
Identifying and Measuring Quality
in a Software Requirements Specification

Alan Davis, Scott Overmyer, Kathleen Jordan, Joseph Caruso,
Fatma Dandashi, Anhtum Dinh, Gary Kincaid, Glen Ledeboer,

Patricia Reynolds, pradip Sitaram, Anh Ta, and Mary Theofanos

Abstract Them are many errors being introduced into SRS's.
In 1981, h i l i ' s requirements specification team reported
88 errors in the 400 page A-7E operational Flight Numerous treatises exist that define appropriate qualities

that should be exhibited by a well written software requirements specification [BAs811.

writing experts. Also in the late 1970's, celko reported vaguely defined. This paper explores thoroughly the
concept of quality in an SRS and defines attributes that that applying tools to an sRS for
contribute to that quality. Techniques for measuring an existing Army system

revealed the presence of many hundreds of errors these attributes are suggested.

I. Introduction [CEL81]. DeMarco, as quoted by Tavohto and Vincena

requiremats specification (sRs)' In most - are And that SRS was written by a group of requirements

Software metrics may be used to measure attributes of
software process or intermediate or final products of
software development. One early intermediate product of
software development is the software requirements
specification. A software requirements specflcation
(SRS) is a document that describes all the externally
observable behaviors and characteristics expected of a
software system. Generally, a qualiry SRS is one that

[TAV84], reports that 56% of all errors ever made on a
software development effort can be traced to errors in the
SRS. Boehm reports that 45% of all errors made on
software development efforts at TRW can be traced to
either requirements or design [BOE75].
Obviously, if we can better understand how to recognize
and measure quality in an SRS, we will be better
equipped to detect errors in the SRS.

contributes to successful, cost-effective creation of To make matters worse, SRS errors need to be
software that solves real user needs. detected during the requirements phase, or the cost to
ouality SRS is one that exhibits the following qualities: repair them will grow significantly. Three analyses

Specifically, a

_ _ * -

1. Unambiguous 13. Elcctmnically Stored
2. Comolete 14. ExecutablelIntemretabIe

PAL77, BOE76, FAG741 provide conclusive evidence
that the later in the life cycle an error is detected and

T

3. Comct 15. Annotated by R&ve Importance repaired, the more it will cost. These show a 200: 1 ratio
4. Understandable 16. by Relative Stability between detecting and repairing an error during

requirements vs. maintenance phases. It is only with data 5 . Verifiable 17. Annotated by Version
6. Internally Consistent 18. Not Redundant
7. Externally Consistent 19. At Right Level of Detail from Boehm [BOE75] that we can also see that the reason
8. Achievable 20. Mi for the cost increase is that errors are remaining latent.
9. Conciac 21. Reusable
10. Design Independent 22. Traced

12. Modifiable 24. Croas-Referenced
11. Traceable 23. organized

The purpose of this paper is to provide the beginnings for
definitions of metrics suitable for these qualities.

Thia work waa ruppodcd in part by a grant from the El Pomar
Foundation. Afiiliations: Davis: U. of Colorado at Colorado
Springs, Colorado Springs, CO 80933-7150; Overmyer: Minot State
U.; J d n : Lsrtitutc for Defense Arulyres; C~NSO, thndali, Dinh,
Webam asOrpe Mason U n i ~ ~ ~ i t y . ; Kincrid: Calspan; Reynolds,
Ta: Mitre; Sitaram: STX Hughes; Theofanor: Oak Ridge Lab.

141
ax1 86-3740-41'93 $3.00 Q 1993 IEEB

That is, if we detect an SRS error when writing all we
do is fix it. If we detect that same SRS error during
design, we must fix both the design as well as the SRS.
If we detect the same SRS error during coding, we must
fix the code, design, and SRS, etc. WIZ831. If we can
better understand how to recognize SRS quality, we will
be better equipped to detect SRS errors and thus prevent
them from remaining, and thus costing more to detect
and repair. Let us not fail to recognize that t h m are two
different general classes of requirements errors:
knowledge errors and specification errors. Knowledge
errors are caused by not knowing what the true
requirements are. Specifcarion errors are caused by not

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:28:53 UTC from IEEE Xplore. Restrictions apply.

knowing how to adequately specify requirements.
Knowledge errors can be r e d d through prototyping
[ANDSg, DAV921. However, there may exist
knowledge errors that cannot be found until after the
system is deployed. There is little excuse for
specification errors.

The above list of SRS qualities is a compilation of
lists made by others. See Figure 1. These authors
however have not attempted to provide useful ways of
measuring SRS quality. The implications if we ignore
SRS quality are [DAV93]:
-
- -

The resulting software may not satisfy user needs
Multiple interpretations may cause disagreements
between customers and developers
It may be impossible to thoroughly test [DAVgOa]
The wrong system might be built.

As attempts are made to achieve quality in an SRS,
me must be carehl to recognize that although quality is
attainable, perfection is not. Any of the above 24 quality
attributes can be achieved, but often at the expense of
other attributes. On any one given project, requirements
writers need to agree as to which quality attributes are
most important, and strive for those.

II. SRS Quality Attributes
A quality SRS is one that exhibits the 24 attributes listed
in the introduction, i.e., is devoid of any errors that
would violate these attributes. The following 24 sub-
sections (1) define each attribute, (2) provide ideas on
measuring the attribute, (3) provide the attribute with a
recommended weight relative to other attributes, and (4)
describe types of activities that can be used to optimize
presence of that attribute. In all cases, we assume there
are n,. requirements in the SRS, and the set of all these
requirements is denoted as R. In addition, we assume
that there are nffunctional requirements (R$ and n p o n -
functional (i.e., ilities) requirements (Rn$ in the SRS,
where n,. = nf + n n , and R = RfU R n ,

2.1 Unambinuous
An SRS is unambiguous if and only if every requirement
stated therein has only one possible interpretation
[IEEM]. Ambiguity is a function of the backgrounds of
the reader. For example, "generate a dial tone" may be
ambiguous to non-telephony people because they do not
realize that standards exist that demand a dial tone be of a
specific frequency. Due to these standards, telephony
people in domestic systems may see the term as totally
unambiguous. Strangely, telephony people in domestic
and intemational systems would once again find it
ambiguous due to conflicting standards.

Certain languages are inherently more ambiguous than
other languages. Perhaps there is a measure of inherent
ambiguity of votiouS languages. Deterministic finite
state machines (FSM), Petri nets (PN), decision trees
(DT), propositional calculus, predicate calculus and many
others all have well defined semantics and thus suffer
from no inherent ambiguity. Natural language or any
f o d i s m that includes natural language (e.g., structured
English) has much inherent ambiguity. Once you choose
to use less ambiguous forms of expression, the specific
choice will be driven primarily by expressive power and
suitability for the aspect of the system, than by its
inherent ambiguity. Since ambiguity is primarily in the
eyes of the reader, one way to "re it is via review,
i.e., as the percentage of requirements that have been
interpreted in a unique manner by all its reviewers, i.e.,

where nui is the number of requirements for which all
reviewers presented identical interpretations. This ranges
from 0 (every requirement has multiple interpretations) to
1 (every requirement has a unique interpretation).
Because unambiguity is so critical to project success, we
recommend a weight of 1, i.e., Wl = 1.

Replacing natural language with formal notations,
e.g., FSMs, PNs, DTs, greatly decreases ambiguity in
the SRS but almost always at the expense of understand-
ability'. A better approach is to augment natural lan-
guage with more formal models. That way, the advan-
tages of both satural and formal languages are preserved.

2.2 Comdete
An SRS is complete if:

Everything that the software is supposed to do is
included in the SRS [DAV93]
Responses of the software to all realizable classes of
input data in all realizable classes of situations is
included PE841
All pages numbered; all figures and tables
numbered, named, and referenced; all terms
defined; all units of measure provided; and all
referenced material present DE841
No sections marked "To Be Determined" [DAV93].

'Decision trees arc one of the few exceptions. m e n applicable, they
can be used with no explanation urd can be easily u n d e d by the
layperson.

142

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:28:53 UTC from IEEE Xplore. Restrictions apply.

Requirements Quality
Factor

Unambinuous

Reference

B A B D B Z C I N E D J C D R D
O L E A A A E E C S O P A A O A
E F L V S V L E C A D L R V M V
74 76 76 79 81 81 83 84 87 87 88 88 90 90 90 93

x x x x x x x x x X x x x
Complete

Correct

Understandable

Verifiable

Consistent (Internal)

Consistent (External)

x x x x x x x x x x X x x x
x x X X x x x
X X x x x x x x x x x
x x X X x x x x x x

x x x x x x x x x x x x x x x
X x x x x x x

Achievable x x X X

Concise I X X
Design Independent

Traceable

Modifiable

Electronically Stored

Interpretable/
PrototvDable

Annotated by Relative
Imwrtance

x x x X X X
x x X X X x x x

X x x X x x x
X

X X
I

X X X X
Annotated by Relative

Stability X X X

Annotated by Version I
NotRedundant I X X X X X X X

At Right Level of Detail I X
Precise I X x x X

Reusable I
Traced X x x x x X X

Organized X X x x
Cross-Referenced

Figure 1. Attributes of an SRS

Obviously, if an SRS is incomplete by the first
meaning, users will not be satisfied when the system is

about intended behavior, and those assumptions may be
false, leading once again to unsatisfied users.

Given the first definition, completeness is extremely
difficult to measure; it is generally agreed that the more

deployed. If an SRS is incomplete by any other
definition, developers are likely to make assumptions

requirements we include inan SRS (Or see in a system),

143

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:28:53 UTC from IEEE Xplore. Restrictions apply.

the more new requirements we will think of. We are thus
trying to a moving target. However, using the
secund blinition, there are some metria that do make
sense. For example, completeQass implies that the func-
tion f(staten stimulus) --> (state, response) is d e . M for
all elemeuts in the cross product state x stimulue.
Assuming we count numbers of inputs, i.e., stimuli (ni>
specified in the SRS, and numbers of states (ns) defined
in or implied by the SRS, then we know their product (ni
x n,) is the total number of function values that must be
specified. If we now count the actual unique functions
(a3 specified (Note that nu c = nfbecause some of the
y functions could be redundant), we can measure
completeness by the equation,

nA
nA+ nB+ nc+ nD

where nAn nBn ncn and nD are numbers of requirements in
blocks A, B, C, rrnd D, respectively. Values range from
0 (totally incomplete) to 1 (complete). Since we do not
know how to measure the areas of blocks C or D, an
alternative might be:

nA

nA + nB.
QZt =

Once again, values range from 0 (totally incomplete) to 1
(complete).

n

nix ns.
Q2 = h.

This measures percentage of necessary functions
specified. It may be useful in well understood, bounded,
problem d o h . It does not address completeness of
non-functional requirements. Jaffe, et al. [JAF91] have a
done a remarkable job of delineating all types of
requirements that must be present in a FSM-based SRS in
order to declare it complete.

In less understood, less bounded, problem domains, it
is likely that stimuli and states specified in the SRS are
themselves incomplete. Alexander [ALE901 provided
ideas that may be of help here. Figure 2 provides an
omniscient view of all requirements for a system, i.e.,
assume we are able to look to the future and ascertain all
requirements that users will ever need. Block A repre-
sents requirements that we know, and that we know are
applicable to this problem; these are the requirements
typically captured in an SRS. Block B represents re-
quirements that we know, but have not really thought
about or verbalized; these are typically uncovered during
interviews or brainstorming. Of course, once uncovered,
they move to block A. Block C represents requirements
that we know we need, but don't understand them well
enough to describe them; these are typically uncovered
during prototyping. Once uncovered, they move to block
A. Block D represents potential requirements that we
don't know, and that we don't even know we don't
know. Prototyping may help uncover these because
sometimes seeing one feature makes us aware of another.
Once uncovered, they tend to move to block B. Arrows
in Figure 2 show requirements migration. Notice the
trend is all requirements moving to block A. All
requirements in block A is equivalent to the first
definition of completeness. A measure of the percentage
of requirements that are in block A could be an effective
measure of completeness, i.e.,

A -

W. ho*r
wa h o w Illam.

C

W. h o w

Wa daf t h o w mac.

w. "1 I(n0rv

-
B

D

Figure 2. Alexander's Requirements Completeness
Model

Another altemative is to measure local completeness,
i.e., percentage of all recognized requirements that have
been documented in the SRS. Figure 3 is a variation of
Figure 2 where the vertical axis represents whether or not
a requirement appears in the SRS, and the vertical axis
represents the degree to which a requirement is
understood. Block A represents requirements that we
know, and that we have captured. Block B represents
requirements that have been documented, but are either
poorly specified, abstractly stated, or not yet validated.
Once h, they move to block A. Block C represents
requirements that we know we need, but have not yet
specified. Once documented, they move to block A.
Block D represents potential requirements that we don't
understand well enough to document. If we choose to
specify them abstractly (as a place holder), they move to
block B. If we choose to investigate their validity first,
say via a prototype, and we grow to understand them,
then they move to block C. Arrows in Figure 3 show

144

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:28:53 UTC from IEEE Xplore. Restrictions apply.

requirements migration. Notice the trend is all
"& moviag to block A. Given this model, we
could measure completeness as the p e " b g e of
requirements in the SRS that are well u n w , i.e.,

or alternatively (u1 the pawatage of known requiremeats
that have beep documnted in the SRS, i.e.,

"r
nA+ ng+ ne+ no Qy =

where nA, ngr nc, and n4 are numbers of requirements in
A, B, C, and D, reqectwely. In both cases, nr = nA +
nB and values range from 0 (totally incomplete) to 1
(complete). Regardless of which is used, we recommend
a weight of ppprox. .7, i.e., W2-.7 because complete-
ness is critical to project success but difficult to measure.

In
8Rs

Not In
SRS

A
t-

Not Undwstmd

I -
D

P i p 3. Local Requirements Completeness Model

To achieve completeness by any definition, reviews of
the SRS by customer or user are essential. Prototypes
also help raise awareness of new requirements and help
us better understand poorly or abstractly defined
requirements [AND89, DAV921.

2.3. Correct
An SRS is correct if and only if every requirement repre-
sents something required of the system to be built
[DAV93], i.e., every requirement in the SRS contributes
to the satisfaction of some need.

Since the term correctness applies to an individual
requirement and an entire SRS, one convenient way of
measuring correctness of an SRS might be to measure the
percentage of individually correct requirements, i.e.,

where nc and nI are the numbers of correct and incorrect
requirements, repctively, a d nr = nc + nP Values
range from 0 (totally incorrect) to 1 (totally correct).
Ironically, if we could "sure correctness by the above
formula, we would have to know which requirements
were incorrect, and we would remove them, making it
10096 correct! Thus applying the above formula will
always result in a of 1. A more practical, but less
theoretically satisfying, is to "re percentage of
requirements in the SRS tbat have been validated. We
arrive at a more practical "e of completeness:

"c - - "C

ne+ nNv "r
Q3 =

where nc and nm are numbers of correct and not (yet)
validated requirements, respectively, and once again, nr
= nc + nw Because correctness is so critical to project
success, we recommend a weight of 1, i.e., W3 = 1.

There is no oracle against which to validate
correctness of a requirement. The only technique is to
involve people who have the problem or mission. In
effect, they serve as oracles. They can read and study the
SRS, or can witness or manipulate a prototype.

2.4 Understandable
An SRS is u ~ s t u n d a b l e if all classes of SRS readers
can easily comprehend the meaning of all requirements
with a minimum of explanation. Readers include cus-
tomers, users, project managers (PM), software develop-
ers, and testers. In general, the first three desire ease of
reading, and thus natural language is ideal. Obviously, if
users and customers cannot understand the SRS, they
cannot intelligently approve it, leaving success of the
product outcome to chance. In general, the last two
desire to ascertain precisely what the system is expected
to do, and thus formal language is ideal. Obviously, if
designers and testers cannot understand the SRS, it is
impossible to build or test the system. The burden of
creating an understandable SRS falls on the shoulders of
the writers; it is not the readers' responsibility to learn
everything writers know in order to digest the SRS.
Measuring understandability is difficult. If we could

measure the degree of understandability on a scale, we
have a graph like Figure 4. A point reflects the degree to
which an SRS is understandable by two categories of
readers. Use of a technique may contribute to moving
this point, e.g., adding DTs (which appear regularly in
common literature without semantic explanation) to an

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:28:53 UTC from IEEE Xplore. Restrictions apply.

SRS in an appropriate manner would move the point
toward the northenst, i.e., increased understandability by
both parties. Adding PNs to M SRS in an appmprinte
manner would move the point toward the southeast, i.e.,
increased understandability by developers and testers, but
decreased understandability by customers, users, and
PMs. The only measure we can conceive of is

a=%
"r

when nUr is the number of requirements for which all
reviewers thought they understood. This ranges from 0
(every requirement understood) to 1 (no requirement
understood). Because understandability is so critical tc
project success, we recommend a weight of 1, i.e.,
w,= 1.

High

vnd.nm-

-r
by U m

aamtan

Low

Figure 4. Measuring Understandability

A variety of techniques are available to determine
and/or improve SRS understandability. First is to let
representatives of all reader classes read it and comment.
Assuming this is done repeatedly, and the SRS is revised
accordingly, it may converge upon understandability.
Augmentation with a prototype can improve effective
understandability because it is often easier to see a
prototype's behavior than to read a document.

2.5 Verifiable
An SRS is verifiable if there exist finite, cost effective
techniques that can be used to verify that every require-
ment stated therein is satisfied by the system as built.
some requirements are easy to test: WHENEVER THE
BUTTON X IS BEING PRESSED, THE LIGHT L SHALL BE LIT.
Others are difficult to test: THE SOFIWARE SHALL

EXHIBIT A FRIENDLY EASY-TO-USE -ACE THE
USER. There am a variety of reasons why a requirement

a. Ambiguous. Any requirement with ambiguity will
fare poorly for verifiability. If multiple
interpretations exist for a requirement, there is no
way to verify it [DAV9Oa].

b. Undecidable. Any requirement that is equivalent to
the halting problem renders it unverifiable. Thus the
requirement THE SYSTEM SHALL NEVER HALT is not
verifiable.

c. Not worth cost (k c i a l or life). For example, the

mpy be w f i d t (0 verify:

requirement, IN THE CASE OF A REACTOR MELT-
DOWN, THE SY- SHALL REDUCE THE DEATHS OF
PERSONNEL A 20 MILE RADNS BY AT LEAST
80% is not worth the cost to test.

Measurement of verifiability is difficult. When
verifiability is related to ambiguity, we have already seen
it is impossible to adequately measure (see Section 2.1).
When verifiability is related to the halting problem, the
requirement either is or is not verifiable. A measure of
percentage of requirements whose verification is unde-
cidable is not helpful. There are some measurement
avenues for cost-effectiveness or finiteness of the verifi-
cation approach. If c(ri) and t(ri) are the cost and time
necessary to verify presence of requirement ri, then

"r
e5 =

"r + c c (q) + Ct(TI)
i i

measures inherent SRS verifiability where 0 means very
poor verifiability, and 1 means very good verifiability.
Verifiability is relative important to project success, so
we recommend a weight of .7, i.e., W5 = .7.

Techniques to help verifiability are (1) all techniques
described above for ambiguity, (2) knowledge of unde-
cidability and review for its presence+ and (3) review of
SRS by experienced testers who can determine high cost
or schedule testing implications.

2.6. Intemallv Consistent
An SRS is internally consistent if and only if no subset of
individual requirements stated therein conflict [IEE84].

Measuring intemally consistency is easier if we think
of the SRS as defining a function that maps inputs and
states into outputs and states, Le,. treat it as an FSM. A
consistent SRS is now one that can be described as a
deterministic FSM. Any nondeterminism implies the
SRS defines two different system responses or next states
in identical situations. Assuming that we enumerate all
stimuli (nj) specified and all states (ns) defined in or

146

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:28:53 UTC from IEEE Xplore. Restrictions apply.

implied by the SRS, then we know there should be
exactly (ni x ns) total function valuea that must be
specified to be complete, consistent and non-redundant.
We now count the actual unique functions (nJ specified
(Note: nu < = nz), and we count how many of them are
nondeterrrrrm 'stic (nJ, i.e., how many of them mpp the
same point in the domain into differemt points in the
range. Then a measure of intemal coluaisteacy is the
percentage of unique functions that are determiaistic:

Values range from 0 (100% intemally inconsistent) to 1
(100% internally consistent). Internal consistency is
critical to project success, so we recommend a weight of
1, i.e., W6=1.

Intemal consistency is most easily achieved with
tools like RLP [DAV79a] or REVS [ALF85]. Both
provide consistency error reports for SRSs specified
using multiple FSMs. Most CASE tools do consistency
checking for data flow diagrams (DFD) and rudimentary
consistency checking among DFDs and FSMs.

2.7 Externallv Consistent
An SRS is externally consistent if and only if no require-
ment stated therein conflicts with any already baselined
project documentation. These baselined documents
include system-level requirements specifications (RS),
statements of work (SOW), white papers, an earlier
version of the SRS to which this new SRS must be
upward compatible, and RSs for other systems to which
this system must interface.

Measuring external consistency is more difficult than
intemal consistency. The best measure we can arrive at
is the percentage of requirements that are consistent with
all other documents, i.e. ,

"EC = - "EC
Q7 =

"EC+ nEJ "r

where nEc is the number of requirements in the SRS that
are consistent with all other documents and nm is the
number that is not. Note that n,. = nEc + nu Extemal
consistency is critical to project success, so we
" m e n d a weight of 1, i.e., W7= 1.

To ensure external consistency one must create and
maintain full cross-references between all requirements
and relevant statements made in other documents (see
Section 2.22). However, maintaining external
consistency may entail more than this. For example, it
might be that a s o h a r e development plan (SDP) or a
development contract states that development effort must

consume no more than S1M or last no more than 18
months, but the SRS &finea so many requirements that it
is impossible to meet coet or schedule. Here the problem
is not individual requirements but the combined effect of
all requirembllte. The SRS must be reviewed
simultaamly with all possible umflicting documeuts,
including SOW, development contract, d SDP.
2.8 Achievable
An SRS is uchicvable if and only if there could exist at
least one system design and implementation that correctly
implements all the requirements stated in the SRS.
Achievability, Q8, is a "re of the existence of a
single system and thus has a discrete value of 1 or 0, i.e.,
a set of requirements are either achievable or given
acceptable development ~e8ou~ces they are not. A weight
of Ws=l is appropriate. The best way to ensure
achievability is to collstnrct a working prototype of parts
of the system where achievability may be in doubt.

2.9 Concise
An SRS is concise if it is as short as possible without
adversely affecting any other quality of the SRS. Thus if
we have two SRS's that describe the identical system,
with identical measures of qualities for the 23 other
quality attributes, then the shorter one is better.

One way to measure conciseness is to count pages.
However, comparative SRS sizes are only important after
we are sure they describe identical systems. In general,
determining if two SRSs describe identical systems is
undecideable. The ultimate in conciseness is the null
SRS; this should a m a 1. The worst case of conciseness
is an SRS of infinite size; and score zero. One metric
that exhibits these properties is the hyperbole:

%=- 1
size+ 1

where size is the number of pages. An appropriate
weight is probably W9=.2.

Major reductions in SRS size are rarely possible
without adversely effecting other qualities. The primary
exception is when writers are prone to baroque writing,
e.g., THE CHECK PRINTING FUNCTION OF THE PAYROLL
SYSTEM SHALL PROVIDE THE CAPABLK'Y TO VALIDATE

SYSTEM SHALL VUWATE CHECK AMOUNTS and -re
CHECK AMOUNTS can be shortened to THE PAYROLL

higher for conciseness and understandability.

2.10 Desien-Indewxident
An SRS is design independent if and only if there exist
more than one system design and implementation that
correctly implements all requirements stated in the SRS.
The purpose of the SRS is to express desired extemal

147

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:28:53 UTC from IEEE Xplore. Restrictions apply.

behavior to a degree that user satisfaction is guaranteed
and a maximum number of designs exist to satisfy those
needs and behaviore. It is okay to describe external
behavior of a solution system using M FSM as long as it
is clearly stated that the^ solution system must behave
externally the same way that the FSM behaves externally.
It is not okay to include an FSM and imply that the
solution system must be designed as an FSM.

Let us assume that the requirements in the SRS
include some (Rd that describe pure external behavior,
and some (R$ that directly address architecture or
algorithms of the solution (Note that R = RE U RI).
Then there exists some number of actual solution system

some number of ttctual solution system designs @(RE))
that satisfy only those e x t e d behavior requirements.
Design independence can be measured as the percentage
of possible solution systems that are eliminated by adding
the overly constraining requirements:

designs @(RE U RI)) that satisfy all requirements, and

U R,)
W E) - Q1o =

Values range from 0 (highly design dependent) to 1
(design independent). Projects can still succeed with
poor design independence, but their su- becomes
hampered. For that reason, we give it weight Wlo= .5.

One effective technique to ensure design independ-
ence is to have designers review the SRS. In general,
designers take pride in their ability to synthesize an
optimal design. Therefore they are likely to have a
tremendous ego investment in finding ways to reduce
design dependence of the SRS.
2.11 Traceable
An SRS is traceable if and only if it is written in a man-
ner that facilitates the referencing of each individual
requirement [DAV93]. During design and test it is
essential to know which requirements are being supported
by the component or verified by the test. Without this, it
is impossible to design or test in a quality manner.

0

An SRS is either traceable or it is not. An SRS could
contain some traceable requirements and some not
traceable. However, this should render the entire
document untraceable. Traceability, Qll , eams a score
of 1 if it exhibits any of the qualities described below, or
0 if it does not. There are a variety of effective
techniques for achieving traceability [DAV93]:

Number every paragraph hierarchically. You can
later refer to any by a paragraph and sentence num-
ber, e.g., requirement 2.3.2.4~3 refers to the
requirement in sentence 3 of paragraph 2.3.2.4.

Number every paragraph hierrvchicaly and include
only one requirement in any paragraph. You can
refer to any by a parpgraph number.
Number every requirement with a unique number in
pareatheses immediately afker the requirement.
Use a convention for indicating a requirement, e.g.,
always use the word shd2 in a seatence containing a
requimmcn~ then use a simple shallexrraction tool to
extract and number all se~tence with shull.

2.12 Mod ifiable
An SRS is &@able if its structure and style are such
that any changes can be made easily, completely, and
consistently pEE841. There are two primary reasons for
modifiability: (1) needs always evolve, aud (2) the SRS,
like all complex softwarerelated documents, will contain
errors. As needs evolve, the SRS will be modified to
capture new, record changes to old, or delete obsolete
requirements. Obviously, modifiability is enhanced if
the SRS is also traceable (see Section 2.11), in w h i n e
readable form (see Section 2.13), traced (see section
2.22),0rgpnized (see Section 2.23), and cross-referend
(see Section 2.24). Modifiability is also enhaad if it
includes a table of contents and index.

Since most factors are already included in other
mtrics, we will "re modifiability, QI2, here as: 1
if table of contents and index are present and 0 otherwise.
Its weight is highly dependent on the application.

We know that inherent modifiability of a program is
related to the degrees of cohesion exhibited by its
components and coupling existent between components
[yOU79]. As defined by Yourdon and Constantine,
these meawes make no sense for requirements, but
perhaps similar "res can be developed for SRSs so
we can mearmre cohesion of an SRS section or degree of
interrelatedness between two SRS sections.

2.13 Electronicallv Stored
An SRS is ekctronicalIy stored if and only if the entire
SRS is in a word processor, it has been generated from a
requirements database or has been otherwise synthesized
from some other form. Usually, an SRS is either stored
electronically or it is not. However, one could measure
the percentage of the volume of the SRS that has been
electronically stored and call it Q13. Its weight is
application dependent.

2.14 Executable/Iotemretable@mt~ ble
An SRS is executable, interpretable, or prototypabk if
and only if there exists a software tool capable of
inputting the SRS and providing a dynamic behavioral
model. This might be achieved by the SRS being written
in a language that (1) is directly understood by a
computer, or (2) is translatable into a language directly

148

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:28:53 UTC from IEEE Xplore. Restrictions apply.

understood by a computer, or (3) can be interpreted by a
software tool and thus simulated.

SRSs may be partially written in an executable,
interpdable, or prototypable language. Therefore the
metric Qlr ranges h m 0 (entirely not executable) to 1
(entirely executable). Its weight is highly dependent on
the application.

The best technique to ensure executability is to use
any c o " 5 a U y available tool that provides such
execution of PAISLey [ZAVMI, RAPID
wAS86], and !3TATEMATE [HARSS]. Dozeus of
DFD-based CASE tools claim to also provide such
executability, but axecution is limited to DFDs where
behavior of each bubble is defined using some behavioral
model (e.g., FSMs, DTs), and the semantics of the
DFDs are augmented with execution precedence rules.
These CASE tools can also be used but power,
versatility, and requirements orientation of behavioral
models are superior to DFD-based specifications.

2.15 Annotated bv R elative Imrtan ce
An SRS is annotated by relative importance if a reader
can easily determine which requirements are of most
importance to customers, which are next most important,
etc. This is n d d to allocate dollars sensibly, and
determine priorities #hen budgets are inadequate.

Typically, an SRS is either annotated by relative
importance or not. Obviously we can calculate the
percentage of requirements that are annotated and use that
as a measure, Q15. Its weight is application dependent.

One way to achieve this is to suffix every requirement
with (M), (D) and (0) to denote that this requirement is
mandatory, desirable, or optional.

2.16 Annotated bv Relative Stability
An SRS is annotated by reh iw stability if a reader can
easily determine which requirements are of most likely to
change, which are next most likely, etc. Designers need
this to help determine where to build in flexibility.
Kuowhg the relative stability can help a team decide
whether or not to build in that flexibility.

Typically, an SRS is either annotated by relative
stability or not. Obviously we can calculate the
pemntage of requirements that are annotated and use that
as a measure, QI6. Its weight is application dependent.

One way to achieve this is to suffix every requirement
with (H), (M) and (L) to denote whether the probability
of change is high, medium, or low.

149

v .
An SRS is annotazed by version if a reader can easily
determine which requimamts will be satisfied ia which
versions of the product. Both customers and designers
obviously need to larow this.

Like the previous two annotations, and SRS is either
annotated by version or not. The percentage of
requirements annotated by version is a reasonable
measure, Q1,. It is assumed that an SRS written for just
one version of the sof&ware is Mly annotated (by default)
and thus scores a 1. Its weight is application dependent.

The most commoa way of annotating requirements by
version is to add a column in the margin for each version
of software to be produced. "X's are placed beside each
requirement in the respective columns.

2.18 Not Redundant
An SRS is redundant if the same requirement is stated
more than once. Unlike the other 23 attributes,
redundancy is not necessarily bad. Often redundancy can
be used to increase readability of the SRS significantly.
The only problem that redundancy causes is when an SRS
is revised. If all OCcUrrCnCes of a redundant requirement
are not changed then the SRS becomes inconsistent.

If we count the actual functions (n specified, and the
actual unique functions (nd specifisdf then a measure of
nonredundancy in an SRS is the percentage of unique
functions that are not repeated, i.e.,

n.
Q -x.

18 - ""
Values range from 0 (completely redundant) to 1 (no
redundancy). Weight will usually be 0.

Since redundancy is not necessarily bad, no technique
should be applied specifically. There are techniques that
reduce the risks involved in using redundancy. These
include incorporation of an index and cross refereaces
among any redundant requirements.

2.19 At Right Level of AbstractionlDetail
Requirements can be stated at many levels of abstraction.
These examples of requirements range from most abstract
to most detailed, but all are in the requirements domain:

8. SYSTEM SHALL PROVIDE COMMUNICATIONS.

b. SYSTEM SHALL PROVIDE VOICE COMMUNICATIONS.

C. TELEPHONE SYSTEM SHALL PROVIDE VOICE

d. TELEPHONE SYSTEM SHALL PROVIDE mAL CALLS,

COMMUNICATIONS.

CALL FORWARDING, LONG DISTANCE CALLS.. . .

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:28:53 UTC from IEEE Xplore. Restrictions apply.

e. -HONE S H A U PROVIDE LONG DISTANCE CALLS
WHERE USER LIFTS IDLE PHONE, DIAL TONE IS HHA&D
WII" 3 SECONDS, USER DIALS N m , b&"E
DIAL TONE IS HEARD WITHIN 2 SECONDS, ETC.

The right level of detail is a function of how the SRS is
being used. Generally, the SRS should be specific
enough that any system built that satisfies the require-
ments in the SRS satisfies d user needs, and abstract
enough that all systems that satisfy all user needs also
satisfy all quire&mts. Thus, an SRS being used for a
contract between customer and developer should be rela-
tively specific to emure the customer knows what is
being acquired, and them are a minimum of surprises.

We cau certainiy develop ways to subjectively
measure the abstraction level of an SRS. All we do is
assign a number to each of the five above examples,
examine a requirement, decide which example it is
closest to, and assign it that value. The level of abstrac-
tion of the SRS, QI9, is then the average of the values of
each of its constituent requirements. The problem with
this is that our goal is not to "fe the level of abstrac-
tion of the SRS but to "re the appropriateness of the
level of abstractioq. This is highly scenario dependent
and cannot be mearmred.

2.20 Precise
An SRS is precise if and only if (a) numeric quantities
are used whenever possible, and (b) the appropriate levels
of precision are used for all numeric quantities. Thus,
THE SYSTEM SHALL E X H I B ~ PAST RESPONSE TIME is not
precise &s THE SYSTEM SHALL FULLY RESPOND TO EVERY
REQUEST WITHIN 2 SECONDS. Also, THE SYSTEM SHALL
DISPLAY THE WAIT TIMES is not 85 good &s THE SYSTEM
SHALL. DISPLAY THE W m TIMES To THE NEAREST TENTH
OF A SECOND. Also, assuming that the nearest tenth of a
second is all that is needed, this requirement exhibits
inappropriate levels of precision: THE SYSTEM SHALL

2.21 Reusable
An SRS is reusable if and only if its sentences,
paragraphs and sections can be easily adopted or adapted
for use in a subsequent SRS. Much research is underway
conceming reuse of design and code. Little extends to
the requirements domain.

Ideally, reusability should be measured on results
rather than potential. Thus a score of 1 should be given
to an SRS whose contents have been fully reused by later
SRSs and 0 to an SRS none of whose contents have been.
Unfortunately, metrics are more useful if they can be
established at the time of SRS creation rather than many
years later. An alternative is to measure SRS reusability
as the potential for SRS reuse. In the case of reuse of

DISPLAY THE WAIT TIMES TO THE NEAREST NANOSECOND.

b i g n and code, research results have helped us
recQgnize what meLee a component reusable, although
results are not consistent or conclusive. In the case of
requirements reuse, no "h d t s are available.
The next paragraph will introduce some experimental
requirements reuse properties. When more information
becomes known, a reusability metric of "percantage of
paragraphs that exhibit reuse properties" cau be used.
However, it will have the aane problems as for design
and code. Given a software system, the percentage of
components that are data abstrrctionS (or have any of the
many other qualities that increase potential reuse) does
not yield a " a b l e reusability metric because there
exist data abstractions that cne not Feusable.

Little is known about techniques to optimize potential
Here are some reuse of requirements specifications.

avenues from the most to the least understood:

Write SRS sections using "symbolic constants," e.g.,
in the performance section, use a word p " r
symbolic constant for key response times. Then, later
applications with similar functionality but with
different respcwse times can simply change the value
in the symbolic constant.
Use formal models. The specific FSMs, DTs, PNs,
and statecharts are unlikely to be reusable, but their
presence will likely cam the next SRS writer to reuse
the concept of employing such models.
Create library of abstracz requiremcnrs types. These
are generic requirements paragraphs that are
instantiated by providing tailoring information about
characteristics of a particular application. The actual
SRS becomes a series of instantiations.

2.22 Traced
An SRS is traced if and only if the origin of each of its
requirements is clear DAV931. This implies that every
requirement that has a basis is cross-referen& to that
basis. Typical bases include: system-level RSs, system-
level design documents, hardware RSs, SOWS, contracts,
white paperslresearch reports, and SDPs. Any of these
documents may hold a clue as to the reason why a
particular requirement exists. For example, a
requirement THE SYSTEM SHALL REPORT THE CURRENT
POSmION OF ALL SHIPS NO LESS OFTEN THAN EVERY
SECOND may exist because an earlier white paper reported
the maximum possible ship speed, and an earlier system-
level RS reported the resolution and scale of the display
medium. In this case, the above requirement should be
cross-referen& to both of the earlier documents.

Measuring the level of traced-ness is impossible.
Ideally, we want to measure the following:

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:28:53 UTC from IEEE Xplore. Restrictions apply.

Number of requirements traced to their ongins
Number of requi"ents that have origins

Unfortunately, the only way to measure the denominator
is to examine the SRS for such cross-references! Thus,
the above frcrcoioa will always have a value of 1.

There are two techniques to recofd traces. First is to
include explicit cro88-tBfBTencB8 in parenthews following
each requirememt in the SRS. Secolid is to record all
requirements in a da-. Each requiremaat is a

 become^ a retrieval of the database and might include or
exclude the cross-referenas.

2.23 Ornaniped
An SRS is organized if and only if its contents are
arranged so that readers can easily locate information and
logical relationships among adjacent sections is apparent.
One way is to follow any of the many SRS standards
[DOR90]. Certainly boiler plate sections of all SRS
standards are rou~hly equivalent. Primary differences
concern organization of detailed requirements. There are
many ways to organize these. However, given any
particular system, there are probably only a few right
ways. Soooe dtematives are [DAV93] (in all cases
assume that detailed requirements are in Section 3):

1. group the functional requirements by claps of user.
For example, nn elevator control system SRS might
include a Section 3.1 for all passenger requirements,
3.2 for all fireperson requirements, and 3.3 for all
maintenance person requirements.

2. group the functional requirements by common
stimulus. For example, an automated helicopter
landing system SRS might include a Section 3.1 for
all requiremeats relating to gusts of wind, 3.2 for all
relating to being out of fuel, 3.3 for all relating to
breakage of landing gqu9 etc.

3. group the hctional requirements by common
response. For example, a payroll system SRS might
include a Section 3.1 for all requirements relating to
generation of paychecks, 3.2 for all relating to
generation of a report of all current employee with
their monthly salaries, etc.

For
example, a payroll system SRS might include a
Section 3.1 for all requirements relating to local calls,
3.2 for all relating to long distance calls, 3.3 for all
relating to conference calls, etc.

For
example, an airline reservation system SRS might
include a Section 3.1 for all requirements relating to
seats, 3.2 for all relating to flight segments, 3.3 for
all relating to travel agents, 3.4 for all relating to
tickets, etc.

record. A fidd io u8Bd f a ~ r o s s - r e h ~ . The SRS

4. group the functional requirements by feature.

5. group the functional requirements by object.

161

Organization is purely subjective; we do not believe it
canbemeesured.

To achieve useful organization, (1) follow a standard,
and (2) use one of the above five organizational models
which renders the SRS most easily understood.

2.24 Cross-Referenced
An SRS is cross referenced if and only if cross-references
are used in the SRS to relate Sections containing
requirements to other sections containing:

o identical (i.e., redundant) requiremeats
o more abstract or more detailed descriptions of the

same requirements
o requirements that depend on them or on which they

depend (see related discussion of coupling in Section
2.12).

Any well-written SRS will describe requirements at a
variety of levels, usually from the most abstract to the
most detailed. To increase understandability many SRSs
include redundancy. All SRSs will include requirements
with interdependency. Thus, all SRSs should include
cross-references. Like traced (see Section 2.22), there is
no way to determine how many cross references are
appropriate in an SRS. For this reason, any attempt to
measure cross-references is fallacious.

The same techniques that work for traced (see Section
2.22) work for cross-references. Either use explicit in-
text cross-references or preferably store all requirements
in a database and use specific fields to store the three
above types of cross references.

IU. SRSQuality: ACompromise
A perfect SRS is impossible. For example, if we remove
all ambiguity, we will add so much formality that it
would no longer be understandable by a non-computer
expert. If we remove all redundancy, it becomes difficult
to read. If we go overboard with completeness, we lose
conciseness. There are some qualities for which we can
strive without adversely affecting others: correct,
internally consistent, externally consistent, achievable,
design-independent, organized, traced, traceable, all
annotations, electronically stored and cross-referenced.

There may be some value in an overall rating of the
quality of an SRS. The presence of some of SRS
qualities appears to be essential for all applications and
thus have been given weights of 1. Others seem less
important in general and have lower weights. The actual
weights for all the attributes must be assigned by each
project to be medngful. To have an overall quality on a
scale from 0 to 1, we have:

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:28:53 UTC from IEEE Xplore. Restrictions apply.

Q = E.:
i=l

The above equation is a gross simplification; it is useful
primprily for people who seed to see just one number
that states the q d t y of an SRS. More mepaingful are
the values for the entire vector Qi.

In summary, this paper defined 24 qualities that SRSs
should exhibit. In 18 cases, it has provided a metric. It
is hoped that in the future, we (or others) will be able to
more fully expand the list of qualities, and will provide
more complete measures for all qualities.

Acknowledgments
The authors thank P. Aiken, F. Annow, C. Gorski, S.
Paey, S. Park, M. Ricker, G. Santacruz, and R.
SOM- for many hours of stimulating discussion on
the subject of this paper, J. Berdon and T. Nakajima for
helpful feedback on the paper's contents, and K. Baugh
for typing it.

Ref-

Iv. Slmrmary

[ALE901 Uuunder, L., Selectkm CH&da&r Alternative &-
rife-wle Rvcess NohLF, Software Engineering M. S. Thesis.
F~irbx, V i : George Maron Univenity, 1990.

A Qnph Model for
Rd-Time Software RquiremeosI," JLnrpariuAl on CoAlpUrcr

hgineehg, New York: Polytechnic Reu, 1976, pp.

[ALF85] Alford, M., "SREM at the Age of Eigbt: Xhe Disaiburrd
compudng Design $ysiem. IEl%E Chputer, 18, 4 (April 1989),
pp. 3646.

f-91 M - 3 s., storybwnl Rw0tyPingp WCllCrky,
Munachurettr: QED, 1989.

[BAS811 Elrsili, V., Md D. Weiu, 'Evalrution of a Sohare
R q u k m r h Document by Analyob of Change Data," Rph
IEEEInt? an &+ h g . , 1981, pp. 314-323.

WE751 Boehm, B., et al., "Some Experience with Automated Aidr
to the Design of Large&& Reliable Soflv.rc," IEEE Tnms.

NE761 Boehm. B.. "Software Bngineering,' IEEE Tnms.
Conprucrs. U. 12 (December 1976), pp. 1226-1241.

CONY), J., private communication, Fairfax, Virginia, Fall
1990.

[C m] C e b , J., a al., 'A Dcmorutntion of Three Requiremdr
Language Sydcms,. AChf SIGPUN W c a , 18, 1 (January

[D a m Daly, E., WManagemcrrm of Software Development,' LEEE

[DAW91 Davis, A., d T. burhe r , ' F o d Technique# and
Automrlcd Proceuing to Enrum Cemctncu in Requiremcntr
Specificatiom," lEEE Spcijications of Reliable &y%vam conf.,

[ALF76] Alford, M., and I. Bum, 'R-aetr:

97-108.

& e m h g . , 1, 1 @ f a d 1975). pp. 125-133.

1983), pp. 9-14.

T-. Comprurrr, 3,3 19n). pp. 229-242.

1979, pp. 15-35.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:28:53 UTC from IEEE Xplore. Restrictions apply.

