J. Symbolic Compuration (1994) 17, 297-310

Complexity, Algorithms, Programs, Systems:
The Shifting Focus

JURG NIEVERGELT
Department of Computer Science, ETH Zurich

{Received 18 February 1994)

We investigate the changing relationship between the small research community of
theoretical computer scientists and the much larger community of computer users, in
particular, the technology transfer problem of how to exploit theoretical insights that
can lead to better products. Qur recommendation can be summarized in four points:

1 The computing community is impressed by usable tools and by little else. Although
a powerful theorem or &n elegant algorithm may be a useful tool for a fellow the-
oretician, by and large, the only tools directly usable by the general computing
community are systems. No systems, no impact!

2 System development means programming-in-the-large, but the algorithms research
community so far has learned only how to program in-the-small.

3 Algorithm researchers must enshrine their algorithms not merely in individual ele-
gant programs, but collectively in useful application packages aimed at some iden-
tifiable user group.

4 Since the development of software systems easily turns into a full-time activity
that requires different skills from those of algorithms research, we must strive to
develop techniques that lets a small group of algorithm researchers develop simply
structured, open-ended systems whose kernel can be implemented with an effort of
the order of 1 man-year. Low-complexity systems is the goal!

Contents

1 The bread spectrum of algorithm research: From algorithm complexity to system
complexity,

2 From ideas to users: Technology transfer in various subdisciplines of computer sci-
ence.

3 Algorithms programmed in-the-small.

4 What is a system?

5 Sampling the zoo of systems: Experiences and lessons.
6 Conclusion: Three types of results.

0747-7171/94/040297 + 14 $08.00/0 © 1994 Academic Press Limited

298 J. Nievergelt

1. The broad spectrum of algorithm research: From algorithm complexity
to system complexity

Workshops on algorithms have often been dominated by complexity issues with little
regard for practicality, but this ALCOM Workshop on “Algorithms: Implementation,
Libraries, and Use” may be indicative of a new trend. In the past two days we have
not only heard about programs and systems, we have actually seen them in operation.
Impressive graphical animations have been used to illustrate the experimental nature
of practical algorithms. We saw program libraries that run on system:s with integrated
user interaction and algorithm animation, features that I believe belong to any system or
program library, no matter what its application domain. So on the progression indicated
in the title: Complexity, algorithms, programs, systems, this subgroup of the algorithm
research community is now focusing on stages 3 and 4, and that is a big step forward
from just a couple of years ago. In order to understand where the field is going it is
instructive to retrace important past developments.

Algorithmics is concerned with a broad spectrum of issues ranging from the most
theoretical to the highly practical: Models of computation; the analysis of problems that
can be stated in rigorous mathematical terms; the design and analysis of algorithms for
solving a given problem using the primitive operations made available by such a model
of computation; and, last but not least, correct, robust and efficient implementation and
experimental testing.

Among the contributions of algorithmics to computer science and to computing tech-
nology, abstract results about the inherent complexity of problems and algorithms are
among the most fundamental. Most of these are a mere quarter century old, but we are
convinced of the timeless importance of such insights as the large class of optimal nlogn
algorithms, of the problem classes P and NP, and of PRAM complexity. The algorithms
community knows that such insights have implications for the practice of computing as
drastic as the conservation laws of physics have for engineering but most computer users
and programmers do not, and even the computer science community at large attaches
greater importance to annual technology improvements and marketing successes than to
timeless theoretical results.

If T am correct in this somewhat pessimistic assessment of the impact algorithmics
has had so far on the computing “culture”, where is the bottleneck that holds up the
flow of ideas from theory to products? Have we failed to impress on our students the
importance of the theoretical foundations of computer science? Is the user community
still dominated by old-timers happy with COBOL and Fortran? Can one be a competent
computer scientist without any knowledge of algorithms and complexity theory? Do other
subdisciplines of computer science that also have a theory/practice dichotomy face the
same problem of users ignoring the theory that supports practice?

Or perhaps everything is as it should be? If not, what can we do to educate the
computing community towards a proper appreciation and use of theorv?

These are some of the questions we shall explore. The line of reasoning can be followed
more easily if we jump ahead to some concisely stated conclusions, even at the risk of
oversimplification:

1 The computing community is impressed by usable tools and by litsle else. Although
a powerful theorem or an elegant algorithm may be a useful tocl for fellow theo-

Complexity, Algorithms, Programs, Systems: The Shifting Focus 299

reticians, by and large, the only tools directly usable by the general computing
community are systems. No systems, no impact!

2 System development means programming-in-the-large, but so far the algorithm
research community has learned only how to program in-the-small.

3 Algorithm researchers must enshrine their algorithms not merely in individual ele-
gant programs, but collectively in useful application packages aimed at some iden-
tifiable user group.

4 Since the development of software systems easily turns into a full-time activity
that requires different skills from those of algorithms research, we must strive to
develop techniques that lets a small group of algorithm researchers develop simply
structured, open-ended systems whose kernel can be implemented with an effort of
the order of 1 man-year. Low-complexity systems is the goal!

This is the message and the mission of my talk, to be supported with illustrative
examples.

2. From ideas to users: Technology transfer in various subdisciplines of
computer science

How well have various computer science research communities marketed their theoret-
ical insights as products for users? A few examples suffice to make the point that many
innovations survive as products if (and only if?) they they are developed to the stage
where they can be marketed as systems or are integrated as components into some widely
used system. Readers will undoubtedly come up with many instructive examples that fit
this rule, and some that don’t — I would be interested in hearing about both kinds.

2.1. PROGRAMMING LANGUAGES

This research community has been very effective for decades in quickly turning theoreti-
cal ideas into successful products, as countless features of today’s programming languages
testify. Just a few examples may serve to remind us that what we take for granted today
was a research problem in the recent past.

Automatic formula translation, a non-trivial process in the 50s, has been serving pro-
grammers well ever since it was incorporated into FORTRAN 1954. Needless to say, the
vast majority of application programmers is unaware of how it is done, and would not
bother to study the algorithm.

The formal definition of syntax, using Backus-Naur Form or similar notations (e.g.
syntax disgrams), was developed for Algol 60 and has been an unavoidable tocl ever
since. On the other hand, formalisms developed by logicians or theoretical linguists that
were not tied to some widely used programming language remain the well-kept secret of
specialists.

Recursive procedures, and the techniques needed to process them, were first understood
during the 50s and have been part of most high level programming languages since
Algol 60. Recursive functions of symbolic expressions gave rise to LISP and functional
programming languages.

A “calculus” of data type definitions emerged during the 70s and was immediately
taken up by Pascal. We now take it for granted that every programmer defines his own
data types on top of the base types provided by his programming language.

300 [Nievergelt

Logic programming became widely known once this idea inspired the development of
languages such as Prolog and many rule-based systems.

Object-orientation can be traced at least to the (special-purpose) language Simula in
the 60s. The idea took off like brushfire as it was being enshrined in popular extensions
to existing languages, such as the step from C to C++, or from Pascal t:.o Object Pascal.

Besides such technology transfer or marketing successes, the field of programming
languages has of course also generated its fair share of stillborn creaticns. For example,
the desire for “universal languages” that are “all things to all people”, or wishful thinking
about “programming in English” or in DWIM - “do what I mean, not what I say”. The
filter of time works in a funny way: success stories as well as failures are forgotten, but
with a difference — successes make it into products that are taken for granted, failures
become irrelevant.

Let us sample some other disciplines even more sporadically, hoping that some historian
of computer science will trace the development and spread of important innovations more
systematically.

2.2. COMPUTER SYSTEMS (ARCHITECTURE AND OPERATING SYSTEMS)

An impressive multitude of architectural ideas spawned a zoo of diverse machines
(as described two decades ago in Gordon Bell and Allen Newell: Computer structures:
Readings and examples, McGraw-Hill 1971). The fact that fewer innovations survive
than die out. in the marketplace is part of life — they all had to be tried for the process of
selecting the fittest to run its course. In the field of operating systems there has perhaps
been less experimentation, but the success stories are impressive: Unix, the operating
system used on the largest variety of machine types, originated with research tinkerers.

2.3. DATA BASE SYSTEMS

Data base systems provide an architectural structure at the level of the application
designer and data base administrator. This field exhibits a track record comparable to
that of computer systems. The seminal concept of relational data bases prospered within
two decades to dominate commercial data base software.

2.4. USER INTERFACES

Innovative concepts of the seventies, such as WYSIWIG (what you. see is what you
get), the desktop metaphor, direct manipulation, and the mouse, may have languished
in the research labs for too long, but after the Macintosh’s market break through, they
spread like fire.

2.5. ALGORITHMICS

The track record of algorithmics shows success stories as well. A modest but early
technology transfer occurred when sorting was a fruitful research topic that created
dozens of efficient sorting algorithms: Sort generators select an appropriate algorithm
based on a specification of the files to be sorted and the system configuration, without
requiring the user to know anything about nlogn. The technology transfer of greatest
impact came from the field of numerics, in the form of program libraries for linear algebra

Complexity, Algerithms, Programs, Systems: The Shifting Focus 301

or differential equations without which modern scientific and engineering computation
would be impossible. A more recent success story is symbolic computation, where systems
such as Mathematica and Maple have found widespread use.

It would be interesting to study a larger and more representative sample of research
ideas turned to products. My conclusion from this attempt at understanding the reason
for the varying degree of successful spread of computer science research ideas into practice
is:

Potentially useful ideas travel all the way from concept to end users if and
when their creators package these ideas in the form of ready-to-use systems!

3. Algorithms programmed in-the-small

In the early days of automatic computing, in the 50s and early 60s, numerics researchers
usually considered it to be their job to transform theoretical insights, such as a new
equation solver, into portable programs freely available: Communications of the ACM and
various GAMM journals regularly published complete, ready-to-run Fortran and Algol
programs. This tradition came to an end in the late sixties when a split emerged: A few
groups of specialists went into full-time professional development of numeric program
libraries, whereas the majority of algorithms researchers, by now mainly focused on
discrete combinatorial problems, was satisfied with theoretical results.

In retrospect the lure of theory is understandable. Around 1960 it was by no means
obvious that an algorithm could be studied as a mathematical object to the extent that
we now take for granted. The most rigorous mathematical results about algorithms had
to do with rates of convergence and error propagation. Results of both types cnly involve
analyzing execution “once-around-the-innermost-loop”, so they depend more on analyz-
ing an arithmetic expression than a full-blown program. The possibility of asymptotic
performance analysis and lower bound techniques were a revelation, followed by natural
curiosity about how far these mathematical techniques would carry.

They carried far, a full three decades worth of remarkable progress — but they also
carried too far. The split between the computing community and the theoretical com-
munity had the unfortunate consequence that theory distanced itself increasingly from
the practice of computing and its applications. Examples of these excesses are “optimal
algorithms” (in some technical sense) so complicated, uncertain, and untested that no
one would consider them for actual use. And those theoretical results of potential value
to practical computing had to travel such a long distance from discovery to actual use
that most never arrived at the destination but remained buried in the research literature.

Although most algorithm researchers stop when they have proven asymptotic optimal-
ity, a minority has persisted in pushing the realization of an algorithm all the way to
the program oplimizetion stage of mapping mathematical operations to machine prim-
itives. Among the prominent exceptions who deemed research incomplete unless their
algorithms had been turned into programs controlled down to the last bit, Don Knuth
stands out: his encyclopedic “Art of computer programming” {note the revealing title)
presents many algorithms as programs written in the assemly language MIX.

To this minority of algorithm researchers and programmers we owe beautiful examples
that show the intellectual elegance to aim at when programming in-the-small, i.e. writing
programs that range from a few lines to a few pages of code. A good book on algorithms
and data structures should be a treasure trove of such “programming pearls” (title of
Bentley’s books). Two examples illustrate this point.

302 J. Nievergelt

1) Warshall’s well-known transitive closure algorithm for a graph of n nodes given
by its adjacency matrix A is best explained as computing a sequence of matrices By ... By:

By 1= adjacency matrix A;
fork:=1tondo

Byli, 31 = Br_1[i, 7] or (Bx_1[i, k] and Bi_4[k, j]).
connectivity matrix C := B,

It is programmed elegantly and efficiently to work in-place, thereby saving memory and
copy operations:

procedure warshall(var a : array [1..n, 1..n] of boolean);
var i, j, k : integer;
begin
for k:=1tondo
fori:=1tondo
for j:=1tondo
ali, 3] := als,] or (afi, k] and afk,j))
end;

Because the assignment mixes values of the old and the new matrix, we get a program
for a different algorithm, which must again be proven correct with new arguments. This
example makes the point that an algorithm must be looked at from different perspec-
tives depending on whether you express it for the benefit of people, i.e. in a form most
readily understood, or as a program aimed at efficient machine consumption. The form
most suitable when using conventional mathematical notation is not necessarily the best
possible program!

2) I often use the second example for surprise effect in class. The logarithmic bit
sum program claims to compute an integer equal to the number of ls in a bitstring
packed into a machine word (Nievergelt and Hinrichs, 1993). When some CDC 6000 series
computers of the 70s suddenly had an operation “population count” rnuch faster than
carlier versions, Control Data must have rediscovered the logarithmic bit sum algorithm:

function logbitsum(w : w16) : integer;
const mask[0] =" 0101010101010101;
mask([1] =" 0011001100110011";
mask([2] =" 0000111100001111";
mask([3] =" 0000000011111111’;
var 1,d: integer; weven, wodd: wl6;
begin
d:=2;
for i := 0 to 3 do begin
weven := w N mask[i];
w:= w/d; {shift w right 2* bits}
d:= d%
wodd := w N maski];
w := weven + wodd,;
end;

Complexity, Algorithms, Programs, Systems: The Shifting Focus 303

return(w)
end;

This code is mysterious, to say the least, and purists might reject it out of hand because
of the type conflict in using variable w both as an integer and as a bit-vector.

It comes as a surprise that the bit-acrobatics above is the logical outcome of the
divide&econquer paradigm: bitsum(w) = bitsum(left half of w) + bitsum(right half of
w). However, the useful algorithm design principle d&c alone would be counterproductive
for this problem if used sequentially. Only when combined with program optimization
based on the fact that Boolean operations on a word are executed bit-parallel on most

computers does it achieve surprising elegance and efficiency. Figure 1 illustrates this
lemma.

. w
| wL l WR |
recursive | bit S‘": algor%thrr; appliedlto
bit sum step WLan WR simultaneously
algorli_thén
applie ‘
[o00 .. 000 [Stwpi]
final ‘
sep | +[000 . 000 | S%)]
Y [= S = S+ Sw)

Figure 1. Bitsum Algorithm

I recall these examples to make the point that the community of algorithm researchers,
or at least some of them, have learned very well indeed how to program in-the-small.
Unfortunately, their feats of programming artistry were accessible and useful only to a
small group of peers. Even today the computing community at large hardly knows that
there is a rich collection of elegant algorithms that can be implemented very efficiently
in just a few pages of code. In contrast, this same computing community has heard all
about object-oriented programming languages and data bases, and knows more about
the latest release of Excel, or Word, or Windows than I do. That is because, with a
few exceptions, we failed to package our elegant and efficient algorithms into end-user
applications but left them to be discovered in text books or in the research literature.

4, What is a system?

Developing a system means programming-in-the-large, a much tougher skill to learn
than programing-in-the-small. It tock the software community decades to learn that

304 J. Nievergelt

useful systems need not be large. Our profession started out in the 50s and 60s developing
systems with the motto “the bigger the better” emblazoned on our flag. The resulting
crises led to the software engineering crusades of the 70s, one of whose positive lessons, for
those with their eyes open, was the counter-motto “the smaller and simpler the better”.
My colleague Niklaus Wirth certainly owes much of his success in software engineering to
the fact that his programming languages, while incorporating some concepts that were
new at the time, always remained Spartan. By focusing on only a few key concepts, mainly
the then-novel issue of data types, Pascal could be implemented by portable single-pass
compilers and ended up having a greater impact than PL/1, the “all-purpose language”
de signed to beat all other languages on their own turf. Similarly, Unix started out as a
small, simple operating system. It could only afford to explode after it had gained wide
acceptance and system administrators were hooked to it “for better or for worse, until
death do us part”.

Accepting the fact that a “system” cannot be a small program, and in particular has
more code than an individual algorithm, size is neither desirable nor a distinguishing
feature of a “system”. Some of the characteristics of a system are:

A system must help its user perform a variety of related tasks, not just one
particular data transformation. An exact a priori input-output specification (as
required for correctness proofs, say) is not practical; rather, the choice of fupctions
to be offered by a system is a task to be tackled with experiencs, intuition, and
trial-and-error. .

A system is more than a mere collection of independent programs whose
union happens to cover all the functionality we seek. At the very least we want
data-compatibility among all the programs in a system, so a common data model
is a key requirement.

A successful system will be used by a variety of users with different goals, knowl-
edge, and skills. A novice wants to browse thru it, whereas an expert expects to
find powerful tools.

A system is never finished — it adapts or dies! Hence it must be designed for
constant modification, including the potential for growth, and must be maintained.
(Some argue that because software, unlike hardware, does not degrade on its own,
it needs no maintenance. It does, because it must be adapted to ever-changing
expectations and environments).

The lifetime of a system, from conception to obsolescence, is of the order of a
decade. Hence those responsible for the system must nurture human expertise
that survives that long.

Any system needs an interactive component. Today, this suggests that a pow-
erful graphical user interface might as well be designed into it from the beginning.
This holds even for a mere library of independent programs to be called by client
programs. Any system is enhanced significantly by the presence of an interactive
data visualization or animation system so the end-user can explore and “get a feel
for” the results produced.

System development is a more demanding task than programming-in-the-small in at
least two important respects. Technically because, unlike for a collectior. of in dependent
programs, a system designer must solve many compatibility problems in such a way as
to not impair achievable performance — many intellectually elegant designs have failed as

Complexity, Algorithms, Programs, Systems: The Shifting Focus 305

systems for this reason of built-in inefliciency, e.g. Algol 68. Secondly, a system creator’s
task, unlike a theoretician’s task, is not finished when the technical labor is complete: the
system has to be introduced to an appropriate user group who knows what to do with
it. This marketing task calls for different skills and suits the character of few technically
inclined people.

5. Sampling the zoo of systems: Experiences and lessons

An underpopulated niche of computer science has attracted my attention from the
beginning of my career: The bridge that leads from theory to system development. This
niche is underpopulated mainly because it calls for skills and styles of thinking that
appear mutually exclusive:

Theory calls for a heavy dose of mathematical thinking and rigorous logic.
System development at the design stage calls for conceptual thinking-in-the-
large that can or must be vague and uncertain; and at the other extreme, when
implementing key routines, calls for a hacker’s love of detail, even when there is no
rhyme nor reason to the particular details one has to live with.

With the goal of working on projects that bridge the gap between theory and systems,
I have had the good fortune of having been involved in system development for three
decades in a variety of capacities, starting in 1962-64 as one of three graduate students
designated to implement the mathematical library of a then-supercomputer, Illiac 2.
What little system integrity this rudimentary library ended up having was to be found
mainly in the design of the “calling sequence” and in recommended common ways of
using the 8 registers of the machine and of allocating vectors and matrices. The three
major tools any Illiac 2 programmer depended on, the loader, the assembler, and the
program library, formed a rudimentary but effective tiny “system”.

A decade and several learning experiences later, from 1970 to 77, I led a group of
up to two dozen faculty and research assistants to develop ACSES, an automated com-
puter science education system, on PLATO, the University of Illinois’ pioneering CAI
(computer-assisted instruction) system (Nievergelt, 1975 and Nievergelt, 1980). I learned
to grapple with big systems, concluded that every system should be interactive, and saw
the design of user interfaces as a major challenge.

ACSES had a big local impact: For over a decade, more than 1000 students per semester
used it in a variety of introductory CS courses which had been changed from the original
3 lecture hours per week to a single lecture hour per week, augmented by course-work
and exercises accomplished on PLATO. This early integration of a computer system into
the teaching operation was only possible thanks to the committed support of the head
of the CS department and the dean of the engineering college.

Although the massive instructional use of ACSES went well, keeping a big system like
ACSES running on the yet bigger system Plato was a nerve-racking organizational and
maintenance chore. Having made my experience with dangerously large systems, during
1976-84 at ETH Zurich I focused my group’s work on the development of a series of
experimental interactive systems for education, X8-0, 1, and 2. These implementations
were conducted as integrated group projects, with 4-6 people working closely together
according to detailed design specifications developed jointly. The experience was in stark
contrast compared with the previous project on PLATO: managing the development

306 1. Nievergelt

was fun, with plenty of unconstrained opportunity to explore research ideas (Nievergelt
and Weydert, 1980). Without an institutional commitment and thus a captive audience,
however, the educational impact of these systems was minimal. The closed, “take-it-or-
leave-it” turn-key-nature of these systems discouraged others from tinkering with them,
and so we lost potential customers knowledgeable enough to be able to tailor the system
to their own wishes.

Looking for ways to simplify the management of software projects, I am now using
another model of system development: the “l-man-system”. The idea is to conceive a
system kerne! that is as small and Spartan as you can possibly make it. It need not be
able to do much, but it is executable and demonstrable — in other words, it does something
you can show to interested people, to potential “customers”. By itself, it does not provide
the end functions the user wants — it merely provides a stepping stone from which the
user can get to his goal more easily than if he started from the conventional platforms
available today, typically a programming environment consisting of an operating system,
programming languages, and various editors. A “cook-it-yourself restaurant” may be an
apt analogy: the restaurant provides the meat, fire, and sauces; the customer picks the
ingredients and uses the grill to adapt the steak to his own specification. He achieves his
goal more quickly, and perhaps more reliably, than if he started from the raw materials
available on the ranch. Many customers can use the same infrastructure simultaneously
to achieve individually tailored results.

Because the kernel's functionality is limited, its design and implementation can be
assigned to one person. In the academic world this is a PhD student, of course, who
devotes his primary activity to this one project for a few years. Any number of others
can build applications on top of the kernel, small or large. The kernel snhanced by one
these application modules becomes an end-user system of respectable power. Let me
mention two such kernel systems developed in recent years, and applications thereof.

5.1. THE SMART GAME BOARD (ANDERS KIERULF ET AL)

The Smart Game Board (Kierulf, 1990 and Kierulf, Chen, and Nievergelt, 1990) is
a computerized board and a programmer’s workbench for developing two-person board
games. The architecture clearly separates the game-independent kernel and the game-
specific modules needed to implement a new game on top of the Smart Game Board.

Board display

& move input . .
Game P Move selection Tree search

specific Y Y " %

Rules Game-playing algorithm

V—
Game 1 1 |
. . Game tree & Computer play .
1 1 | I
independent User interface ! board manager | & time mavager | Szarch engine
* Kernel: Shared data types and procedures

Figure 2. The Smart Game Board

Complexity, Algorithms, Programs, Systems: The Shifting Focus 307

So far chess, Go (Kierulf and Nievergelt, 1989 and Chen, Kierulf, Miiller, and Niev-
ergelt, 1990), Othello, Go-Moku, and Nine-Men’s Morris (Gasser, 1991) have been im-
plemented, with hundreds of game fans regularly using this software for many functions
they normally perform using a wooden board and paper: Playing, analyzing, teaching,
annotating, organizing and storing game collections.

& File Edit Play View Tree Chess 2
Rubinstein Collection: Rubinstein's Immortal '07

B

3.0

22 ... Re8uc3 ! = =
23 g3xh4
23 Bb2:1c3
23 Be4sb?

Black removes one of the

defenders of Be4, at the g
i

cost of his queen.
B

Figure 3. The Smart Game Board: Chess

Most of the Smart Game Board’s user interface is embodied in a control panel common
to all games (shown at the top left in the figure with the chess board). Game-independent
operations are defined as motions on a game tree. Game-specific operations {e.g. setting
up chess positions, marking points on the Go board for an notations) and status infor-
mation (e.g. castling status in chess) are provided in a menu specific for each game.

The Smart Game Board is a sophisticated tool that requires a few weeks of learning
effort but then repays this investment with interest. Once the student understands the in-
terfaces, he can plug small game-specific modules into the much larger game-independent
part to create as a term-project some game-playing program he could not have imple-
mented without this toolkit.

5.2. XYZ GEOBENCH (PETER SCHORN ET AL)

Schorn’s XYZ GeoBench {Schorn, 1991 and Schorn, 1994) is another well-tested “one-
man-system” that has been extended by dozens of other implementors (Nievergelt, Schorn,

308 I Nievergelt

De Lorenzi, Ammann, and Briingger, 1991). Such contributions range from a library pro-
gram for a single computational geometry algorithm to application systems built on top
of the GeoBench such as an office-space allocation package, a prototype workbench for
molecular modeling, and a GeoServer. In co-operation with the database group of H.-J.
Schek, and as a part of the Esprit project “Algorithms, Models, User and Service Inter-
faces for Geography,” De Lorenzi is extending the GeoBench to a server specialized in
performing geometric operations efficiently. The GeoServer can be called over the net-
work from external applications such as spatial databases via a communications protocol
that supports incremental algorithms (the COSIMA Interface) (De Lorenzi and Wolf,
1993). The system diagram below shows:

The modules of the GeoBench proper, including the interactive front end for visu-
alization and direct manipulation of geometric data.

The extendible program library.

Data management systems such as the Grid File.

The GeoServer, an interface for remote access to the program library and storage

systems.
8 < [
< Interactive || =
= Frontend || &
~ ||GeoServer G
>
% ey Y 1 \ T ;
O Universal ||Abstract | Geometric ||Parametric
Operations || Data Types | Primitives || Arithmetic 8
\ &
aan 3
Data Model ; 3
L “-fq\-!' 11
Y v
s Class Hierarchy s
XYZ Kernel

Figure 4. The GeoBench

The experience with this approach of building compact “one-man” kernel systems, to
be extended by others who work closer to some application domain, has been more
successful than any I had tried before. We continue to use this recipe, and the next such
system has already proven itself. Ralph Gasser’s SearchBench for retrograde analysis has

Complexity, Algorithms, Programs, Systems: The Shifting Focus 309

recently completed an exhaustive search of the state space of the game variously called
Nine Men’s Morris or Merrils {Muehle, moulin} with 10'? states. The result of months
of computation: If played optimally, Merrils is a draw. The SearchBench has also been
used to analyze chess endgames and mathematical puzzles.

6. Conclusion: Three types of results

This workshop has shown impressively that enterprising algorithm researchers have
embraced systems development as a marketing outlet for our work. This growing emphasis
on product orientation is long overdue. I am not saying that we should try to force every
theoretical idea should into a system. What I have tried to say is that in our work we
might profitably distinguish three types of projects, and shift the balance away from an
excessive concern with only one or two of these, in particular away from unimplemented
algorithms that merely yield asymptotic bounds without any indication that they are
practical:

1 The purely theoretical result, packaged in the time-honored mold “definition-
theorem-proof”. Forget software.

2 An algorithm, implemented as a stand-alone “proof-of-concept-program” for the
primary benefit of the author. As we have heard repeatedly at this workshop, test

_ implementation and test runs often yield profound insights that theory misses.

3 Application systems! With results of types 1 and 2 we may impress our fellow
researchers. If we seek an impact beyvond our own small circle, we must seize every
reasonable opportunity to turn our work into a product useful to those outside the
circle. Such an applications orientation has been a guiding principle for many of the
talks at this workshop. The following steps may guide those who choose to follow
this path:

Identify a subject area with potential applications where theory is progress-
ing rapidly and expertise is not yet widely available. Surely every theoretical
computer scientist can think of candidates.

Select a target audience from which you can find partners and customers.
Design the desired functionality of a systems: what concepts, objects, operations
must it embody?

Design a kernel systems that can be prototyped in about 1 man-year, with an
interface for an open-ended collection of application programs.

This much for the technical part of the job. Next ...

Find or coerce developers to build applications on top of your kernel system.
But that’s another story beyond my competence, get Bill Gates to talk about
marketing software!

Acknowledgements

This abridged text of an invited talk may serve as an editorial introduction to the special
issue dedicated to papers presented at the ALCOM Workshop on “Algorithms: Imple-
mentation, Libraries, and Use” held at Dagstuhl, August 16-18, 1993. Thanks to the
organizers Kurt Mehlhorn and Stefan Naeher, and to Peter Schorn, Nora Sleumer, and
several participants for their work and comments.

310 J. Nievergelt

References

Chen, K., Kierulf, A., Miiller, M., Nievergelt, J. (1990). The design and evolution of Go Explorer. In:
Marsland, T. A., Schaeffer, J. {eds.) Computers, Chess, and Cognition. Springer.

De Lorenzi, M., Wolf, A. (1993). A protocol for spatial information managers. Proc. Int. Workshop on
Interoperability of Database Applications. Fribourg.

Gasser, R. (1991). Applying Retrograde Analysis to Nine Men’s Morris. In: Levy, D. N. L., Beal, D.
F. (eds.): Heuristic programming in aertificial intelligence 2: The 2nd Computer Olympiad. Ellis
Horwood, Chichester, 161-173.

Kierulf, A., and Nievergelt, J. (1989). Swiss Explorer blunders its way into winning the first computer
Go Olympiad. In: Levy, D.N.L., Beal, D.F. (eds.): Heuristic programming ir artificial intelligence:
The First Computer Olympiad. Ellis Horwood, Chichester (1989) 51-55.

Kierulf, A. (1990). Smart Game Board: A Workbench for Game- Playing Programs, with Go end Othello
as Case Studies. Diss. ETH Zurich.

Kierulf, A., Chen, K., Nievergelt, J. (1990}. Smart Game Board and Go Explorer: A study in software
and knowledge engineering. Comm. ACM. 33, 2, 152-166,

Kierulf, A., Gasser, R., Geiser, P., Miiller, M., Nievergelt, J., Wirth, C. (1991}. Every interactive system
evolves into hyperspace: The case of the Smart Game Board. In: Maurer, H. {ed.): Proc. Hyperte:ct
/ Hypermedia 1991. Springer, 174-180.

Nievergelt, J., Hinrichs, K. (1993). Algorithms and Data Structures, with Applicaticns to Graphics and
Geometry Prent.lce-Hall

Nievergelt, J. (1975). Interactive systems for education — The new look of CAL Invited paper, Proc.
IFIP Conf. on Computers in Education. North Holland, 465-472.

Nievergelt, J. (1980). A pragmatic introduction to courseware design. IEEE Computer 13, 9, 7-21.

Nievergelt, J., Weydert, J. (1980) Sites, modes and trails: Telling the user of an interactive system where
he is, what he can do, and how to get places. In: Guedj, R. A., {ed.}: Methodology of Interaction,
Proc. IFIP Workshop, Seillac 79. North Holland, 327-338. (Reprinted in: Baecker, R. M., Buxton,
W. {eds.): Readings in Human-Computer Interaction. Morgan Kaufmann, 1987).

Nievergelt, J., Schorn, P., De Lorenzi, M., Ammann, C., Briingger, A. (1991). XYZ: A project in ex-
perimental geometric computation. In: Bieri, H., Noltemeier, H. {eds.): Computational Geometry:
Methods, Algorithms and Applications, Proc. CG ’91, International Workshop on Computational
Geometry, Bern, March 1991, Springer LNCS, 171-186.

Schorn, P. (1991). Robust algorithms in a program library for geometrie computation. Diss. ETH Zurich.

Schern, P. (1994). Evolution of a software system: Interaction, Interfaces, and Applications in the XYZ
GeoBench. In this issue.

