
Progress and Quality Modeling of Requirements Analysis Based on Chaos

Junwei Ge, Yiqiu Fang
{Faculty of Software, Faculty of Computer Science and Technology}

Chongqing University of Posts and Telecommunications
Chongqing 400065, China

{gejw, fangyq}@cqupt.edu.cn

Abstract

It is important and difficult for us to know the

progress and quality of requirements analysis. We
introduce chaos and software requirements complexity
to the description of requirements decomposing, and
get a method which can help us to evaluate the
progress and quality. The model shows that
requirements decomposing procedure has its own
regular pattern which we can describe in a equation
and track in a trajectory. The requirements analysis
process of a software system can be taken as normal if
its trajectory coincide with the model. We may be able
to predict the time we need to finish all requirements
decomposition in advance based on the model. We
apply the method in the requirements analysis of home
phone service management system, and the initial
results show that the method is useful in the evaluation
of requirements decomposition.

1. Introduction

Requirements specification is the beginning of the
major phases of software design process. The initial
description of the desired product may be vague,
unreasonable, contradictory, or simply impossible to
achieve. One of the main tasks of requirements
analysis is to elaborate the user requirements to
discover more about the implications of satisfying
them. We need to determine exactly what it is that the
client and system need and to find out from the client
what constraints exist before system architecture
design [1]. Generally speaking, the process of
requirements engineering starts from initial user
requirements and advances towards system
requirements that are refined by a structural
decomposition until they can be implemented [1], [2],
[3], [4], [5]. Here are some outstanding problems in
requirements decomposition. One is absence of clear

guidelines for requirements decomposition [6]. The
second is when the decomposition process can be
thought enough. We should identify how we’ll know
when the system meets each requirement [7]. The third
is about the reliability of decomposition process. We
should know how to evaluate the correctness of the
process when requirements are under decomposition.
These problems puzzle us in requirements analysis.

Based on the theory of nonlinear dynamic system,
we developed a chaotic decomposition modeling
which can guide us decomposing requirements, and
help us to estimate the decomposition phase and
evaluate its quality.

2. Backgrounds

A typical process of software requirements
decomposition is represented in Figure 1. The initial
requirements for a complex software system should be
decomposed into sub-requirements because the initial
requirements usually are very abstract at the beginning
and require further concretization. The decomposition
principle is applied to break a complex problem into a
hierarchy of clusters, sub clusters, sub-sub clusters and
so on [1], [3], [8], [9], [10], [11].

Level 0

Level 2

Initial Requirement

RequirementRequirement RequirementLevel 1

Sub-requirements

Level t Sub-requirements

Figure 1. Typical requirements decomposing
process of a software system

2008 Advanced Software Engineering & Its Applications

978-0-7695-3432-9/08 $25.00 © 2008 IEEE

DOI 10.1109/ASEA.2008.22

115

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:38:50 UTC from IEEE Xplore. Restrictions apply.

Where, same objectives in the same level will be
taken as one objective. Objectives in the upper level
will be inherited if they will not be decomposed further.
The goal of a system development is to build a system
that will satisfy the agreed requirements. This task is
very hard if there is a large and complex set of
requirements for the system.

Software requirements decomposition can be taken
as a dynamic system for it can evolve over time. It is a
discrete process, so we shall discuss it as a discrete
system in the following sections.

A discrete dynamical system is specified by
difference equations, and it can be written as

).,(1 txfx tt =+
We studied the process of software requirements

decomposition from dynamical system and system
complexity [12]. The results showed that the process
can be taken as a nonlinear dynamical system. It can be
written as

ttt xNxgx +=+),(1 α . (1)
Where, α is a constant (≥ 0) which we call the
Requirements Decomposition Rate Parameter (RDRP)
and represents the increased number of requirements
derived directly from a single initial requirement in
layer 0, t = 0, 1, 2, …represents the decomposition
layer t, N is the maximum number of requirements that
the system can have, and xt = nt/N represents
requirements saturation where the number of
decomposed requirements in layer t is nt. Function g(xt,
N) is decided by requirements complexity, which is
taken as in direct ratio of the number of interactions
among requirements in the system [12].

For the simplest situation where requirements
complexity is in direct ratio of nt - 1, the process can
be described as,

tttt xxxNx +−−=+)1)](/11/([1 α . (2)
Equation (2) is a chaotic system. It has bifurcations

and a three-point attractor. It is sensitive to initial
requirements x0 (or n0) and has unpredictable final
states in chaos although it is deterministic.

Behaviors of (2) are determined mainly by the
parameter RDRP, which can be divided into stable and
unstable regions. Suppose N = 1000. If RDRP is in its
stable region, requirements can be fully decomposed in
a stable manner, as shown in Figure 2. If, on the other
hand, RDRP is in its unstable region, the
decomposition process will be unstable or in chaos and
the decomposed results will be erratic, as shown in
Figure 3. In this situation it may be impossible for us
to identify all sub-requirements because a small change
of initial requirements will cause a large change in the
decomposition.

Therefore, requirements decomposition should be
performed in stable region. Based on the theory above,
we’ll derive following decomposition modeling which
can help us to gain all requirements.

3. Modeling

From Equation (2), we can see that software
requirements decomposition equation have three
parameters i.e. RDRP α, initial value x0, and maximum
number N. Let N = 100, 1000 and 5000 under the
situation of α = 1 and x0 = 0.01, than we can get three
decomposition trajectories, where α is in its stable
region. The result shows that three trajectories coincide
with each other. The trajectories with different N are
almost same so long as α and x0 don’t change.
Therefore, decomposition will not affected by N.

Let N = 1000, and x0 = 0.001, 0.01, 0.1, 0.3, and 0.7
separately, we can get decomposition time series
separately. The results show that the decomposition

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 5 9 13 17 21 25 29 33 37 41
Cycle (t)

R
eq

ui
re

m
en

ts
 S

at
ur

at
io

n

x(0)=0.001 α=2.99
Figure 3. Behavior of decomposition in an

unstable manner

0

0.2

0.4

0.6

0.8

1

1.2

1 5 9 13 17 21 25 29 33 37 41
Cycle (t)

R
eq

ui
re

m
en

ts
 S

at
ur

at
io

n

x(0)=0.001 α=0.6 x(0)=0.001 α=1
x(0)=0.001 α=1.5 x(0)=0.001 α=1.9

Figure 2. Behaviors of decomposition in a
stable manner

116

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:38:50 UTC from IEEE Xplore. Restrictions apply.

trajectories are related with x0 as well as α, but they
affect decomposition differently.

Parameter α will affect the slope of trajectories
mainly. Parameter x0 will affect the iteration time when
trajectory slope arrives its maximum. The time will be
shorter as x0 increases. Larger the initial value, more
quickly we finish requirements decomposition.

We can divide a trajectory into three segments,
which we call as initial segment, middle segment, and
last segment separately, as shown in Figure 4.

Initial segment is located at the beginning parts of
decomposition trajectories. In these parts, only a few
of requirements have been decomposed. One of its
characters is that the number of requirements is small.
Another is the increasing rate of requirements or the
slope of trajectories is also small, so that the number of
requirements increases very slowly. The length of
initial segment is related with α and x0. It will decrease
when α or x0 increases.

Middle segment is located at the middle parts of
trajectories. In these parts, more and more
requirements have been decomposed. Its character is
that the number of requirements begins to increase
quickly, that is, the slope of trajectories is large. The
maximum slope appears in this segment. The length of
this segment is also related with α and x0. It will
change as well as initial segment.

Last segment is located at the last parts of
trajectories. Its characters are that the number of
requirements is approaching the maximum and the
slope of trajectories is decreasing to zero as
decomposition is going. The trajectories may be
vibrate near the maximum when α is near 2, but it will
converge at the maximum.

We can use Figure 4 to estimate the decomposition
phase and evaluate its quality. The method, which we

call the chaotic decomposition modeling, is described
as follows.

(1) Define the initial value of requirements. It may
be initial number n0 or initial requirements saturation
x0 if we can approximately define the final number of
requirements N by concept exploration.

(2) Define RDRP α. RDRP should be in its stable
area i.e. less than 2. RDRP is the initial requirements
decomposition rate. The rate will be less slowly as
requirements number nt increases [12].

(3) Draw decomposition trajectories as we
decompose requirements. The decomposition will be
going until it arrives at its last segment.

(4) Evaluate decomposition. It can be taken as
normal if the trajectory changes like Figure 4.
Otherwise, the decomposition may be abnormal.

(5) Accept or reject results. We can stop
decomposing requirements when the decomposition
arrives at its last segment normally. Now we can argue
that we have achieved almost all of requirements. We
can also dismiss decomposition and redo it later when
we find that the decomposition is abnormal.

In addition, we may predict the iterating time we
need to finish the decomposition with the help of
decomposition trajectories templates under different
values of α and x0 if we have known the approximate
value of final number N.

4. Initial application

We apply the chaotic decomposition modeling in
the requirements analysis of a kind of home phone
service management systems which we developed
successfully in china before. Let its initial
requirements number equal 1 and RDRP equal 1 also.

Figure 5 gives the trajectory of the number of
requirements decomposing results. The number
increases from 1 to 138 through 12 levels of
decomposition. It includes all of three segments. Initial
segment is between decomposing time 1 and 5. Middle
segment is between time 5 and 11. Last segment
begins from time 11. We can achieve all of
requirements at time 12. The results show that the
decomposition is normal.

5. Discussion

Table 1 gives the maximum changing rate of
decomposing trajectories from equation 2. It exists in
middle segment. It shows that the rate is mainly
controlled by RDRP α when x0 ≤ 0.3. Larger α is,
larger the rate is. We may use larger α in order to have
higher decomposing efficiency. RDRP should be

0
0.2
0.4
0.6
0.8

1
1.2

1 4 7 10 13 16 19 22
Cycle (t)

x(0)=0.001 α =1

R
eq

ui
re

m
en

ts
 S

at
ur

at
io

n

Initial
segment

Middle
segment

Last
segment

Figure 4. Segments of a trajectory where
N=1000, x0=0.01 and α=1

117

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:38:50 UTC from IEEE Xplore. Restrictions apply.

suitable i.e. less than 2. Otherwise, decomposition may
be unstable, even chaotic. Therefore, we can predict
that the final decomposing results may be unreliable if
the changing rate of middle segment is greater than 0.5.
If the changing rate is less than 0.1, we can predict that
the decomposition may also fail because the
decomposing efficiency is too low to finish all
decomposition on time for us.

6. Conclusion

From the discussion above, we can see that
requirements decomposing procedure has its own
regular pattern which we can describe in chaos and
track in the procedure. When it is in normal situation,
its trajectory can be divided into three parts i.e. initial
segment, middle segment and last segment. Theoretical
analysis and initial application have approved this kind
of chaotic modeling. If we achieve all three segments
or last two segments in requirements decomposing
trajectory of a software system, we can argue that the
procedure is normal and we have achieved all or near
all of the requirements. We should take suitable
requirements decomposition rate in order to insure the
procedure normal, avoid chaos and keep a suitable
decomposing efficiency. When decomposition is in
middle segment, we can predict whether the procedure
will be successful according to the changing rates of its
trajectory. Both of too high and too small changing
rates may cause the process failure.

Acknowledge

This work was supported in part by a grant from the
China Association for International Exchange of
Personnel, Chongqing Science & Technology
Commission, and Chongqing Municipal Education
Commission. J. Ge wishes to thank Shayne Flint for
his great help on the research.

References

[1] Schach S.R., Classical and Object-Oriented Software
Engineering with UML and C++, McGraw-Hill Companies,
Inc., Singapore, 1999.
[2] Budgen D., Software Design, Person Education Limited,
Essex, 2003.
[3] Heumesser N., Framework for Requirements, Document
of EUREKA ∑! 2023 – ITEA 00103 project EMPRESS,
EMPRESS consortium, http://www.empressitea.org/deliver-
ables/D3.1_v1.0 _Public_Version.pdf, Apr. 2004.
[4] J. Noppen, M. Aksit, V. Nicola and B. Tekinerdogan,
“Market-driven approach based on Markov decision theory
for optimal use of resources in software development”, IEE
Proc.-Softw., IET, London, Vol. 151, Issue 2, Apr. 2004, pp.
85-94.
[5] F. P. Brooks Jr, “No silver bullet: essence and accidents
of software engineering”, IEEE Computer, IEEE Computer
Society, Washington, DC, Vol. 20, Issue 4, Apr. 1987, pp.
10-19.
[6] R. Chitchyan et al, Survey of Aspect-oriented Analysis
and Design Approaches, Document of AOSD-Europe-
ULANC-9, May 1995.
[7] I. Alexander, “10 small steps to better requirements”,
IEEE Software, IEEE Computer Society, Washington, DC,
Vol. 23, Issue 2, Mar. 2006, pp. 19-21.
[8] Forman E. and M. A. Selly, Decision by objectives,
George Washington University, Washington, DC, http://mdm.
gwu.edu/Forman/DBO.pdf
[9] P. Andritsos and V. Tzerpos, “Information-theoretic
software clustering,” IEEE Transactions On Software
Engineering, IEEE Computer Society, Washington, DC, Vol.
31, No. 2, Feb. 2005, pp. 150-165.
[10] B. S. Mitchell and S. Mancoridis, “On the Automatic
Modularization of Software Systems Using the Bunch Tool,”
IEEE Transactions On Software Engineering, IEEE
Computer Society, Washington, DC, Vol. 32, No. 3, Mar.
2006, pp. 193-208.
[11] H. B. K. Tan, Y. Yang, and L. Bian, “Systematic
Transformation of Functional Analysis Model into OO
Design and Implementation,” IEEE Transactions On
Software Engineering, IEEE Computer Society, Washington,
DC, Vol. 32, No. 2, February 2006, pp. 111-135.
[12] J. Ge, Y. Fang, and S. Flint, “Using Nonlinear Dynamic
System to Better Understand and Control Requirements
Decomposition Process,” The 2nd International Conference
on Computer Science & Education, Proceedings of ICCSE
2007, Wuhan, China, July 2007, pp. 998-1003.

0

20

40

60

80

100

120

140

160

1 5 9 13 17 21 25 29 33 37 41

Cycle (t)

R
eq
u
i
r
e
m
e
n
t
s

S
a
t
u
r
a
t
i
o
n

Figure 5. Requirements decomposing behavior
of home phone service management system

Table 1. Maximum changing rate of
decomposing trajectories

x0 α = 0.5 α = 1 α = 1.5 α = 1.9
0.001 0.124 0.241 0.375 0.475
0.01 0.125 0.25 0.335 0.469
0.1 0.125 0.245 0.375 0.411
0.3 0.125 0.25 0.355 0.4
0.7 0.105 0.21 0.315 0.399
0.9 0.045 0.09 0.135 0.171

118

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:38:50 UTC from IEEE Xplore. Restrictions apply.

