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ABSTRACT 

We present a mapping of Best Practices from the field of 
software engineering to the practice of discrete event 
simulation model construction. There are obvious parallels 
between the two activities. We therefore hypothesize there 
should be opportunities to improve the model construction 
process by taking advantage of these parallels. This 
research extends the prior work (Withers 1993) that 
provided a structured definition of the modeling process. 

1 INTRODUCTION 

Both activities (software engineering and discrete event 
simulation modeling) require a specification of the desired 
result, design of the system to be built or modeled, 
development of a project plan, coding and testing of 
software components, and verification of the result against 
the original specification. Both activities also suffer from a 
history of missed schedules, broken promises, and cost 
overruns. Documented evidence of failures is more 
prevalent in the software engineering community than in 
the modeling community. However, indirect evidence of 
the need for continuing improvement of the modeling 
process has been presented at each Winter Simulation 
Conference in recent history. The Program Chairs have 
routinely included a full-length invited tutorial on insuring 
success in modeling. Distinguished, successful 
practitioners have provided a lineage of papers, many with 
humorous approaches, and solid guidance on things to be 
sure to do or not do to raise the probability of success in 
modeling projects (Sadowski 1999, Robinson 1995 and 
Musselman 1994). It is interesting to note these landmark 
papers have usually not included an emphasis on the 
software engineering aspects of the modeling process 
except to point out the need for a specification and for 
testing throughout the project. 

There has also been a continuing emphasis on 
verification, validation, and accreditation as part of the 
modeling process (Arthur 1996, Balci 1997). There is a 

strong parallel between these recommendations and the 
testing recommendations from the field of software 
engineering. 

The modeling process has been the subject of 
numerous research and practitioner reports. Textbooks 
usually include a section or chapter on the process one 
should follow to improve the probability of success in 
modeling (Pritsker 1999, Law and Kelton 1999). Research 
reports have proposed formalisms to structure the process 
(Withers 1993) and practitioner reports have provided 
guidance based upon observed successes, see for example 
Hewitt (1999). 

An area of research and application that provides a 
direct overlap between the modeling and software 
engineering practices is the maturing of design, analysis, 
and development of object oriented software components. 
This technology 'has shown promise in improving both 
modeling and software engineering (Joines 1995). There 
have also been reports on efforts to develop special 
purpose tools for modeling (Zeigler 1990, Zeigler 1993) 
and for statistical analysis of input and output data (Law 

One might argue that modern simulation modelware 
relieves the modeler of programming; therefore there is no 
need to improve the part of the modeling process related to 
programming. We argue that the new modelware tools 
raise the level of programming so that certain skills (e.g., 
how to program an event list) are no longer required, but 
the logical constructs and semantics of programming are 
still required. Some tools relieve us of the burden of 
formatting, but none relieve us of the burden of translation 
of real system logic into simulation logic. 

1999). 

2 BACKGROUND ON SOFTWARE 
ENGINEERING BEST PRACTICES 

This section briefly reviews the history of Best Practices in 
the software engineering area. The U.S. Department of 
Defense has a long-standing interest in the success of 
software engineering projects and has nurtured several 
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initiatives to both measure and improve the process. 
Significant activities in this context were sponsorship of 
the Software Engineering Institute and formation of the 
Airlie Software Council. 

The Software Engineering Institute at Carnegie Mellon 
University is a federally funded research and development 
center established in 1984 by the Department of Defense to 
address the improvement of software engineering 
technology. Their web site, <http: //www. sei. cmu/ 
sei-home. html>, is an excellent source of information 
on best practices. 

The Airlie Software Council was sponsored by the 
Department of Defense (DOD) to improve success on large 
complex software projects. The council produced the 
original list of 9 essential Best Practices in 1994-95 (noted 
below as “Original 9) (Brown, 1999). The original list has 
been modified and extended to the current list of 16. We 
will provide a brief statement of each of these, map them 
to the simulation modeling process as defined earlier 
(Withers, 1993), and then suggest how to apply them in the 
simulation modeling context. 

In this context a Best Practice is defined as a 
management or technical practice that has consistently 
demonstrated to improve one or more of 

Productivity 
cost 
Schedule 
Quality 
User Satisfaction 
Predictability of Cost and Schedule (McGrath 1998) 

McGrath (1998) presented a discussion of the current 
list. His discussion is the primary basis for our summary 
remarks below. The Software Program Managers Network 
(SPMN) has categorized the Best Practices into the three 
major categories below (SPMN 1999). In the next section 
we provide a short discussion for each Best Practice in 
software engineering context. 

3 SOFTWARE ENGINEERING 
BEST PRACTICES 

Here we summarize the best practices fiom the perspective of 
software engineering. They are categorized using the Software 
Program Managers Network structure and are annotated to 
show which of them were part of the original set. 

3.1 PROJECT INTEGRITY 

This category includes six (6) best practices related to 
project management. The discussion in this section is 
targeted to software engineering andor project 

management in general. Later we will relate these to 
modeling projects. 

1. Formal Risk Management (Original 9). This is 
the number one Best Practice according to the 
Airlie Software Council (Lister 98). The risks are 
present whether or not they are acknowledged. 
The Best Practice is a formal process for 
identifying, addressing, and mitigating risk items 
before they negatively impact program quality, 
schedule, and cost. Risks are identified and 
documented along with a probability of 
occurrence and exposure. For direct risks, actions 
are taken to mitigate, avoid, or transfer the risk, 
and documented. For indirect risks, contingency 
plans are agreed to and documented. 
Estimate cost and schedule empirically. Cost 
and schedule estimates should be based upon 
empirical, historical data, early size estimation, 
and tracking of project status through the use of 
captured-result metrics. Inaccurate cost and 
scheduling estimates result in cost overruns. 
Schedules slip because software specifications 
constantly change, deadlines are often arbitrary 
and impossible to achieve, and numerous events 
are interdependent. Metrics such as cost, effort, 
schedule, successful activity completion and 
defects provide the means to track and manage the 
project. 

3. Metric-based Scheduling and Management 
(Original 9). Project planning and management 
should be based upon accumulated evidence over 
multiple projects. Planning should be at a 
measurable level of detail: 
Each activity in the project plan should reflect a 
Binary Quality Gate at inch-pebble level 
(Original 9). The project plan should be 
decomposed to activities where each activity has a 
short span (no longer than a day) (no longer than an 
inch and no heavier than a pebble!) and an easily 
measured completion - it’s either done or it’s not 
done (binary gate). The concept of percent 
completion at the activity level is viewed as absurd. 
Program wide visibility of progress vs. plan 
(Original 9). Chances of effective risk 
management and program success are improved 
when the entire project is visible to all 
participants. Early warning of potential com- 
pletion problems saves all participants money, 
time, embarrassment, and operational impact. 
A core set of metrics which fall into these four 
categories should be used by every project: 

2. 

Early warnings of potential problems. 
Product quality - See section 5. below. 
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4. Track Earned Value as the project progresses. 
Earned value calculations are based upon a binary 
assessment of each activity in the project plan. A 
completed activity scores 1, all other activities are 
0. There is no partial credit for in-process activities. 
At any point the total completions divided by the 
number of activities in the plan is a very accurate 
measure of progress. As noted above, project plans 
should be built at the inch-pebble detail so there are 
no long-running activities that cannot be accurately 
measured and tracked. 
Defect Tracking against quality targets (Original 
9) provides a measure of progress against 
objectives for deliverable quality. Every defect is 
recorded, beginning with the inspection of the 
specifications and continuing through all defect 
identification activities. There should be no such 
thing as a private defect - one that is detected and 
removed without being recorded. Simply tracking 
defects detected and defects closed over time 
provides an excellent visual display of the quality 
maturity of the project. Once discoveries level off 
and closure approaches discovery, the project 
becomes a candidate for deployment. 
Treat People as the most important resource 
(Original 9). This Best Practice was originally 
known as People-aware Management 
Accountability. The most important determinants 
of project success may be the quality, experience, 
and motivation of the people working on it. 

5. 

6.  

Effectiveness of process improvement, the 
ability to determine whether process changes 
are working better on the next project. 
Actual costs, labor and materials converted 
into currency. 

Withers 

3.2 CONSTRUCTION INTEGRITY 

This section describes software engineering best practices 
for the design and development activities. 

7. Configuration Management (Original 9). 
Configuration Management is an integrated 
process for identifying, documenting, monitoring, 
evaluating, approving, and controlling all changes 
to project information shared by more than one 
individual. 

8. Manage and Trace Requirements. 
Requirements need to be complete, consistent, 
and testable and must meet the user’s needs with 
low volatility and 2-way traceability from design 
through testing. This activity was cited as the 
most important best practice by some researchers 
(e.g., McGrath 98). This Best Practice includes 

the use of structured methods for users to define 
system requirements (e.g., a user interface 
prototype), formal methods to find consistency 
errors, control of volatility, and structured peer 
reviews. Requirements should include operational 
scenarios that characterize real-world operations. 
They should reflect both nominal and stress 
conditions. Engineers who will build the system 
should be involved in the requirements 
specification process. 

9. System-based Software Design. The practice 
introduces systems analysts/programmers into the 
project during early design to insure the project 
can be technically developed. The system design 
is subjected to an inspection before it is placed 
under configuration management. 

10. Ensure data and database interoperabiiity 
provides a focus on the operability of the system 
in context with its environment. There does not 
appear to be a direct correlation for modeling. 

11. Define and Control Interfaces (Original 9). 
Interfaces to other systems should be agreed- 
upon, coded, and then maintained as a baseline. 
A date should be set, after which no further 
changes will be accepted There does not appear to 
be a direct correlation for modeling unless the 
model is an embedded system. 

12. Design Twice and Code Once is a parallel to the 
old carpenter’s axiom to measure twice and cut 

- once. Avoid the rush to coding and insure the 
design really matches what the customer needs. 

13. Assess reuse risks and costs. The architecture 
should plan for re-use starting with project 
planning artifacts. Implementation of this best 
practice is so difficult that we do not believe it 
will have effective applicability to the modeling 
process so it will not be included in the section 5. 

3.3 PRODUCT STABILITY and INTEGRITY 

This third section provides information on best practices 
for insuring the quality of the product. 

14. Formal Inspections of requirements and design 
(Original 9). This practice has consistently shown 
to reduce rework by 30%, (Cook 1998). Michael 
Fagan published the original definitions for 
effective reviews and inspections (Fagan 1986). 
More defects can be removed by inspection than 
by any other testing process. The defects can be 
removed earlier in the process when they are 
easier and much less expensive to correct. 
Inspections can find defects that would not be 
found during testing, such as special cases when 
an algorithm will produce incorrect results. To be 
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successful, the project needs to create an 
environment where defect detection is 
encouraged, rather than reporting how few defects 
exist. Excellent references with further 
information on how to conduct inspections and 
reviews include Gilb (1993) or Wheeler (1 996). 

15. Manage Testing as a Continuous Process. 
Testing should begin when the project begins and 
continue through all deliverables. Testing is not 
limited to executable code, but can be applied to 
documents, prototypes, designs, and even to test 
plans. 

16. Smoke Test Frequently. Smoke testing is 
targeted at proving the accuracy of new functions. 
Testing to qualify new components proceeds only 
after regression testing of the prior capabilities. 
Smoke testing cannot be performed by the 
development engineer, but must be accomplished 
by an independent organization. Results of smoke 
testing should be published to the entire team and 
all defects should be logged and tracked. 

4 MAPPING SOFTWARE ENGINEERING BEST 
PRACTICES TO THE DISCRETE EVENT 
SIMULATION PROCESS 

In this section we present a suggested translation of the Best 
Practices described above from the field of software 
engineering into the practice of discrete event simulation 
modelling. We suggest where each Best Practice should be 
applied to the discrete event simulation modeling process. Our 
motivation is to transfer the accumulated knowledge fiom one 
domain to another. We argue that the modeling process 
consists of many of the same steps as development of a 
s o h a r e  solution. Therefore the accumulated process know- 
ledge as captured in the Best Practices should be transferable. 

The first two columns in Figure 1 are taken directly 
fiom the structured model of the modeling process 
(Withers 1993). The remaining columns identify where 
each of the Best Practices may be applied. Details on how 
they may be applied are in the next section. 

5 APPLICATION OF BEST PRACTICES 

In this section we describe how the above best practices 
may be applied to the discrete event simulation process. 
We begin with a focus on project management. 

1 .  Formal Risk Management is applied throughout 
the project. For modeling projects risks usually 
include access to historical data, access to 
documentation for existing and planned processes, 
and lack of management understanding of the 
modeling process and sophisticated statistical 
analyses required. As soon as a risk is identified it 

should be logged along with an assessment of the 
impact and the probability of occurrence. A 
consistent measure for impact is needed. 
Obviously cost is the best metric, but it is usually 
hard to precisely quantify each risk. We 
recommend a scale (e.g., 1 to 5). Similarly, the 
probability of occurrence is hard to quantify 
precisely, so we recommend using 5%, 50%, and 
95% representing unlikely, may occur, and likely. 
The product of impact and probability of 
occurrence provides a ranking so one can easily 
produce a “top 3” or “top 10” list of risks, A 
spreadsheet works nicely to track risks. 

Example: Data defining service times for the 
new equipment may not be available in time to 
use as input to the model for Phase I capacity 
planning. The impact is: The confidence bounds 
for the output will increase. This is a medium 
(2) impact. The probability of occurrence is 
50%. The ranking number is 100 (=SO x 2). 

The top n risks need to be mitigated by reducing 
the impact, the probability of occurrence, or both. 
For example, if something is likely to occur and 
has a high impact, the prudent project manager 
will plan for it and include appropriate activities 
in the project plan. 

2. Estimate Cost and Schedule Empirically is 
applied when the plan is constructed. Some 
measure of project complexity should be used as a 
basis. For simulation projects one measure of 
complexity is ~ the number of business process 
owners. Another is the number of different kinds of 
equipment (mills, forklifts, computers, etc.) that 
will need to be included in the model. Obviously, 
keeping a log of effort, duration, and complexity 
for prior projects will be a great asset in estimating 
the next project. If a history of prior projects is not 
available, we recommend estimating each of the 
activities found in the lowest level of 
decomposition for the modeling process (Withers 
1993). Assigning an estimate to each process 
activity will at least provide an estimate of the 
complete process and while some estimates will be 
low and others high, the project total has a better 
chance of being in bounds. If the model is to be 
built iteratively, the number of iterations should be 
planned in advance. Our experience is that three 
iterations of Produce Conceptual Model and 
Produce Model are usually sufficient. The customer 
needs to agree in advance on the number of 
iterations, else the project will never end. The 
empirical estimate can be compared to the project 
plan (best practices 3 and 4 below.) 

, 
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Structured Modeling 
Process Level 1 

1. UNDERSTAND 
CUSTOMER and 
SYSTEM 

2. PRODUCE 
CONCEPTUAL 
MODEL 

3. PRODUCE MODEL 

4. USE MODEL 

5. ASSESS MODEL 
USE . 

Figure 1. h 

Withers 

Structured Modeling Process Level 2 

1.1 Define Modeling Team 
1.2 Define Problem to be Solved 
1.3 Determine Customer Constraints 
and Develop Plan 
2.1 Understand System 
2.2 Develop/Update Conceptual 
Model 
2.3 Develop Data Requirements 
2.4 Validate Conceptual Model and 
Data Requirements 
3.1 Determine Class of Model 
3.2 Develop Model, Data, and 
Documentation 

4.4 Make Decision on System 
Chanae 
5.1 Run Operation 
5.2 Assess Operating Environment 
and Performance 
5.3 Operate Model 
5.4 Compare Performance 
Measures Mode1:Operations 
5.5 Assess Documented Use of 
Model 
ipping of Software Engineering Best Practices to Structured Modi ng Process 

3. Metric-based Scheduling and Management and 
4. Tracking Earned Value are connected. The 
project plan should be built so that activities are 
very short (hours or a day) and can easily be 
assessed as either complete or incomplete. the activity level. 

Progress is measured easily as the ratio of the 
number of complete activities to the total number 
of activities in the project plan. Project managers 
should avoid estimates of percent completion at 

- 
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5 .  Defect Tracking begins with inspection of the 
project plan and continues throughout most of the 
development and deployment activities. Anytime a 
defect is found it is logged. When a defect is fixed, 
that event is logged. A simple plot of cumulative 
defects found vs. time will provide a quick 
assessment of residual defects by looking for the 
discovery rate to level off. A plot of defects 
remaining (found minus fixed) vs. time provides an 
assessment of the readiness of the project for 
release. The implementation of this Best Practice 
seems to be the same for any project whether 
software engineering or modeling. The only 
differences in implementation are the points where 
formal defect discovery activities are planned. 
Treat People as the Most Important Resource 
is sound advice for any project. We have not 
observed many of the poor people-management 
practices that motivated this Best Practice. 
However, it does no harm to remind us all that the 
project staff need to be selected, trained, and 
retained as if they were the only thing between 
here and project success - because they are! For 
simulation modelers, it is important to insure they 
have the requisite training and the appropriate 
software tools for statistical analysis of input and 
output data and a solid grounding in design of 
experiments. They should also be backed by 
visible and substantive support for the project 
from all levels of management. 

7.  Configuration Management is a process for 
insuring that the correct versions of the model, the 
input data, and the output results are matched. 
Some modelware has tools that instill a formal 
process of check-in and checkout on each 
component (model, input data, etc.). For typical 
discrete event simulation projects it is usually 
sufficient to maintain a log of file names with 
dates and content. Validation of model version is 
accomplished by including the model versioddate 
in all outputs. Input data validation is 
accomplished by including a list of all input 
values in the output. 
Manage and Trace Requirements is critical to 
success of the project. Requirements are 
converted into model logic, input data definitions, 
assumptions, and some are not included. The 
project manager needs to be able to demonstrate 
how each requirement was satisfied or not 
satisfied. Each requirement also needs to be 
mapped to one or more test cases. Tracking them 
is the only way to know when the project is 
complete. A spreadsheet works reasonably well 
to manage requirements. 

6.  

8. 

6 

9. System-based Software Design is an 
admonishment to make sure the programmers and 
systems engineering for the project are included in 
the design phase. These skills will provide 
guidance on ease of construction, operation, and 
maintenance that is not usually part of the 
simulation modeler’s skill set. 

12. Design Twice and Code Once also applies to 
model development. It is always tempting to go 
directly from a discussion with the users to the 
modelware and begin defining variables, 
resources, and logic paths. A much better process 
is to develop and validate a conceptual model 
(boxes and arrows) iteratively; and then develop 
variables, resource definitions, routing paths, 
control logic, etc. The resulting models will be 
easier to maintain, simpler to operate, and more 
likely to meet the user’s needs. 

14. Formal Inspections should be conducted on at 
least the requirements, the project plan, the 
conceptual model, the model, and the test plans. 
Since inspections have been proven to be the 
single most effective defect detection activity, 
there’s no reason to skip this recommendation. 
The effectiveness of inspections can be improved 
by using the excellent guidelines as found in Gilb 
(1 993). 

15. Manage Testing as a Continuous Process is 
accomplished by testing each project deliverable. 

16. Compile and Smoke Test Frequently suggests 
an iterative or continuous improvement approach 
that has been shown to be highly effective. 
Whenever an additional capability is added to the 
model, a regression test of the prior capabilities 
should be done first. In this way we assure that the 
new capability does not detract from earlier model 
components and functionality. 

IMPLEMENTATION 

There may be resistance among simulation modelers to 
implementation of these Best Practices. In particular, 
formal inspections may appear to be intrusions upon an 
individual’s responsibility. Tracing requirements may 
seem to be an added burden with no return on investment. 
Tracking defects may be another intrusion upon an 
individual’s process. The overwhelming evidence of 
advantage is plentiful in the software engineering 
literature. The references and web sites included earlier 
contain excellent motivational material. We have used all 
of these Best Practices in both software engineering and 
simulation modeling projects with great success and 
encourage widespread acceptance in the discrete event 
modeling community. 

437 

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:21:53 UTC from IEEE Xplore.  Restrictions apply. 



Withers 

7 CONCLUSION 

We have mapped the best ideas on process from two 
domains together. Our experience indicates there is a 
significant improvement in the probability of project 
success if these Best Practices are part of the discrete event 
simulation project plan. 
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