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Abstract-A pervasive problem in the field of optimization 

algor ithms is the lack of meaningful and consistent algorithm 
benchmarking methodology. This includes but is not limited to 
issues of the selection of problem instances, the selection of 
algor ithm specifications, the algorithm configuration parameters, 
and interpretation of results. The intention of this paper  is to 
summar ize the literature related to benchmarking optimization 
algor ithms, with a focus on benchmarking in the face of the “ no 
free lunch”  theorem, and useful statistical tools for  interpreting 
results. This context for  this review is biologically inspired 
optimization algor ithms applied to continuous function 
optimization, although the pr inciples extend beyond these 
themes. 
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I.    INTRODUCTION 
When it comes to evaluating an optimization 

algorithm, every researcher has their own thoughts on 
the way it should be done. Unfortunately, many 
empirical evaluations of optimization algorithms are 
performed and reported without addressing basic 
experimental design considerations. Perhaps before an 
experimental methodology can be adopted, a 
researcher/practitioner may be paralyzed by the 
perceived pessimism of the 

�

no free lunch
�

 theorem that 
contends the futility of the benchmarking exercise. This 
work will provide a summary of the literature on 
experimental design and empirical algorithm comparison 
methodology. This summary will contain rules of thumb 
and perhaps the seeds of best practice when attempting 
to configure and compare optimization algorithms, 
specifically in the face of the no free lunch theorem. 

Section II will provide a terse summary of the no free 
lunch theorem for search and optimization, highlighting 
the generalized implications and the real-world 
considerations related to reporting benchmark results. 
Section III provides a review of the literature of 
benchmark methodology drawn primarily from the fields 
of optimization heuristics and evolutionary computation. 
Discussed in this section are 1) a summary of common 
problems and concerns when experimentally evaluating 
and reporting on algorithm results, 2) the imperative of 
tuning an algorithm before benchmarking, 3) issues 
related to selecting benchmark problem instances, 

specifically from the perspective of continuous function 
optimization, and 4) the concerns related to selecting 
useful measures of performance and the use of statistical 
methods for testing benchmark hypotheses.  

II.    THE 
�

NO FREE LUNCH
�

 THEROEM  
The so called 

�

no free lunch
�

 theorem (NFLT) of 
search and optimization1 [11,15] is more than 10 years 
old and as important a contribution as it is to the field, 
has caused a lot of pessamisim and misunderstanding, 
particulary in related to the evaluation and comparison 
of optimization algorithms. See [40] for a precise 
summary of the theory, and [59,60] for a simple 
explanation. In simplest terms the theory indicates when 
searching for an extremum of a cost function, all 
algorithms perform the same when averaged over all 
possible cost functions. The implication is that the often 
perused general-purpose optimization algorithm is 
theoretically impossible.  

The theory applies to stochastic and deterministic 
optimization algorithms, and to algorithms that learn and 
adjust their search strategy over time. It is invariant to 
the performance measure used as well as the 
representation selected. It indicates that random search is 
no better than a genetic algorithm or enumerating the 
search space. Further, the geometric proof implies that 
observed behavior of a search strategy is no indication 
for predicting its future behavior. Perhaps the catalyst 
for benchmarking cynicism [11];  

“ [ � ]  comparisons reporting the performance of a 
particular algorithm with a particular parameter setting 
on a few sample problems are of limited utility”.  

The theorem is an important contribution to computer 
science, although its implications are theoretical. The 
original paper was produced at a time when grandiose 
generalizations were being made as to algorithm or 
configuration superiority. The practical impact of the 
theory is to bound claims of applicability. This advise 
was suggested by Wolpert and Macready; besides 
indicating that there is much work to do on the theory 
[35], they encourage effort be put into devising practical 
problem classes and the matching of suitable algorithms 
to problem classes. Further they compel the exploitation 

                                                
1 See the [36] and [58] websites for archives of NFLT publications. 
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of domain knowledge in optimization algorithm design 
[27], a axiom of modern applied optimization (and 
machine learning). 

The theory simplifies search [26], algorithms are 
considered to only visit new points in the search space 
(no re-sampling), and the overhead of generating 
samples is not considered. Further the implications of 
the theory arise from a uniform distribution of cost 
functions and algorithm behaviors that assume no a 
priori knowledge of the searched cost function.  The 
reality of applied optimization is that we do not deal 
with all possible cost functions, but rather subsets of 
problem instances, usually with similar structural aspects 
[46,47]. Further, algorithms are already matched to 
problem classes based (on the most part) there 
empirically observed behaviors.  

In summary; 1) bound claims of algorithm or 
parameter suitability to the problem instances being 
tested, 2) research into devising problem classes and 
matching suitable algorithms to classes is a good thing 
3) be cautious about generalizing performance to other 
problem instances, and 4) be very cautious about 
generalizing performance to other problem classes or 
domains. 

III.ISSUES OF BENCHMARKING METHODOLOGY 
Empirically comparing the performance of 

algorithms on optimization problem instances is a staple 
for the fields of heuristics and biologically inspired 
computation, and the problems of effective comparison 
methodology have been discussed since the inception of 
these fields. Johnson is an excellent place to start 
suggesting that the coding of an algorithm is the easy 
part of the process, that the difficult work is getting 
meaningful and publishable results [12]. He goes on to 
provide a very through list of questions to consider 
before racing algorithms, as well as what he describes as 
his 

�

pet peeves
�

 within the field of empirical algorithm 
research. 

Hooker [24] (among others) practically condemns 
what he refers to as 

�

competitive testing
�

 of heuristic 
algorithms, calling it 

�

fundamentally anti-intellectual
�

 . 
He goes on to strongly encouraging a rigorous 
methodology of what he refers to as 

�

scientific testing
�

 
where the aim is to investigate algorithmic behaviors. 
Barr, Golden, et al. [43] list a number of properties 
worthy of a heuristic method making a contribution, 
which can be paraphrased as; efficiency, efficacy, 
robustness, complexity, impact, generalizability and 
innovation. This is interesting given that many (perhaps 
a majority) of conference papers focus on solution 
quality alone (an aspect of efficacy). 

Barr, Golden et al. [43] in their classical work on 
reporting empirical results of heuristics specify a loose 
experimental setup methodology with the following 
steps; 1) define the goals of the experiment, 2) select 
measure of performance and factors to explore, 3) design 
and execute the experiment, 4) Analyze the data and 
draw conclusions, and finally 5) report the experimental 
results. They then suggest eight guidelines for reporting 
results, in summary they are; reproducibility, specify all 
influential factors (code, computing environment, etc), 

be precise regarding measures, specify parameters, use 
statistical experimental design, compare with other 
methods, reduce variability of results, ensure results are 
comprehensive. They then go on to clarify these points 
with examples.  

Peer, Engelbrecht et al. [17] summarize the problems 
of algorithm benchmarking (with a bias toward particle 
swarm optimization) to the following points; duplication 
of effort, insufficient testing, failure to test against state-
of-the-art, poor choice of parameters, conflicting results, 
invalid statistical inference. Eiben and Jelasity [2] site 
four problems with the state of benchmarking 
evolutionary algorithms; 1) test instances are chosen ad 
hoc from the literature, 2) results are provided without 
regard to research objectives, 3) scope of generalized 
performance is generally too broad, 4) results are hard to 
reproduce.  

Gent and Walsh provide a summary of simple dos 
and don

�

ts for experimentally analyzing algorithms [22]. 
For an excellent introduction to empirical research and 
experimental design in artificial intelligence see Cohen 
[42]. 

The theme of the classical works on algorithm testing 
methodology [2,24,43,44] is that there is a lack of rigor 
in the field. This section will discuss three main problem 
areas to consider before benchmarking, namely 1) 
treating algorithms as complex systems that need to be 
tuned before applied, 2) considerations when selecting 
problem instances for benchmarking, and 3) the 
selection of measures of performance and statistical 
procedures for testing experimental hypotheses. A final 
section 4) covers additional best practice to consider.  

A.Selecting Algorithm Parameters 

Optimizations algorithms are parameterized, although 
in the majority of cases the affect of adjusting algorithm 
parameters is not fully understood. This is because 
unknown non-linear dependencies commonly exist 
between the variables resulting in the algorithm being 
consider a complex system. Further, the NFLT warns us 
to be careful generalizing the performance of parameters 
across problem instances, problem classes, and domains. 
Finally, given that algorithm parameters are typically a 
mixture of real and integer numbers exhaustively 
enumerating the parameter space of an algorithm is 
infeasible.  

There are many solutions to this problem such as 
self-adaptive parameters, meta-algorithms for searching 
for good parameters values and methods of performing 
sensitivity analysis over parameter ranges. A good 
introduction to the parameterization of genetic 
algorithms is Lobo, Lima, et al. [20]. The best and self-
evident place to start (although often ignored [2]) is to 
investigate the literature and see what parameters been 
used historically. Although not a robust solution, it may 
prove to be a useful starting point for further 
investigation. The  traditional approach is to run an 
algorithm on a large number of test instances and 
generalize the results [23]. We haven

�

t really come much 
further than this historical methodology other than 
perhaps the application of more and differing statistical 
methods to decrease effort and better support findings. 
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As mentioned, an area of study involves treating the 
algorithm as a complex systems where problem 
instances may become yet another parameter of the 
model [3,19]. From here, sensitivity analysis can be 
performed in conjunction with statistical methods to 
discover parameters that have the greatest effect [29] and 
perhaps generalize model behaviors.  

Francois and Lavergne [41] mention the deficiencies 
of the traditional 

�

trial-and-error
�

 and 
�

experienced-
practitioner

�

 approaches to parameter tuning, further 
suggesting that seeking general rules for 
parameterization will lead to optimization algorithms 
that offer neither convergent or efficient behaviors. They 
offer a statistical model for evolutionary algorithms that 
describes a functional relationship between algorithm 
parameters and performance. Nannen and Eiben [54,55] 
propose a statistical approach called Calibration and 
Relevance Estimation (CRE) to estimating the relevance 
of parameters in a genetic algorithm. Coy, Golden, et al. 
[48] use a statistical steepest decent method procedure 
for locating good parameters for metaheuristics on many 
different combinatorial problem instances. 

Bartz-Beielstein [51] use a statistical experimental 
design methodology to investigate the parameterization 
of the Evolutionary Strategy (ES) algorithm. A 
sequential statistical methodology is proposed by Bartz-
Beielstein, Parsopoulos, et al. [49] for investigating the 
parameterization, and comparison between the Particle 
Swarm Optimization (PSO) algorithm, the Nelder-Mead 
Simplex Algorithm (direct search), and the Quasi-
Newton algorithm (derivative-based). Finally, an 
approach that is popular within the metaheuristic and 
Ant Colony Optimization (ACO) community is to use 
automated Monte Carlo and statistical procedures for 
sampling discretised parameter space of algorithms on 
benchmark problem instances [38] (software available 
[37]). Similar racing procedures have also been applied 
to evolutionary algorithms [4]. 

B.Problem Instances 

Continuous function optimization describes a class of 
problem where the goal is to locate the minimum (or 
maximum) of a specified and typically non-
differentiable objective function, sometimes called a cost 
function. This constrained optimization problem can be 
represented in mathematical notation as follows2: 

Given ℜ→ℜnf :   

find nx ℜ∈*  for which )()( * xfxf ≤ , nx ℜ∈∀  
 

This section focuses on issues related to the selection 
of function optimization test instances, but the general 
theme of cautiously selecting problem instances is 
clearly generally applicable. 

Common lists of test instances include; De Jong [30], 
Fogel [14], and Schwefel [21]. Yao, Lui, et al. [57] list 
many canonical test instances as does Schaffer, Caruana, 
et al. [23]. Moving beyond static instances, Spears and 
Potter [56] maintain a list of function generators, some 
                                                
2 Taken from [17], easily converted to maximization. 

with source code. Gallagher and Yuan [34] review test 
function generators and propose a tunable mixture of 
Gaussians test problem generator. Finally, McNish [6] 
propose using fractal based test problem generators via a 
standardized web interface (available [7]). 

The division of test problems into classes is another 
axiom of modern optimization algorithm research, 
although the issues with this methodology are the 
taxonomic criterion for problem classes and on the 
selection of problem instances for classes. 

Eiben and Jelasity [2] strongly support the division of 
problem instances into categories and encourage the 
evaluation of optimization algorithm over a large 
number of test instances. They suggest classes could be 
natural (taken from the real world), or artificial 
(simplified or generated). In their paper on 
understanding the interactions of GA parameters Deb 
and Agrawal [28] propose four structural properties of 
problems for testing genetic algorithms; multi-modality, 
deception, isolation, and collateral noise. Yao, Lui, et al. 
[57] divide their large test dataset into the categories of 
unimodal, multimodal-many local optima, and 
multimodal-few local optima. Whitley, Rana, et al. [13] 
provide a detailed study on the problems of selecting test 
instances for genetic algorithms. They suggest that 
difficult problem instances should be nonlinear, non-
separable, and non-symmetric.  

English [52] suggests that many functions in the field 
of EC are selected based on structures in the response 
surface (as demonstrated in the above examples), and 
that they inherently contain a strong Euclidean bias. The 
implication in the context of NFLT of course is that the 
algorithms already have some a priori knowledge about 
the domain built into them and that results are reported 
on an already restricted problem set. This is a reminder 
that instance are selected to demonstrate algorithmic 
behavior on a narrow domain type.  

C.Measure and Statistical Methods 

There are many ways to measure the performance of 
an optimization algorithm for a problem instance, 
although the most common involves a quality (efficacy) 
measure of solution(s) found (see the following for lists 
and discussion of common performance measures 
[2,18,32,43,49]). Most biologically inspired optimization 
algorithms have a stochastic element, typically in their 
random starting position(s) and in the probabilistic 
decisions made during sampling of the domain. Thus the 
measuring of performance must be repeated a number of 
times3 to account for the stochastic variance, which also 
could be a measure of comparison between algorithms. 

Ultimately, irrespective of the measures used, sound 
statistical experimental design requires the specification 
of 1) a null hypothesis (no change), 2) alternative 
hypotheses (difference, directional difference), and 2) 
acceptance or rejection criteria for the hypothesis. In a 
typically case of comparing stochastic-based 
optimization algorithms on a problem instance; the null 

                                                
3 Typically > 30 according to the central limit theorem such that the 

underlying distribution can be meaningfully summarized 



CIS Technical Repor t 070125A January 2007  page 4 of 6 

hypothesis is commonly stated as the equality between 
two or more central tendencies (mean or medians) of a 
quality measure. 

Peer, Engelbrech, et al. [17] and Birattari and  Dorigo 
[32] provide a basic introduction (suitable for an 
algorithm-practitioner) into the appropriateness of 
various statistical tests for algorithm comparisons. For a 
good introduction to statistics and data analysis see Peck 
Olson, Devore [45], for an introduction to non-
parametric methods see Holander and Wolfe [39], and 
for an excellent and detailed presentation of parametric 
and nonparametric methods and their suitability of 
application see Sheskin [16]. For an excellent open 
source software package for performing statistical 
analysis on data see the R Project [1]. 

To summarize, parametric statistical methods are 
used for interval and ratio data (like a real-valued 
performance measure), and nonparametric methods are 
used for ordinal, categorical and rank-based data. 
Interval data is typically converted to ordinal data when 
salient constraints of desired parametric tests (such as 
assumed normality of distribution) are broken such that 
the less powerful nonparametric tests can be used. The 
use of nonparametric statistical tests maybe preferred as 
some authors [17,33] claim the distribution of cost 
values are very asymmetric and or not normal. Although 
it is important to remember that most parametric tests 
degrade gracefully. 

Chiarandini, Basso, et al. [33] provide an excellent 
case study for using the permutation test (a 
nonparametric statistical method) to compare stochastic 
optimizers by running each algorithm once per problem 
instance, and multiple times per problem instance. While 
rigorous, their method appears quite complex and their 
results are difficult to interpret.   

Barrett, Marathe, et al. [8] provide a rigorous 
example of applying the parametric test Analysis of 
Variance (ANOVA) of three different heuristic methods 
on a small sample of scenarios. Reeves and Write [9,10] 
also provide an example of using ANOVA in their 
investigation into Epistatsis on genetic algorithms. In 
their tutorial on the experimental investigation of 
heuristic methods, Rardin and Uzsoy [44] warn against 
the use of statistical methods, claiming their rigidity as a 
problem, and the meaningfulness of 

�

practical 
significance

�

 over that of 
�

statistical significance
�

. They 
go on in the face of their objections to provide an 
example of using ANOVA to analyze the results of an 
illustrative case study. 

Finally Peer, Engelbrech, et al. [17] highlights a 
number of case study example papers that use statistical 
methods inappropriately. In their OptiBench method, 
algorithm results are standardized and ranked according 
to three criteria then compared using the Wilcoxon rank 
sum test. 

D.Other 

Another pervasive problem in the field of 
optimization is the reproducibility (implementation) of 

an algorithm4. An excellent solution to this problem is 
making source code available by creating or 
collaborating with open-source software projects. This 
behavior may result in implementation standardization, a 
reduction in the duplication of effort for experimentation 
and repeatability, and perhaps more experimental 
accountability [2,17]. 

Peer, Engelbrech, et al. [17] stress the need to 
compare to the state-of-the-art implementations rather 
than the historic canonical implementations to give a fair 
and meaningful evaluation of performance. 

Another area that is often neglected is that of 
algorithm descriptions, particularly in regard to 
reproducibility. Pseudocode is often used, although (in 
most cases) in an inconsistent manner and almost always 
without reference to a recognized pseudocode standard 
or mathematical notation such as [25]. Many examples 
are a mix of programming languages, English 
descriptions and mathematical notation, making them 
difficult to follow, and commonly impossible to 
implement in software due to incompleteness and 
ambiguity. 

Finally, an excellent tool for comparing optimization 
algorithms in terms of their asymptotic behavior from 
the field of computation complexity is the Big O 
notation [5]. In addition to clarifying aspects of the 
algorithm, it provides a problem independent way of 
characterizing an algorithms space and or time 
complexity.  

IV.    CONCLUSION  
It is clear that there is no silver bullet to experimental 

design for empirically evaluating and comparing 
optimization algorithms, rather there are as many 
methods and options as there are publications on the 
topic. The field of optimization as of yet has not agreed 
upon general method of application like the field of data 
mining (processes such as Knowledge Discovery in 
Databases (KDD)  [53] and CRISP-DM [50]). Although 
not experimental methods for comparing machine 
learning algorithms, these processes provide a general 
model to encourage the practitioner to consider 
important issues before application of an approach.  

Finally, it is worth pointing out a paper by De Jong 
[31] (somewhat controversially titled) that provides a 
reminder that although the genetic algorithm has been 
shown to solve function optimization, it is not 
necessarily innately a function optimizer, and rather that 
function optimization is a demonstration of the complex 
adaptive systems ability to learn. It is a reminder to be 
careful not to link an approach too tightly with a domain, 
particularly if the domain was chosen for demonstration 
purposes. 
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4 Obviously related to the large and more serious problem of 

reproducibility of experiments 
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