

�

scientific testing
�

where the aim is to investigate algorithmic behaviors.
Barr, Golden, et al. [43] list a number of properties
worthy of a heuristic method making a contribution,
which can be paraphrased as; efficiency, efficacy,
robustness, complexity, impact, generalizability and
innovation. This is interesting given that many (perhaps
a majority) of conference papers focus on solution
quality alone (an aspect of efficacy).

Barr, Golden et al. [43] in their classical work on
reporting empirical results of heuristics specify a loose
experimental setup methodology with the following
steps; 1) define the goals of the experiment, 2) select
measure of performance and factors to explore, 3) design
and execute the experiment, 4) Analyze the data and
draw conclusions, and finally 5) report the experimental
results. They then suggest eight guidelines for reporting
results, in summary they are; reproducibility, specify all
influential factors (code, computing environment, etc),

be precise regarding measures, specify parameters, use
statistical experimental design, compare with other
methods, reduce variability of results, ensure results are
comprehensive. They then go on to clarify these points
with examples.

Peer, Engelbrecht et al. [17] summarize the problems
of algorithm benchmarking (with a bias toward particle
swarm optimization) to the following points; duplication
of effort, insufficient testing, failure to test against state-
of-the-art, poor choice of parameters, conflicting results,
invalid statistical inference. Eiben and Jelasity [2] site
four problems with the state of benchmarking
evolutionary algorithms; 1) test instances are chosen ad
hoc from the literature, 2) results are provided without
regard to research objectives, 3) scope of generalized
performance is generally too broad, 4) results are hard to
reproduce.

Gent and Walsh provide a summary of simple dos
and don

�

ts for experimentally analyzing algorithms [22].
For an excellent introduction to empirical research and
experimental design in artificial intelligence see Cohen
[42].

The theme of the classical works on algorithm testing
methodology [2,24,43,44] is that there is a lack of rigor
in the field. This section will discuss three main problem
areas to consider before benchmarking, namely 1)
treating algorithms as complex systems that need to be
tuned before applied, 2) considerations when selecting
problem instances for benchmarking, and 3) the
selection of measures of performance and statistical
procedures for testing experimental hypotheses. A final
section 4) covers additional best practice to consider.

A.Selecting Algorithm Parameters

Optimizations algorithms are parameterized, although
in the majority of cases the affect of adjusting algorithm
parameters is not fully understood. This is because
unknown non-linear dependencies commonly exist
between the variables resulting in the algorithm being
consider a complex system. Further, the NFLT warns us
to be careful generalizing the performance of parameters
across problem instances, problem classes, and domains.
Finally, given that algorithm parameters are typically a
mixture of real and integer numbers exhaustively
enumerating the parameter space of an algorithm is
infeasible.

There are many solutions to this problem such as
self-adaptive parameters, meta-algorithms for searching
for good parameters values and methods of performing
sensitivity analysis over parameter ranges. A good
introduction to the parameterization of genetic
algorithms is Lobo, Lima, et al. [20]. The best and self-
evident place to start (although often ignored [2]) is to
investigate the literature and see what parameters been
used historically. Although not a robust solution, it may
prove to be a useful starting point for further
investigation. The traditional approach is to run an
algorithm on a large number of test instances and
generalize the results [23]. We haven

�

t really come much
further than this historical methodology other than
perhaps the application of more and differing statistical
methods to decrease effort and better support findings.

CIS Technical Repor t 070125A January 2007 page 3 of 6

As mentioned, an area of study involves treating the
algorithm as a complex systems where problem
instances may become yet another parameter of the
model [3,19]. From here, sensitivity analysis can be
performed in conjunction with statistical methods to
discover parameters that have the greatest effect [29] and
perhaps generalize model behaviors.

Francois and Lavergne [41] mention the deficiencies
of the traditional

�

trial-and-error
�

 and
�

experienced-
practitioner

�

 approaches to parameter tuning, further
suggesting that seeking general rules for
parameterization will lead to optimization algorithms
that offer neither convergent or efficient behaviors. They
offer a statistical model for evolutionary algorithms that
describes a functional relationship between algorithm
parameters and performance. Nannen and Eiben [54,55]
propose a statistical approach called Calibration and
Relevance Estimation (CRE) to estimating the relevance
of parameters in a genetic algorithm. Coy, Golden, et al.
[48] use a statistical steepest decent method procedure
for locating good parameters for metaheuristics on many
different combinatorial problem instances.

Bartz-Beielstein [51] use a statistical experimental
design methodology to investigate the parameterization
of the Evolutionary Strategy (ES) algorithm. A
sequential statistical methodology is proposed by Bartz-
Beielstein, Parsopoulos, et al. [49] for investigating the
parameterization, and comparison between the Particle
Swarm Optimization (PSO) algorithm, the Nelder-Mead
Simplex Algorithm (direct search), and the Quasi-
Newton algorithm (derivative-based). Finally, an
approach that is popular within the metaheuristic and
Ant Colony Optimization (ACO) community is to use
automated Monte Carlo and statistical procedures for
sampling discretised parameter space of algorithms on
benchmark problem instances [38] (software available
[37]). Similar racing procedures have also been applied
to evolutionary algorithms [4].

B.Problem Instances

Continuous function optimization describes a class of
problem where the goal is to locate the minimum (or
maximum) of a specified and typically non-
differentiable objective function, sometimes called a cost
function. This constrained optimization problem can be
represented in mathematical notation as follows2:

Given ℜ→ℜnf :

find nx ℜ∈* for which)()(* xfxf ≤ , nx ℜ∈∀

This section focuses on issues related to the selection
of function optimization test instances, but the general
theme of cautiously selecting problem instances is
clearly generally applicable.

Common lists of test instances include; De Jong [30],
Fogel [14], and Schwefel [21]. Yao, Lui, et al. [57] list
many canonical test instances as does Schaffer, Caruana,
et al. [23]. Moving beyond static instances, Spears and
Potter [56] maintain a list of function generators, some

2 Taken from [17], easily converted to maximization.

with source code. Gallagher and Yuan [34] review test
function generators and propose a tunable mixture of
Gaussians test problem generator. Finally, McNish [6]
propose using fractal based test problem generators via a
standardized web interface (available [7]).

The division of test problems into classes is another
axiom of modern optimization algorithm research,
although the issues with this methodology are the
taxonomic criterion for problem classes and on the
selection of problem instances for classes.

Eiben and Jelasity [2] strongly support the division of
problem instances into categories and encourage the
evaluation of optimization algorithm over a large
number of test instances. They suggest classes could be
natural (taken from the real world), or artificial
(simplified or generated). In their paper on
understanding the interactions of GA parameters Deb
and Agrawal [28] propose four structural properties of
problems for testing genetic algorithms; multi-modality,
deception, isolation, and collateral noise. Yao, Lui, et al.
[57] divide their large test dataset into the categories of
unimodal, multimodal-many local optima, and
multimodal-few local optima. Whitley, Rana, et al. [13]
provide a detailed study on the problems of selecting test
instances for genetic algorithms. They suggest that
difficult problem instances should be nonlinear, non-
separable, and non-symmetric.

English [52] suggests that many functions in the field
of EC are selected based on structures in the response
surface (as demonstrated in the above examples), and
that they inherently contain a strong Euclidean bias. The
implication in the context of NFLT of course is that the
algorithms already have some a priori knowledge about
the domain built into them and that results are reported
on an already restricted problem set. This is a reminder
that instance are selected to demonstrate algorithmic
behavior on a narrow domain type.

C.Measure and Statistical Methods

There are many ways to measure the performance of
an optimization algorithm for a problem instance,
although the most common involves a quality (efficacy)
measure of solution(s) found (see the following for lists
and discussion of common performance measures
[2,18,32,43,49]). Most biologically inspired optimization
algorithms have a stochastic element, typically in their
random starting position(s) and in the probabilistic
decisions made during sampling of the domain. Thus the
measuring of performance must be repeated a number of
times3 to account for the stochastic variance, which also
could be a measure of comparison between algorithms.

Ultimately, irrespective of the measures used, sound
statistical experimental design requires the specification
of 1) a null hypothesis (no change), 2) alternative
hypotheses (difference, directional difference), and 2)
acceptance or rejection criteria for the hypothesis. In a
typically case of comparing stochastic-based
optimization algorithms on a problem instance; the null

3 Typically > 30 according to the central limit theorem such that the

underlying distribution can be meaningfully summarized

CIS Technical Repor t 070125A January 2007 page 4 of 6

hypothesis is commonly stated as the equality between
two or more central tendencies (mean or medians) of a
quality measure.

Peer, Engelbrech, et al. [17] and Birattari and Dorigo
[32] provide a basic introduction (suitable for an
algorithm-practitioner) into the appropriateness of
various statistical tests for algorithm comparisons. For a
good introduction to statistics and data analysis see Peck
Olson, Devore [45], for an introduction to non-
parametric methods see Holander and Wolfe [39], and
for an excellent and detailed presentation of parametric
and nonparametric methods and their suitability of
application see Sheskin [16]. For an excellent open
source software package for performing statistical
analysis on data see the R Project [1].

To summarize, parametric statistical methods are
used for interval and ratio data (like a real-valued
performance measure), and nonparametric methods are
used for ordinal, categorical and rank-based data.
Interval data is typically converted to ordinal data when
salient constraints of desired parametric tests (such as
assumed normality of distribution) are broken such that
the less powerful nonparametric tests can be used. The
use of nonparametric statistical tests maybe preferred as
some authors [17,33] claim the distribution of cost
values are very asymmetric and or not normal. Although
it is important to remember that most parametric tests
degrade gracefully.

Chiarandini, Basso, et al. [33] provide an excellent
case study for using the permutation test (a
nonparametric statistical method) to compare stochastic
optimizers by running each algorithm once per problem
instance, and multiple times per problem instance. While
rigorous, their method appears quite complex and their
results are difficult to interpret.

Barrett, Marathe, et al. [8] provide a rigorous
example of applying the parametric test Analysis of
Variance (ANOVA) of three different heuristic methods
on a small sample of scenarios. Reeves and Write [9,10]
also provide an example of using ANOVA in their
investigation into Epistatsis on genetic algorithms. In
their tutorial on the experimental investigation of
heuristic methods, Rardin and Uzsoy [44] warn against
the use of statistical methods, claiming their rigidity as a
problem, and the meaningfulness of

�

practical
significance

�

 over that of
�

statistical significance
�

. They
go on in the face of their objections to provide an
example of using ANOVA to analyze the results of an
illustrative case study.

Finally Peer, Engelbrech, et al. [17] highlights a
number of case study example papers that use statistical
methods inappropriately. In their OptiBench method,
algorithm results are standardized and ranked according
to three criteria then compared using the Wilcoxon rank
sum test.

D.Other

Another pervasive problem in the field of
optimization is the reproducibility (implementation) of

an algorithm4. An excellent solution to this problem is
making source code available by creating or
collaborating with open-source software projects. This
behavior may result in implementation standardization, a
reduction in the duplication of effort for experimentation
and repeatability, and perhaps more experimental
accountability [2,17].

Peer, Engelbrech, et al. [17] stress the need to
compare to the state-of-the-art implementations rather
than the historic canonical implementations to give a fair
and meaningful evaluation of performance.

Another area that is often neglected is that of
algorithm descriptions, particularly in regard to
reproducibility. Pseudocode is often used, although (in
most cases) in an inconsistent manner and almost always
without reference to a recognized pseudocode standard
or mathematical notation such as [25]. Many examples
are a mix of programming languages, English
descriptions and mathematical notation, making them
difficult to follow, and commonly impossible to
implement in software due to incompleteness and
ambiguity.

Finally, an excellent tool for comparing optimization
algorithms in terms of their asymptotic behavior from
the field of computation complexity is the Big O
notation [5]. In addition to clarifying aspects of the
algorithm, it provides a problem independent way of
characterizing an algorithms space and or time
complexity.

IV. CONCLUSION
It is clear that there is no silver bullet to experimental

design for empirically evaluating and comparing
optimization algorithms, rather there are as many
methods and options as there are publications on the
topic. The field of optimization as of yet has not agreed
upon general method of application like the field of data
mining (processes such as Knowledge Discovery in
Databases (KDD) [53] and CRISP-DM [50]). Although
not experimental methods for comparing machine
learning algorithms, these processes provide a general
model to encourage the practitioner to consider
important issues before application of an approach.

Finally, it is worth pointing out a paper by De Jong
[31] (somewhat controversially titled) that provides a
reminder that although the genetic algorithm has been
shown to solve function optimization, it is not
necessarily innately a function optimizer, and rather that
function optimization is a demonstration of the complex
adaptive systems ability to learn. It is a reminder to be
careful not to link an approach too tightly with a domain,
particularly if the domain was chosen for demonstration
purposes.

ACKNOWLEDGMENTS
Tim Hendtlass for providing useful feedback on

drafts of this paper.

4 Obviously related to the large and more serious problem of

reproducibility of experiments

CIS Technical Repor t 070125A January 2007 page 5 of 6

REFERENCES
 [1] The R Project for Statistical Computing [Web Page]. Accessed
2007 Jan 25. Available at: http://www.r-project.org/.
 [2] A. E. Eiben and M. Jelasity, "A critical note on experimental
research methodology in EC," Proceedings of the 2002 Congress on
Evolutionary Computation (CEC '02), Honolulu, HI, USA, pp. 582-587,
2002.
 [3] Andrea Saltelli, Making best use of model evaluations to compute
sensitivity indices Computer Physics Communications , vol. 145, pp. 280-
297, 2002.
 [4] Bo Yuan and Marcus Gallagher, "Statistical racing techniques for
improved empirical evaluation of evolutionary algorithms," Parallel Problem
Solving from Nature - PPSN VIII, 8th International Conference, Birmingham,
UK, pp. 161-171, 2004.
 [5] Bruno R. Preiss. Data structures and algorithms with object-
oriented design patterns in Java, New York, USA: John Wiley, 2000.
 [6] C. MacNish, "Benchmarking Evolutionary Algorithms: The
Huygens Suite," Late breaking paper at Genetic and Evolutionary
Computation Conference (GECCO-2005), Washington DC, USA, 2005.
 [7] Cara MacNish . Huygens Search and Optimization Benchmarking
Suite [Web Page]. 2006; Accessed 2007 Jan 22. Available at:
http://gungurru.csse.uwa.edu.au/cgi-bin/WebObjects/huygensWS.
 [8] Christopher L. Barrett, Achla Marathe, Madhav V. Marathe, Doug
Cook, Gregory Hicks, Vance Faber, Aravind Srinivasan, Yoram J. Sussmann,
and Heidi Thornquist, Statistical Analysis of Algorithms: A Case Study of
Market-Clearing Mechanisms in the Power Industry Journal of Graph
Algorithms and Applications, vol. 7, pp. 3-31, 2003.
 [9] Colin R. Reeves and Christine C. Wright, "Epistasis in Genetic
Algorithms: An Experimental Design Perspective," Proceedings of the 6th
International Conference on Genetic Algorithms, pp. 217-224, 1995.
 [10] Colin Reeves and Christine Wright, "An Experimental Design
Perspective on Genetic Algorithms," Foundations of Genetic Algorithms 3,
pp. 7-22, 1995.
 [11] D. H. Wolpert and W. G. Macready, No Free Lunch Theorems for
Optimization IEEE Transactions on Evolutionary Computation, vol. 1, pp.
67-82, 1997.
 [12] D. S Johnson, "A Theoreticians guide for experimental analysis of
algorithms," Proceedings of the 5th and 6th DIMACS Implementation
Challenges, pp. 215-250, 2002.
 [13] Darrell Whitley, Soraya Rana, John Dzubera, and Keith E.
Mathias, Evaluating evolutionary algorithms Artificial Intelligence - Special
volume on empirical methods, vol. 85, pp. 245-276, 1996.
 [14] David B. Fogel. Evolutionary Computation : Toward a New
Philosophy of Machine Intelligence, New Jersey, USA : John Wiley & Sons,
Inc. 1995.
 [15] David H. Wolpert and William G. Macready, "No Free Lunch
Theorems for Search," Santa Fe Institute, Sante Fe, NM, USA, Technical
Report SFI-TR-95-02-010, 1995.
 [16] David J. Sheskin. Handbook of Parametric and Nonparametric
Statistical Procedures, USA: Chapman & Hall/CRC, 2000.
 [17] E. S. Peer, A. P. Engelbrecht, and F. van den Bergh, "CIRG@UP
OptiBench: a statistically sound framework for benchmarking optimisation
algorithms," The 2003 Congress on Evolutionary Computation, (CEC '03),
pp. 2386-2392, 2003.
 [18] Evan J. Hughes, "Assessing Robustness of Optimisation
Performance for Problems With Expensive Evaluation Functions," IEEE
Congress on Evolutionary Computation (CEC 2006), Canada, pp. 2920-2927,
2006.
 [19] F. Campolongo, A. Saltelli, and S. Tarantola, Sensitivity Anaysis
as an Ingredient of Modeling A Review Journal of The Institute of
Mathematical Statistics., vol. 15, pp. 377� 3952000.
 [20] Fernando G. Lobo, Claudio F. Lima, and Zbigniew Michalewicz.
Parameter Setting in Evolutionary Algorithms, Springer, Unpublished (2007).
 [21] Hans-Paul Schwefel. Evolution and optimum seeking, New York,
USA: Wiley, 1995.
 [22] I. Gent and T. Walsh, "How not to do it," Presented at the AAAI
Workshop on Experimental Evaluation of Reasoning and Search Methods,
July 1994.
 [23] J. David Schaffer, Richard A. Caruana, Larry J. Eshelman, and
Rajarshi Das, "A study of control parameters affecting online performance of
genetic algorithms for function optimization," Proceedings of the third

international conference on Genetic algorithms, George Mason University,
United States, pp. 51-60, 1989.
 [24] J. N. Hooker, Testing heuristics: We have it all wrong Journal of
Heuristics, vol. 1, pp. 33-42, Sep, 1995.
 [25] John Dalbey. Pseudocode Standard [Web Page]. Accessed 2007
Jan 22. Available at: http://www.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html.
 [26] John R. Woodward and James R. Neil, "No Free lunch, program
induction and combinatorial problems," EuroGP : European conference on
genetic programming, Essex, UK, pp. 475-484, 2003.
 [27] Joseph C. Culberson, "On the Futility of Blind Search," University
of Alberta, Edmonton, Alberta, Canada, Technical Report TR96-18, 1996.
 [28] Kalyanmoy Deb and Samir Agrawal, "Understanding Interactions
among Genetic Algorithm Parameters," Proceedings of the Fifth Workshop on
Foundations of Genetic Algorithms (FOGA), Madison, WI, USA, pp. 265-
286, 1999.
 [29] Karen Chan, Andrea Saltelli, and Stefano Tarantola, "Sensitivity
analysis of model output: variance-based methods make the difference,"
Proceedings of the 29th conference on Winter simulation (Winter Simulation
Conference), Atlanta, Georgia, United States, pp. 261-268, 1997.
 [30] Kenneth A. De Jong, An Analysis of the Behavior of a Class of
Genetic Adaptive Systems 1975. University of Michigan.
 [31] Kenneth A. De Jong, "Genetic Algorithms are NOT Function
Optimizers," Proceedings of the Second Workshop on Foundations of Genetic
Algorithms (FOGA), Vail, Colorado, USA, pp. 5-17, 1992.
 [32] M. Birattari and M. Dorigo, "How to assess and report the
performance of a stochastic algorithm on a benchmark problem: Mean or best
result on a number of runs?," IRIDIA, Universit

�
 Libre de Bruxelles,

Brussels, Belgium, TR/IRIDIA/2005-007, 2005.
 [33] M. Chiarandini, D. Basso, and T. St � tzle, "Statistical methods for
the comparison of stochastic optimizers," MIC2005: Proceedings of the 6th
Metaheuristics International Conference, Vienna, Austria, pp. 189-196,
2005.
 [34] M. Gallagher and Bo Yuan, A general-purpose tunable landscape
generator IEEE Transactions on Evolutionary Computation, vol. 10, pp. 590-
603, Oct, 2006.
 [35] M. Koppen, D. H. Wolpert, and W. G. Macready, Remarks on a
recent paper on the "no free lunch" theorems IEEE Transactions on
Evolutionary Computation, vol. 5, pp. 295-296, Jun, 2001.
 [36] Martin Sewell, Web Master. No Free Lunch Theorems [Web
Page]. Accessed 2007 Jan 22. Available at: http://www.no-free-lunch.org/.
 [37] Mauro Birattari. race: Racing methods for the selection of the best
[Web Page]. Accessed 2007 Jan 22. Available at: http://cran.r-
project.org/src/contrib/Descriptions/race.html.
 [38] Mauro Birattari, Thomas St � tzle, Luis Paquete, and Klaus
Varrentrapp, "A Racing Algorithm for Configuring Metaheuristics,"
Proceedings of the Genetic and Evolutionary Computation Conference, pp.
11-18, 2002.
 [39] Myles Hollander and Douglas A. Wolfe. Nonparametric
Statistical Methods, Canada: John Wiley & Sons, Inc., 1999.
 [40] Nicholas J. Radcliffe and Patrick D. Surry, Fundamental
Limitations on Search Algorithms: Evolutionary Computing in Perspective
Computer Science Today: Recent Trends and Developments. Lecture Notes in
Computer Science, vol. 1000, pp. 275-291, 1995.
 [41] O. Francois and C. Lavergne , Design of evolutionary algorithms -
A statistical perspective IEEE Transactions on Evolutionary Computation,
vol. 5, pp. 129-148, Apr, 2001.
 [42] Paul R. Cohen. Emperical Methods for Artificial Intelligence,
Cambridge, Massachusetts, USA; London, England: The MIT Press, 1995.
 [43] R. Barr, B. Golden, J. Kelly, M. Rescende, and W. Stewart,
Designing and Reporting on Computational Experiments with Heuristic
Methods Journal of Heuristics, vol. 1, pp. 9-32, 1995.
 [44] R. L. Rardin and R. Uzsoy, Experimental Evaluation of Heuristic
Optimization Algorithms: A Tutorial Journal of Heuristics, vol. 7, pp. 261-
304, May, 2001.
 [45] Roxy Peck, Chris Olsen, and Jay Devore. Introduction to Statistics
and Data Analysis, USA: Duxbury PublishingS, 2005.
 [46] Stefan Droste, Thomas Jansen, and Ingo Wegener, Optimization
with Randomized Search Heuristics - The (A)NFL Theorem, Realistic
Scenarios, and Difficult Functions Theoretical Computer Science, vol. 287 ,
pp. 131-144, Sep, 2002.
 [47] Stefan Droste Thomas Jansen and Ingo Wegener, "Perhaps Not a

CIS Technical Repor t 070125A January 2007 page 6 of 6

Free Lunch But At Least a Free Appetizer," Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO '99), pp. 833-839, 1999.
 [48] Steven P. Coy , Bruce L. Golden, George C. Runger, and Edward
A. Wasil, Using Experimental Design to Find Effective Parameter Settings
for Heuristics Journal of Heuristics, vol. 7, pp. 77-97, 2001.
 [49] T. Bartz-Beielstein, K. E. Parsopoulos, and M. N. Vrahatis,
Design and Analysis of Optimization Algorithms Using Computational
Statistics Applied Numerical Analysis & Computational Mathematics, vol. 1,
pp. 413-433, 2004.
 [50] The CRISP-DM consortium. CRoss Industry Standard Process for
Data Mining [Web Page]. Accessed 2007 Jan 22. Available at:
http://www.crisp-dm.org/.
 [51] Thomas Bartz-Beielstein, "Experimental Analysis of Evolution
Strategies - Overview and Comprehensive Introduction," Computational
Intelligence. University of Dortmund, Technical Report 157, Nov 2003.
 [52] Thomas M. English, "Evaluation of Evolutionary and Genetic
Optimizers: No Free Lunch," Evolutionary Programming V: Proceedings of
the Fifth Annual Conference on Evolutionary Programming, San Diego, CA,
USA, pp. 163-169, 1996.
 [53] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth,
The KDD process for extracting useful knowledge from volumes of data
Communications of the ACM, vol. 39, pp. 27-34, 1996.
 [54] Volker Nannen and A.E. Eiben, "Relevance Estimation and Value
Calibration of Evolutionary Algorithm Parameters," Joint International
Conference for Artificial Intelligence (IJCAI), pp. 975-980.
 [55] Volker Nannen and A.E. Eiben, "A method for parameter
calibration and relevance estimation in evolutionary algorithms," Proceedings
of the 8th annual conference on Genetic and evolutionary computation,
Seattle, Washington, USA, pp. 183-190 , 2006.
 [56] William M. Spears and Mitchell A. Potter . Genetic Algorithms
(Evolutionary Algorithms): Repository of Test Problem Generators. 99. 2007.

 [57] Xin Yao, Yong Liu, and Guangming Lin, Evolutionary
programming made faster IEEE Transactions on Evolutionary Computation,
vol. 3, pp. 82-102, Jul, 1999.
 [58] Yin-Yang. Yin-Yang: No-Free-Lunch Theorems for Search . 99.
2007.
 [59] Yu-Chi Ho and D.L. Pepyne, "Simple explanation of the no free
lunch theorem of optimization," Proceedings of the 40th IEEE Conference on
Decision and Control, Orlando, FL, USA, pp. 4409-4414, 2001.
 [60] Yu-Chi Ho and D.L. Pepyne, Simple explanation of the no free
lunch theorem of optimization Cybernetics and Systems Analysis, vol. 38,
pp. 292-298, 2002.

