
Integrating UML and Formal Methods

Rafael Magalhães Borges1 Alexandre Cabral Mota2

Centre of Informatics
Federal University of Pernambuco

Recife, Brazil

Abstract

UML is a widespread language used in both industry and academia, despite the fact that its semantics is
still informal and allows ambiguities. On the other hand, OhCircus is a formal specification language which
unifies Z, CSP, the refinement calculus of Morgan and object-oriented theories. In this work we integrate
UML class diagrams and OhCircus by written UML elements in terms of OhCircus constructs. However,
instead of a simply syntactical mapping, we also propose the concept of a class model to capture associations
and global constraints. Finally, we use this integration to prove the refinement of associations as attributes,
a result that relates analysis to design to implementation and which is very common in industry.

Keywords: UML, OhCircus, formal methods, translation, refinement.

1 Introduction

Formal Methods have proven effective in the development of critical systems [30,13,2].
However, they are not used in large scale due to many factors, specially their strong
mathematical basis [5,28]. This represents a big obstacle to its widespread use.

Among various initiatives to make Formal Methods more accessible and used in
industry, the current research direction is using a graphical and appealing language,
such as UML, to encapsulate formal notations. This is usually accomplished by
providing a mapping to constructions of a (often informal) language into another,
a more formal one [17,21,3,14]. Thus, popular modelling languages, well-known by
developers, are mapped into more powerful and formal, designed without major
conceptual restrictions (although some are necessary for their practical usage).

As informal notation, UML [18,20] deserves special attention. It is composed of
graphical elements to represent the variety of software entities and their relationship.
Thanks to its apparent simplicity and ease of use, UML has become a de facto

1 Email: rmb2@cin.ufpe.br
2 Email: acm@cin.ufpe.br

Electronic Notes in Theoretical Computer Science 184 (2007) 97–112

1571-0661 © 2007 Elsevier B.V .

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.03.017
Open access under CC BY-NC-ND license.

mailto:rmb2@cin.ufpe.br
mailto:acm@cin.ufpe.br
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

standard; nevertheless it can also express ambiguities and is insufficient to represent
even simpler properties, as pointed out in [19].

OhCircus [4] was chosen as our formal language because it has an intuitive rep-
resentation of constructions like classes and inheritance and is based on a refinement
theory (the refinement calculus of Morgan [16]). These same arguments discarded
languages like Z [29] and Object-Z [27], as stated in [4]. Furthermore, OhCircus is a
language which integrates well-established concepts on the formal community: the
model-based language Z, the process algebra CSP [22], the refinement calculus [16],
and object-orientation, providing an unified language of classes and processes. Some
of its design decisions came from UML-RT 3 [26], which turns it even more appro-
priate for out intended mapping.

Our goal in this work is the translation of UML class diagrams elements into
OhCircus constructs. Our premises are to preserve all diagram structure, including
their relationships and global invariants. This is achieved through a meta-class,
syntactically equivalent to any other class, but that captures the overall structure.
The main motivation is the exploration of refinement in UML [25].

Our approach differs on treating UML in the same semantic level of the formal
language. For example, UML classes are mapped into classes in our chosen lan-
guage. Other works, like those from the most important group in the area, offer a
denotational semantics of UML in Z [9,7].

Finally, many works [3,6,15], including [20], assume the equivalence between
associations and attributes as valid whereas we propose the use of associations as
an abstract view of the class diagram. These associations are eliminated along
the refinement process through the introduction of attributes in the classes which
participate in these associations. This is a further contribution in the sense that,
in addition to the result itself, we give and consolidate insight about our mapping
and its notion of class model.

This works is organised as follow. In Sections 2 and 3, we describe the main
elements of UML class diagrams and OhCircus specifications, respectively. In Sec-
tion 4, we present our first contribution: the translation of a UML class diagram
into an OhCircus specification (where we show our concept of the class model). The
second contribution appears in Section 5, where we address refinement in UML
diagrams using associations-as-attributes. Finally, we present our conclusion and
future works in Section 6.

2 UML

The Unified Modelling Language (UML) is the language proposed by the OMG
(Object Management Group) for modelling systems. It became a de facto standard
because of its ease of use and intuitive notation.

A UML model represents the description of a set of objects which takes part
in an application and the interactions to which they are submitted over time. A

3 UML-RT is an UML extension that deals with concurrency.

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–11298

snapshot of this set of objects and their instantaneous interactions represents a
configuration of the system, and the collection of all possible configurations denotes
the semantics of the model. So, a model can be seen as the description of a system.

UML is compound of several diagrams that express static and dynamic aspects
of an application. Static aspects are related to the structure of the system, being
true all the time. The purpose is to describe the entities of a system and how they
will always be related. On the other hand, dynamic aspects refer to the evolution
of the application: the creation and destruction of objects and their connections
over time; formally, the transformations in the global state (the set of objects and
relations) of the system.

2.1 Class Diagram

Class diagrams are the most common diagrams used in software development pro-
jects. They model concepts from the domain of the application and the structural
aspects of the system using classifiers and relationships as their building blocks.
They are also named static view, representing information that never changes.

The following example will be used throughout this paper. It is a simplified
banking system that, although not exhaustive, exemplifies the main entities of class
diagrams (Figure 1). In this model, we establish that persons own accounts or credit
accounts. Persons, accounts, and credit accounts are represented by, respectively,
the entities Person, Account, and CreditAccount. The ownership property is mod-
elled through the owns relationship. Lastly, a (anonymous) relationship states that
a credit account is a specialisation of a conventional account.

Figure 1. Static aspects.

2.1.1 Classifiers
A Classifier is a meta-class that groups all constructions which classify values. Its
purpose is to introduce entities in diagrams. Classifiers are composed of members,
which state behavioural and/or structural characteristics. Its main subclasses are
Class and DataType. Other subclasses (like Interface) will not be considered in this
work.

Classes
Classes are the key elements in a class diagram. They represent concepts inside

the system’s domain and introduce new types in the model. They describe the

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–112 99

structure and behaviour of a set of objects using fields, associations, and methods.
In Figure 2 we can observe the class Account.

Figure 2. Class Account.

The fields describe values that the objects of a class contain. Each field has a
type and, if desired, an initial value. The class Account of the above figure has two
fields: number and balance. Each one holds an Integer value.

The methods of a class represent the implementation of operations. They em-
body a transformation on the state of the object from which they were invoked.
They have a list of parameters and a return type. For instance, the class Account
of Figure 2 has the method Withdraw that performs withdrawals, taking as input
the amount and modifying the balance accordingly.

Visibility is a property shared by fields and methods (the class’ members) that
determines the accessibility of the member by other entities. Members can be private
(denoted by −), protected (#), or public (+), being visible in the scope of the class
itself, its subclasses, or any entity in the model, respectively. In the example of
Figure 2, the fields of the class Account are protected while its method is public.

Data types
Data types (also known as primitive types) comprise values that are free from

side-effects and do not have identity. Thus, two values that have the same repres-
entation are indistinguishable. They often model mathematical domains and their
values are immutable. It is worth noting that the value stored in a field can be
updated, but the value itself cannot. In UML, the numeric types, strings, and
booleans are the predefined primitive types.

2.1.2 Relationships
Relationships denote semantical connections among the elements of the model.
UML provides several ways to express these links, being associations and generalisa-
tions the main ones. Associations characterise structural relations among instances
while generalisations create taxonomy among them.

Associations
An association establishes a structural relation between two classifiers. The

associations may be named and have two endpoints (association ends), held by
classes, to which behaviour can be designated (“roles”) 4 .

4 In UML you can also get associations with more than two endpoints. However, they are uncommon and
do not have simple semantics as the binary ones. Thus, we are not concerned with them in this paper.

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–112100

In Figure 3, the association whose name is owns has two endpoints. The first
one is held by the classifier Person, which plays the role of owners. The second one
is Account, whose role is accounts. Semantically, owns relates instances of Person
and Account.

Figure 3. owns association.

Multiplicity imposes a constraint on the number of entities of an endpoint that
are related to a single element of the other. The cardinality of this set can also be
expressed using ranges. For instance, consider the owns relationship, where we can
relate a Person to zero or more (0..*) instances of Account ; and for each instance
of Account it must relate one or more instances of Person. The latter constraint
enforces that every account must have at least one owner.

Navigability defines visibility for associations. The entity in one endpoint is
seen by the opposite entity if the association between them is navigable; otherwise,
that entity cannot state anything about the instances to which it is associated.
Navigability is no further discussed.

There are other kinds of associations, like association classes, recursive associ-
ations, and qualified associations, that, although included in the translation, are
not discussed here 5 .

Generalisations
Generalisations capture inheritance relations between a more general class (su-

perclass) and a more specific one (subclass). In fact, all members held by the
superclass are inherited by the subclass. This relationship also states that every
instance of the subclass is also an instance of the superclass. It is worth noting that
we are interested only in simple generalisations, where classes can have only one
superclass.

In Figure 4, we can see a generalisation relation between CreditAccount and
Account. All members of Account have been inherited by CreditAccount. Because
of this relationship, credit accounts can participate in the owns association, indis-
tinguishable from conventional accounts.

3 OhCircus

Formal methods comprehend an area of computer science that provides formal in-
terpretations to the diverse aspects of a program, like data types and concurrency.
Z and CSP, for example, are two of the most used formalisms in industry.

The investigation of each aspect individually is very important, but the current
attitude is to unify several formalisms and verify the influence of one above the

5 For further information, please see [1].

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–112 101

Figure 4. Generalisation relationship between CreditAccount and Account.

others. In particular, the attempts of integration between Z and process algebras
(CSP-Z, CSP-OZ [8]) consider state and communicating aspects of concurrent sys-
tems in an unified language, taking advantage of the existing theories and tools.
A similar formalism is Circus [31], which proposes a refinement calculus to that
integration. Moreover, it is familiar to those who knows Z and CSP and enables
the reuse of existing and well-established tools, like FDR [10] and Z/EVES [24].
OhCircus is an extension of Circus which adds classes, inheritance, dynamic binding
and other features from the object-oriented paradigm.

3.1 Classes and Inheritance

A program in OhCircus is a sequence of paragraphs (much like Z and Circus) that
defines classes and processes. To illustrate the object-oriented features 6 , the next
paragraph introduces the class CreditAccount , which models banking accounts that
offer credit to the customers.

classCreditAccount extendsAccount =̂ begin

In OhCircus, a class declaration is introduced with the keyword class, followed
by its name and the optional clause extends. This last part enables inheritance
between classes; if omitted, the class inherits from the special class object. In this
example, CreditAccount extends (inherits from) Account .

A class in OhCircus is quite similar to a Z specification. Fields, constructor, and
methods are also introduced through paragraphs, often in the form of schemas.

stateCreditAccountState
private credit : Z

balance + credit ≥ 0

The state clause indicates the schema which defines the state of a class. This
schema is similar to that of Z, though its variable declarations can also contain
qualifiers. If nothing is said, fields are assumed private. We can also declare
them as protected or public. Despite its stated semantics, the modifiers do not
constrain the access to the fields in OhCircus.

6 Concurrency features are beyond the scope of this article.

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–112102

Implicitly, the CreditAccount state inherits all fields and invariants declared in
the state of its superclass. Moreover, new fields and invariants can be defined. For
example, the CreditAccountState introduces a new private field, credit, and states
that the sum of balance and credit cannot be negative. Note that the invariant is
made up of fields from the subclass and also from the superclass.

publicWithdraw
ΔCreditAccount
amount? : N

amount? ≤ balance + credit
balance ′ = balance − amount?
number ′ = number

Methods are differentiated from other paragraphs by the use of private, protected,
public, or logical qualifiers. The first three are directly related to the visibility of
the method, again with standard meaning. The logical methods are just specific-
ation artefacts, useful for the calculation of complex expressions, for instance, but
not necessarily present in the implementation.

Similar to Z, the methods of an OhCircus class interact with the state, modifying
it (Δ) or not (Ξ). If a method is redefined, there is no inclusion of the superclass
method into the new specification. However, it is necessary that the new definition
retains the original behaviour. In other words, the new specification must be a
refinement of the original one.

The operation Withdraw needs to encompass the new situation stated by ac-
counts which have credit: it is not required that the balance is sufficient; only that
the withdrawal does not surpass the limit. Note the weakening of the pre-condition
and how it expresses a refinement of the original operation.

Methods which are not redefined are implicitly inherited by the new class, with
the safeguard that they do not modify the components introduced by the new state.

end

Every class declaration is completed with an end clause.

3.2 Associations

To represent the banking application itself, it is also necessary to specify the class
Bank, relating accounts and customers. Particularly, we present only its state about
the Person, Account, and owns entities 7 (Figure 3).

7 Note that OhCircus does not have a constructor equivalent to the UML association.

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–112 103

stateBank
accounts : P Account
persons : P Person
owns : Person ↔ Account

owns ∈ persons ↔ accounts
∀ a : accounts • #owns∼(| {a} |) ∈ N1

The fields of the class Bank include sets of accounts and customers and a rela-
tionship between accounts and customers. The invariant states that only enrolled
accounts and customers can participate in the relationship, and that every account
must be associated with at least one owner.

4 Mapping

In OhCircus, the “static view” is captured directly through its set of classes. As seen
previously they have invariants, fields, and methods, like those of UML. However,
the interaction between two classes is only captured through fields, as long as there
is no notion of association. For example, recall that in the previous section the class
Bank serves as the link between Account and Person. Other important aspect is
that, in OhCircus, it is not possible to establish global invariants. Classes can only
constrain their own states.

Our solution to these problems is the introduction of a class named Model,
responsible for capturing all the structure of a class diagram: the sets of instances
of classes, the relationships, and the global invariants. We believe that this approach
offers a more abstract view of the class diagrams when compared to others ([6,15,3]),
which only consider the representation of the classes, capturing associations directly
through fields and ignoring global invariants. Note that the class Model is not part
of the class diagram itself; it arises from our interpretation of the diagram. Thus,
it is a kind of meta-class.

Illustrating our earlier discussion about capturing the association between ac-
counts and persons, we present the state of a class Model that would realise our
purpose.

stateModelState
persons : P Person
accounts : P Account
owns : Person ↔ Account

owns ∈ persons ↔ accounts
∀ a : accounts • #(owns∼(| {a} |)) ∈ N1

Note how this class is similar to the class Bank of the previous section. Further-
more, observe that this class represents the semantics of a class diagram similarly

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–112104

to [18,20]. Each possible value denoted in this class reproduces some valid config-
uration of the class diagram. In other words, every instance of Model reflects an
object diagram.

4.1 Classes

Once they have the same constructions, like fields and methods, the UML classes
are easily mapped into OhCircus ones, though some constraints must be imposed.
For instance, in Figure 5 we have the class CreditAccount mapped into an OhCircus
class.

Figure 5. Mapping the class CreditAccount.

The fields of a UML class are mapped into schema state variables (the state
schema) of a OhCircus class as well as the visibilities and types of these fields.
Observe how the field credit of class CreditAccount is directly mapped into a variable
of the schema CreditAccountState.

Methods are mapped into operation schemas. By default, these schemas modify
the state (Δ-schemas) except when labelled query ; in this case, they are mapped
into Ξ-schemas. The input parameters are mapped into input variables (decorated
with ?) while the result of the method, if present, is mapped into the variable result !.
This transformation can also be observed in Figure 5.

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–112 105

stateModelState
creditAccounts : P CreditAccount
. . .

As suggested before, each class introduces into Model a set of instances, directly
represented through power-sets. From the previous state schema, we can see the
set of instances of the class CreditAccount.

Another interesting point is that if the type of a field is also a class, then it also
introduces invariants in the class Model. These invariants assert that the values of
these fields must be contained into their respective set of instances.

4.2 Data types

UML has four basic data types: Integer, UnlimitedNatural, Boolean e String.
In OhCircus, we have the direct correspondence between Z and Integer, N and
UnlimitedNatural, and B and Boolean. However, the String type does not have
an equivalent one. So, we represent it by a sequence of elements in some standard
character encoding system (such as ASCII or UNICODE) where the standard itself
is naturally defined by traditional Z enumerations. Thus, operations like concat,
size, and substring become readily available 8 .

4.3 Generalisation

For mapping inheritance, one must include, in the OhCircus representation of the
subclass, the extends clause followed by the name of the superclass. Moreover, an
invariant in the class Model must assert the inclusion of the elements from the set of
instances of the subclass into the set of instances of the superclass. In the following
example, the invariant ensures that the elements of creditAccounts are also values
of accounts.

stateModelState
accounts : P Account
creditAccounts : P CreditAccount

creditAccounts ⊆ accounts

4.4 Associations

Associations are an interesting construction to be captured, given that they are not
readily available in purely object-oriented languages. The most common approach
is to represent them directly using fields, though we believe that this is not the most
natural way because of their conceptual distinction.

Once they introduce entities in the model, associations must be captured globally
by the class Model. The roles played by the classes become fields, and an invariant

8 Once data types do not have identity, they do not introduce a “set of all its instances” in the class Model.

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–112106

links them all. Such fields are only syntactic sugar, because the consistency of the
association is maintained by a relation in the class Model. However, they are neces-
sary because the UML semantics allows statements about the classifiers to which a
class is associated. Lastly, constraints are also established regarding multiplicity.

stateModelState
persons : P Person
accounts : P Account
owns : Person ↔ Account

owns ∈ persons ↔ accounts
∀ a : accounts • #owns(| {a} |) ∈ N1

∀ p : persons • p.accounts = accounts (| {p} |)
∀ a : accounts • a.owner = accounts∼ (| {a} |)

Observe the relationship owns of Figure 3. This association becomes a field in
the class Model, as can be seen. The invariant links the domains of the association
with the respective set of instances and multiplicities. The owner and accounts
roles become fields of, respectively, the classes Account and Person. Finally, the
invariant of Model defines how the fields are interpreted by means of the original
relationship 9 .

5 Refinement

The refinement relation expresses a notion very common in Software Engineering:
a “better” component can be used in the place of another, without modifying the
properties of the system. Generally, refining means introducing details into a model,
such as design decisions or looking for unexplored situations. It is worth noting that
these improvements can be done gradually, producing models increasingly closer to
a possible implementation.

In particular, the Formal Methods community has a standard definition for a
refinement relation (although close-related to model based languages, such as Z):
weakening pre-conditions to increase applicability of operations and strengthen-
ing post-conditions to decrease non-determinism. To guarantee the correctness of
this procedure, there are proof obligations: the applicability and correctness theor-
ems [30].

A direct consequence of the mapping we have proposed is the ability to explore
UML refinement in formal ways: refinement of UML models can be assured by data
refinement in OhCircus.

The example in this section copes with an old question from the object-oriented
community: the representation of associations as fields [12,11,23]. In this work,
we try to give some formal support to this approach, transforming models that

9 The relational image of a set of objects ((| |)) is the set of objects associated to the first through the
relation.

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–112 107

mix fields and associations in ones that have only fields, bringing them closer to
implementation. However, the support provided by a theorem prover is a very
important feature to guarantee the correctness of a demonstration, and OhCircus
still lacks it. In the other hand, OhCircus has the refinement theory of Z, which has
the support from Z/EVES. Thus, we chose Z to specify our model.

5.1 Models

In this subsection, we will present the two class diagrams related to abstract and
concrete models. In our mapping, each one of these class diagrams introduces a class
Model in the specification. These classes will serve as the state of the specifications
and their (meta-)operations will be refined.

The operations identified by the classes ModelR and ModelA change the sets
of instances and associations of a diagram through the addition and removal of
elements, in a similar approach to the one reported in [15]. However, since the
representation of the sets does not change from one diagram to another, it is trivial
to prove its refinement. So, we are interested only in the operations of addition and
removal of an association pair. The steps of the proof can be seen in [1].

[A,B]

Initially, we want to establish that the structures of A and B are arbitrary.
Abstracting the structure of the classes makes the formalisation more general.

5.1.1 Abstract model
The abstract model is very simple. It contains two classes and an association
between them. To generalise as much as possible, no constraint will be imposed
on the classes or association.

ModelR
iA : P A
iB : P B
R : A ↔ B

domR ⊆ iA ∧ ranR ⊆ iB

This schema represents the class model of the abstract diagram, with some
small changes in notation: iA and iB represent the sets of instances of A and B,
respectively, while R represents the relation between them. Note the absence of the
roles of the association; they will be introduced later.

The addition (AddR) and removal (RemR) operations represent the two possible
ways of interaction of objects with the association: it is only possible to add or
remove links. In the abstract model, this is represented using union and subtraction
of pairs of a relation.

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–112108

5.1.2 Concrete model
The concrete model changes the representation of the association; now, it is captured
by means of fields and invariants.

ModelA
iA : P A
iB : P B
as : B 	→ P A
bs : A 	→ P B

dom as = iB ∧ ran as ⊆ P iA
dom bs = iA ∧ ran bs ⊆ P iB
∀ a : iA; b : iB • b ∈ bs a ⇔ a ∈ as b

The concrete model introduces “fields” in classes A and B using the as and bs
functions. This is the only possible representation, since Z does not allow mutually
recursive schemas. But note the similarity between the notations a.bs and bs a.
Again, these “fields” must be related to the sets of instances of A and B. The last
line of the invariant establishes the consistency of the association using fields: if the
pair (a, b) is linked, then a ∈ b.as iff b ∈ a.bs.

AddA
ΔModelA
a? : A
b? : B

a? ∈ iA ∧ b? ∈ iB
a? /∈ as b? ∧ b? /∈ bs a?

bs ′ = bs ⊕ {a? 	→ (bs a? ∪ {b?})}
as ′ = as ⊕ {b? 	→ (as b? ∪ {a?})}
iA′ = iA ∧ iB ′ = iB

The operation that adds a pair to the association (AddA and, analogously to
removal, RemA) has been changed to support the new data representation. Only
those instances to which a link is being added (or removed) will have their “fields”
updated. Other unrelated elements are not modified.

5.2 Refinement proof

To demonstrate that the concrete model refines the abstract one, it is necessary
to establish the retrieve which relates both representations of state and prove that
it represents a relation of simulation [30]. This means to formulate and prove
applicability and correctness theorems for all operations.

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–112 109

Retrieve
ModelR
ModelA

∀ a : iA • bs a = R (| {a} |)
∀ b : iB • as b = R∼ (| {b} |)

Observe that our Retrieve is exactly what we proposed to the mapping of roles
of an association as fields: the set of elements to which some instance is associated
via a relation. This relation is also in conformity with that one established in the
UML specification [20].

6 Conclusion

In this work we considered the UML formalisation using the formal specification lan-
guage OhCircus. Although not exhaustive, we dealt with the most important UML
static constructions. The originality of the approach, where we connect isolated ele-
ments of other works, and also our contribution to support the use of associations
and their representation as fields are the main points of this paper.

The first contribution of this work is the transformation of UML class diagrams
into OhCircus specifications. We chose to treat them in the same semantic level,
giving a syntactic mapping to the UML elements direct representation in terms of
OhCircus constructions. We believe that this alternative is more natural as long
as OhCircus is an object-oriented language, thus not requiring the (re)definition of
notions like classes and inheritance.

However, UML defines some elements which are not available in OhCircus. The
proposal of a class Model arose as an interesting addition to this mapping. Bringing
the “semantics” of an object-oriented model (i.e. their sets of instances, interactions,
and constraints) to the specification itself revealed a valuable achievement: now we
can naturally capture associations, global invariants, and even dynamic aspects.

The second contribution of this paper is the analysis of refinement in UML.
In particular, the class Model allowed exploring the same refinement theory of Z,
where there is only one (global) state and operations that act over it; this gave us
a direct tool support. The case study was the previously discussed representation
of associations as fields, and our contribution was that the representation of fields
is a refinement of the one with associations.

It is worth noting that the use of Z/EVES was essential to the proof. The
support of a consolidated tool is very important to give more credibility to the work.
Unfortunately, it is not so friendly, requiring some practise to use it effectively.

6.1 Future works

Various works can be derived from this one; the obvious ones are directly related
to the extension of this mapping, concerning UML aspects not yet explored. The

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–112110

rest is related to the use of this mapping as the formal basis to analysing model
transformations.

• The most immediate extension of this work regards the other static elements that
were not captured, like abstract classes, interfaces, and some kinds of modifiers
of associations. Following this direction, investigating the potential of using OCL
(a language to express constraints) to annotate the UML models is also valuable.

• Investigate the possibility of “inverting” the mapping, examining how to trans-
form a specification in the shape of those of this work (and even unconstrained
ones) back into UML. This is important when some tool support for OhCircus will
be available, formally analysing the model, but presenting the results in terms of
UML constructions.

• The incorporation of UML dynamic aspects through the class Model is an ap-
pealing related work: analysing what sequences of instances of the diagram are
valid and the provision of dynamic invariants are some of the issues which can be
inspected.

• Concurrency in UML through OhCircus is particularly being exploited through
the real-time profile [25], with much promising results.

• Related works to refinement are also important. The formal proof, using this
mapping, of the validity of design patterns is an example of relevant contribution
to the area of software engineering. Other refinements can be inspected, like
the transformation of bidirectional associations into unidirectional ones and the
inclusion or removal of a class from the model, proposing, for example, a set of
transformation laws to UML models.

References

[1] Borges, R. M., Integrando UML e Métodos Formais, Final year project, Centro de Informática,
Universidade Federal de Pernambuco (in Portuguese) (2004).
URL www.cin.ufpe.br/∼rmb2/pdf/borges04integrando.pdf

[2] Bowen, J. and M. Hinchey, “Applications of Formal Methods,” Prentice Hall PTR, 1995.

[3] Breu, R., U. Hinkel, C. Hofmann, C. Klein, B. Paech, B. Rumpe and V. Thurner, Towards a
Formalization of the Unified Modeling Language, in: ECOOP (1997), pp. 344–366.

[4] Cavalcanti, A., A. Sampaio and J. Woodcock, A Unified Language of Classes and Processes, in: St
Eve: State-Oriented vs. Event-Oriented Thinking in Requirements Analysis, Formal Specification and
Software Engineering, Satellite Workshop at FM’03, 2003.

[5] Clarke, E. M. and J. M. Wing, Formal Methods: State of the Art and Future Directions, ACM
Computing Surveys (1996).

[6] Evans, A., Reasoning with UML Class Diagrams, in: WIFT ’98: Proceedings of the Second IEEE
Workshop on Industrial Strength Formal Specification Techniques (1998), p. 102.

[7] Evans, A. and T. Clark, Foundations of the Unified Modeling Language, in: Proceedings of the 2nd
BCS-FACS Northern Formal Methods Workshop, Ilkley, UK, 1997.

[8] Fischer, C., How to Combine Z with Process Algebra, in: Proceedings of the 11th International
Conference of Z Users on The Z Formal Specification Notation (1998), pp. 5–23.

[9] France, R. B., A. Evans and K. Lano, The UML as a Formal Modeling Notation, in: H. Kilov, B. Rumpe
and I. Simmonds, editors, Proceedings OOPSLA’97 Workshop on Object-oriented Behavioral Semantics
(1997), pp. 75–81.

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–112 111

www.cin.ufpe.br/~rmb2/pdf/borges04integrando.pdf

[10] Goldsmith, M., “FDR: User Manual and Tutorial, version 2.77,” Formal Systems (Europe) Ltd (2001).

[11] Graham, I., J. Bischof and B. Henderson-Sellers, Associations Considered a Bad Thing, Journal of
Object Oriented Programming 9 (1997), pp. 41–48.

[12] Génova, G., Semantics of navigability in UML associations, Technical Report UC3M-TR-CS-2001-06,
Computer Science Department, Carlos III University of Madrid (2001).

[13] Heimdahl, M., Experiences and Lessons from the Analysis of TCAS II, SIGSOFT Softw. Eng. Notes
21 (1996), pp. 79–83.

[14] Kim, S. and D. Carrington, A Formal Mapping between UML Models and Object-Z Specifications,
Lecture Notes in Computer Science 1878 (2000), pp. 2–21.

[15] Lano, K. and J. Bicarregui, UML Refinement and Abstraction Transformations, ROOM 2 Workshop,
Bradford University (1998).

[16] Morgan, C., “Programming from Specifications (2nd ed.),” Prentice Hall International (UK) Ltd., 1994.

[17] Moura, P., R. Borges and A. Mota, Experimenting Formal Methods through UML (2003), submitted
to WMF’2003.

[18] OMG, UML 2 Infrastructure Final Adopted Specification, Whitepaper, Object Management Group
(2003).
URL http://www.omg.org/cgi-bin/doc?ptc/2003-09-15

[19] OMG, UML 2 OCL Final Adopted Specification, Whitepaper, Object Management Group (2003).
URL http://www.omg.org/cgi-bin/doc?ptc/2003-10-14

[20] OMG, UML 2 Superstructure Final Adopted Specification, Whitepaper, Object Management Group
(2003).
URL http://www.omg.org/cgi-bin/doc?ptc/2003-08-02

[21] Roe, D., K. Broda and A. Russo, Mapping UML Models incorporating OCL Constraints into Object-Z,
Technical Report 2003/9, Imperial College London (2003).

[22] Roscoe, A. W., C. A. R. Hoare and R. Bird, “The Theory and Practice of Concurrency,” Prentice Hall
PTR, 1997.

[23] Rumbaugh, J., A Search for Values: Attributes and Associations, Journal of Object Oriented
Programming 9 (1996), pp. 6–8.

[24] Saaltink, M., The Z/EVES 2.0 User’s Guide, Technical Report TR-99-5493-06a, ORA Canada, One
Nicholas Street, Suite 1208 - Ottawa, Ontario K1N 7B7 - CANADA (1999).

[25] Sampaio, A., A. Mota and R. Ramos, Class and Capsule Refinement for UML-RT, in: WMF 2003: 6th
Workshop on Formal Methods, Brazil, 2003, pp. 16–34, extended version to appear in Electronic Notes
in Theoretical Computer Science, Elsevier, 2004.

[26] Selic, B. and J. Rumbaugh, Using UML for Modeling Complex Real-Time Systems, Whitepaper,
Rational Software Corp. (1998).

[27] Smith, G., “The Object-Z Specification Language,” Kluwer Academic Publisher, 2000.

[28] Sommerville, I., “Engenharia de Software (6a ed.),” Prentice-Hall, 2003.

[29] Spivey, M., “The Z Notation,” Prentice-Hall, 1992.

[30] Woodcock, J. and J. Davies, “Using Z: Specification, Refinement, and Proof,” Prentice Hall, 1996.

[31] Woodcock, J. C. P. and A. L. C. Cavalcanti, The Semantics of Circus, in: D. Bert, J. P. Bowen, M. C.
Henson and K. Robinson, editors, ZB 2002: Formal Specification and Development in Z and B, Lecture
Notes in Computer Science 2272 (2002), pp. 184–203.

R.M. Borges, A.C. Mota / Electronic Notes in Theoretical Computer Science 184 (2007) 97–112112

http://www.omg.org/cgi-bin/doc?ptc/2003-09-15
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02

	Introduction
	UML
	Class Diagram

	OhCircus
	Classes and Inheritance
	Associations

	Mapping
	Classes
	Data types
	Generalisation
	Associations

	Refinement
	Models
	Refinement proof

	Conclusion
	Future works

	References

