
Proceedings of the 2000 Winter Simulation Conference
J. A . Joines. R. R. Barton, K. Kang, and P. A . Fishwick, eds.

SOFTWARE ENGINEERING BEST PRACTICES APPLIED
TO THE MODELING PROCESS

David H. Withers

Dell Computer Corporation
One Dell Way 6370

Round Rock, TX 78682, U.S.A.

ABSTRACT

We present a mapping of Best Practices from the field of
software engineering to the practice of discrete event
simulation model construction. There are obvious parallels
between the two activities. We therefore hypothesize there
should be opportunities to improve the model construction
process by taking advantage of these parallels. This
research extends the prior work (Withers 1993) that
provided a structured definition of the modeling process.

1 INTRODUCTION

Both activities (software engineering and discrete event
simulation modeling) require a specification of the desired
result, design of the system to be built or modeled,
development of a project plan, coding and testing of
software components, and verification of the result against
the original specification. Both activities also suffer from a
history of missed schedules, broken promises, and cost
overruns. Documented evidence of failures is more
prevalent in the software engineering community than in
the modeling community. However, indirect evidence of
the need for continuing improvement of the modeling
process has been presented at each Winter Simulation
Conference in recent history. The Program Chairs have
routinely included a full-length invited tutorial on insuring
success in modeling. Distinguished, successful
practitioners have provided a lineage of papers, many with
humorous approaches, and solid guidance on things to be
sure to do or not do to raise the probability of success in
modeling projects (Sadowski 1999, Robinson 1995 and
Musselman 1994). It is interesting to note these landmark
papers have usually not included an emphasis on the
software engineering aspects of the modeling process
except to point out the need for a specification and for
testing throughout the project.

There has also been a continuing emphasis on
verification, validation, and accreditation as part of the
modeling process (Arthur 1996, Balci 1997). There is a

strong parallel between these recommendations and the
testing recommendations from the field of software
engineering.

The modeling process has been the subject of
numerous research and practitioner reports. Textbooks
usually include a section or chapter on the process one
should follow to improve the probability of success in
modeling (Pritsker 1999, Law and Kelton 1999). Research
reports have proposed formalisms to structure the process
(Withers 1993) and practitioner reports have provided
guidance based upon observed successes, see for example
Hewitt (1999).

An area of research and application that provides a
direct overlap between the modeling and software
engineering practices is the maturing of design, analysis,
and development of object oriented software components.
This technology 'has shown promise in improving both
modeling and software engineering (Joines 1995). There
have also been reports on efforts to develop special
purpose tools for modeling (Zeigler 1990, Zeigler 1993)
and for statistical analysis of input and output data (Law

One might argue that modern simulation modelware
relieves the modeler of programming; therefore there is no
need to improve the part of the modeling process related to
programming. We argue that the new modelware tools
raise the level of programming so that certain skills (e.g.,
how to program an event list) are no longer required, but
the logical constructs and semantics of programming are
still required. Some tools relieve us of the burden of
formatting, but none relieve us of the burden of translation
of real system logic into simulation logic.

1999).

2 BACKGROUND ON SOFTWARE
ENGINEERING BEST PRACTICES

This section briefly reviews the history of Best Practices in
the software engineering area. The U.S. Department of
Defense has a long-standing interest in the success of
software engineering projects and has nurtured several

432

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:21:53 UTC from IEEE Xplore. Restrictions apply.

Withers

initiatives to both measure and improve the process.
Significant activities in this context were sponsorship of
the Software Engineering Institute and formation of the
Airlie Software Council.

The Software Engineering Institute at Carnegie Mellon
University is a federally funded research and development
center established in 1984 by the Department of Defense to
address the improvement of software engineering
technology. Their web site, <http: //www. sei. cmu/
sei-home. html>, is an excellent source of information
on best practices.

The Airlie Software Council was sponsored by the
Department of Defense (DOD) to improve success on large
complex software projects. The council produced the
original list of 9 essential Best Practices in 1994-95 (noted
below as “Original 9) (Brown, 1999). The original list has
been modified and extended to the current list of 16. We
will provide a brief statement of each of these, map them
to the simulation modeling process as defined earlier
(Withers, 1993), and then suggest how to apply them in the
simulation modeling context.

In this context a Best Practice is defined as a
management or technical practice that has consistently
demonstrated to improve one or more of

Productivity
cost
Schedule
Quality
User Satisfaction
Predictability of Cost and Schedule (McGrath 1998)

McGrath (1998) presented a discussion of the current
list. His discussion is the primary basis for our summary
remarks below. The Software Program Managers Network
(SPMN) has categorized the Best Practices into the three
major categories below (SPMN 1999). In the next section
we provide a short discussion for each Best Practice in
software engineering context.

3 SOFTWARE ENGINEERING
BEST PRACTICES

Here we summarize the best practices fiom the perspective of
software engineering. They are categorized using the Software
Program Managers Network structure and are annotated to
show which of them were part of the original set.

3.1 PROJECT INTEGRITY

This category includes six (6) best practices related to
project management. The discussion in this section is
targeted to software engineering andor project

management in general. Later we will relate these to
modeling projects.

1. Formal Risk Management (Original 9). This is
the number one Best Practice according to the
Airlie Software Council (Lister 98). The risks are
present whether or not they are acknowledged.
The Best Practice is a formal process for
identifying, addressing, and mitigating risk items
before they negatively impact program quality,
schedule, and cost. Risks are identified and
documented along with a probability of
occurrence and exposure. For direct risks, actions
are taken to mitigate, avoid, or transfer the risk,
and documented. For indirect risks, contingency
plans are agreed to and documented.
Estimate cost and schedule empirically. Cost
and schedule estimates should be based upon
empirical, historical data, early size estimation,
and tracking of project status through the use of
captured-result metrics. Inaccurate cost and
scheduling estimates result in cost overruns.
Schedules slip because software specifications
constantly change, deadlines are often arbitrary
and impossible to achieve, and numerous events
are interdependent. Metrics such as cost, effort,
schedule, successful activity completion and
defects provide the means to track and manage the
project.

3. Metric-based Scheduling and Management
(Original 9). Project planning and management
should be based upon accumulated evidence over
multiple projects. Planning should be at a
measurable level of detail:
Each activity in the project plan should reflect a
Binary Quality Gate at inch-pebble level
(Original 9). The project plan should be
decomposed to activities where each activity has a
short span (no longer than a day) (no longer than an
inch and no heavier than a pebble!) and an easily
measured completion - it’s either done or it’s not
done (binary gate). The concept of percent
completion at the activity level is viewed as absurd.
Program wide visibility of progress vs. plan
(Original 9). Chances of effective risk
management and program success are improved
when the entire project is visible to all
participants. Early warning of potential com-
pletion problems saves all participants money,
time, embarrassment, and operational impact.
A core set of metrics which fall into these four
categories should be used by every project:

2.

Early warnings of potential problems.
Product quality - See section 5. below.

433

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:21:53 UTC from IEEE Xplore. Restrictions apply.

4. Track Earned Value as the project progresses.
Earned value calculations are based upon a binary
assessment of each activity in the project plan. A
completed activity scores 1, all other activities are
0. There is no partial credit for in-process activities.
At any point the total completions divided by the
number of activities in the plan is a very accurate
measure of progress. As noted above, project plans
should be built at the inch-pebble detail so there are
no long-running activities that cannot be accurately
measured and tracked.
Defect Tracking against quality targets (Original
9) provides a measure of progress against
objectives for deliverable quality. Every defect is
recorded, beginning with the inspection of the
specifications and continuing through all defect
identification activities. There should be no such
thing as a private defect - one that is detected and
removed without being recorded. Simply tracking
defects detected and defects closed over time
provides an excellent visual display of the quality
maturity of the project. Once discoveries level off
and closure approaches discovery, the project
becomes a candidate for deployment.
Treat People as the most important resource
(Original 9). This Best Practice was originally
known as People-aware Management
Accountability. The most important determinants
of project success may be the quality, experience,
and motivation of the people working on it.

5.

6.

Effectiveness of process improvement, the
ability to determine whether process changes
are working better on the next project.
Actual costs, labor and materials converted
into currency.

Withers

3.2 CONSTRUCTION INTEGRITY

This section describes software engineering best practices
for the design and development activities.

7. Configuration Management (Original 9).
Configuration Management is an integrated
process for identifying, documenting, monitoring,
evaluating, approving, and controlling all changes
to project information shared by more than one
individual.

8. Manage and Trace Requirements.
Requirements need to be complete, consistent,
and testable and must meet the user’s needs with
low volatility and 2-way traceability from design
through testing. This activity was cited as the
most important best practice by some researchers
(e.g., McGrath 98). This Best Practice includes

the use of structured methods for users to define
system requirements (e.g., a user interface
prototype), formal methods to find consistency
errors, control of volatility, and structured peer
reviews. Requirements should include operational
scenarios that characterize real-world operations.
They should reflect both nominal and stress
conditions. Engineers who will build the system
should be involved in the requirements
specification process.

9. System-based Software Design. The practice
introduces systems analysts/programmers into the
project during early design to insure the project
can be technically developed. The system design
is subjected to an inspection before it is placed
under configuration management.

10. Ensure data and database interoperabiiity
provides a focus on the operability of the system
in context with its environment. There does not
appear to be a direct correlation for modeling.

11. Define and Control Interfaces (Original 9).
Interfaces to other systems should be agreed-
upon, coded, and then maintained as a baseline.
A date should be set, after which no further
changes will be accepted There does not appear to
be a direct correlation for modeling unless the
model is an embedded system.

12. Design Twice and Code Once is a parallel to the
old carpenter’s axiom to measure twice and cut

- once. Avoid the rush to coding and insure the
design really matches what the customer needs.

13. Assess reuse risks and costs. The architecture
should plan for re-use starting with project
planning artifacts. Implementation of this best
practice is so difficult that we do not believe it
will have effective applicability to the modeling
process so it will not be included in the section 5.

3.3 PRODUCT STABILITY and INTEGRITY

This third section provides information on best practices
for insuring the quality of the product.

14. Formal Inspections of requirements and design
(Original 9). This practice has consistently shown
to reduce rework by 30%, (Cook 1998). Michael
Fagan published the original definitions for
effective reviews and inspections (Fagan 1986).
More defects can be removed by inspection than
by any other testing process. The defects can be
removed earlier in the process when they are
easier and much less expensive to correct.
Inspections can find defects that would not be
found during testing, such as special cases when
an algorithm will produce incorrect results. To be

434

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:21:53 UTC from IEEE Xplore. Restrictions apply.

Withers

successful, the project needs to create an
environment where defect detection is
encouraged, rather than reporting how few defects
exist. Excellent references with further
information on how to conduct inspections and
reviews include Gilb (1993) or Wheeler (1 996).

15. Manage Testing as a Continuous Process.
Testing should begin when the project begins and
continue through all deliverables. Testing is not
limited to executable code, but can be applied to
documents, prototypes, designs, and even to test
plans.

16. Smoke Test Frequently. Smoke testing is
targeted at proving the accuracy of new functions.
Testing to qualify new components proceeds only
after regression testing of the prior capabilities.
Smoke testing cannot be performed by the
development engineer, but must be accomplished
by an independent organization. Results of smoke
testing should be published to the entire team and
all defects should be logged and tracked.

4 MAPPING SOFTWARE ENGINEERING BEST
PRACTICES TO THE DISCRETE EVENT
SIMULATION PROCESS

In this section we present a suggested translation of the Best
Practices described above from the field of software
engineering into the practice of discrete event simulation
modelling. We suggest where each Best Practice should be
applied to the discrete event simulation modeling process. Our
motivation is to transfer the accumulated knowledge fiom one
domain to another. We argue that the modeling process
consists of many of the same steps as development of a
s o h a r e solution. Therefore the accumulated process know-
ledge as captured in the Best Practices should be transferable.

The first two columns in Figure 1 are taken directly
fiom the structured model of the modeling process
(Withers 1993). The remaining columns identify where
each of the Best Practices may be applied. Details on how
they may be applied are in the next section.

5 APPLICATION OF BEST PRACTICES

In this section we describe how the above best practices
may be applied to the discrete event simulation process.
We begin with a focus on project management.

1 . Formal Risk Management is applied throughout
the project. For modeling projects risks usually
include access to historical data, access to
documentation for existing and planned processes,
and lack of management understanding of the
modeling process and sophisticated statistical
analyses required. As soon as a risk is identified it

should be logged along with an assessment of the
impact and the probability of occurrence. A
consistent measure for impact is needed.
Obviously cost is the best metric, but it is usually
hard to precisely quantify each risk. We
recommend a scale (e.g., 1 to 5). Similarly, the
probability of occurrence is hard to quantify
precisely, so we recommend using 5%, 50%, and
95% representing unlikely, may occur, and likely.
The product of impact and probability of
occurrence provides a ranking so one can easily
produce a “top 3” or “top 10” list of risks, A
spreadsheet works nicely to track risks.

Example: Data defining service times for the
new equipment may not be available in time to
use as input to the model for Phase I capacity
planning. The impact is: The confidence bounds
for the output will increase. This is a medium
(2) impact. The probability of occurrence is
50%. The ranking number is 100 (=SO x 2).

The top n risks need to be mitigated by reducing
the impact, the probability of occurrence, or both.
For example, if something is likely to occur and
has a high impact, the prudent project manager
will plan for it and include appropriate activities
in the project plan.

2. Estimate Cost and Schedule Empirically is
applied when the plan is constructed. Some
measure of project complexity should be used as a
basis. For simulation projects one measure of
complexity is ~ the number of business process
owners. Another is the number of different kinds of
equipment (mills, forklifts, computers, etc.) that
will need to be included in the model. Obviously,
keeping a log of effort, duration, and complexity
for prior projects will be a great asset in estimating
the next project. If a history of prior projects is not
available, we recommend estimating each of the
activities found in the lowest level of
decomposition for the modeling process (Withers
1993). Assigning an estimate to each process
activity will at least provide an estimate of the
complete process and while some estimates will be
low and others high, the project total has a better
chance of being in bounds. If the model is to be
built iteratively, the number of iterations should be
planned in advance. Our experience is that three
iterations of Produce Conceptual Model and
Produce Model are usually sufficient. The customer
needs to agree in advance on the number of
iterations, else the project will never end. The
empirical estimate can be compared to the project
plan (best practices 3 and 4 below.)

,

435

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:21:53 UTC from IEEE Xplore. Restrictions apply.

Structured Modeling
Process Level 1

1. UNDERSTAND
CUSTOMER and
SYSTEM

2. PRODUCE
CONCEPTUAL
MODEL

3. PRODUCE MODEL

4. USE MODEL

5. ASSESS MODEL
USE .

Figure 1. h

Withers

Structured Modeling Process Level 2

1.1 Define Modeling Team
1.2 Define Problem to be Solved
1.3 Determine Customer Constraints
and Develop Plan
2.1 Understand System
2.2 Develop/Update Conceptual
Model
2.3 Develop Data Requirements
2.4 Validate Conceptual Model and
Data Requirements
3.1 Determine Class of Model
3.2 Develop Model, Data, and
Documentation

4.4 Make Decision on System
Chanae
5.1 Run Operation
5.2 Assess Operating Environment
and Performance
5.3 Operate Model
5.4 Compare Performance
Measures Mode1:Operations
5.5 Assess Documented Use of
Model
ipping of Software Engineering Best Practices to Structured Modi ng Process

3. Metric-based Scheduling and Management and
4. Tracking Earned Value are connected. The
project plan should be built so that activities are
very short (hours or a day) and can easily be
assessed as either complete or incomplete. the activity level.

Progress is measured easily as the ratio of the
number of complete activities to the total number
of activities in the project plan. Project managers
should avoid estimates of percent completion at

-

436

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:21:53 UTC from IEEE Xplore. Restrictions apply.

Withers

5 . Defect Tracking begins with inspection of the
project plan and continues throughout most of the
development and deployment activities. Anytime a
defect is found it is logged. When a defect is fixed,
that event is logged. A simple plot of cumulative
defects found vs. time will provide a quick
assessment of residual defects by looking for the
discovery rate to level off. A plot of defects
remaining (found minus fixed) vs. time provides an
assessment of the readiness of the project for
release. The implementation of this Best Practice
seems to be the same for any project whether
software engineering or modeling. The only
differences in implementation are the points where
formal defect discovery activities are planned.
Treat People as the Most Important Resource
is sound advice for any project. We have not
observed many of the poor people-management
practices that motivated this Best Practice.
However, it does no harm to remind us all that the
project staff need to be selected, trained, and
retained as if they were the only thing between
here and project success - because they are! For
simulation modelers, it is important to insure they
have the requisite training and the appropriate
software tools for statistical analysis of input and
output data and a solid grounding in design of
experiments. They should also be backed by
visible and substantive support for the project
from all levels of management.

7. Configuration Management is a process for
insuring that the correct versions of the model, the
input data, and the output results are matched.
Some modelware has tools that instill a formal
process of check-in and checkout on each
component (model, input data, etc.). For typical
discrete event simulation projects it is usually
sufficient to maintain a log of file names with
dates and content. Validation of model version is
accomplished by including the model versioddate
in all outputs. Input data validation is
accomplished by including a list of all input
values in the output.
Manage and Trace Requirements is critical to
success of the project. Requirements are
converted into model logic, input data definitions,
assumptions, and some are not included. The
project manager needs to be able to demonstrate
how each requirement was satisfied or not
satisfied. Each requirement also needs to be
mapped to one or more test cases. Tracking them
is the only way to know when the project is
complete. A spreadsheet works reasonably well
to manage requirements.

6.

8.

6

9. System-based Software Design is an
admonishment to make sure the programmers and
systems engineering for the project are included in
the design phase. These skills will provide
guidance on ease of construction, operation, and
maintenance that is not usually part of the
simulation modeler’s skill set.

12. Design Twice and Code Once also applies to
model development. It is always tempting to go
directly from a discussion with the users to the
modelware and begin defining variables,
resources, and logic paths. A much better process
is to develop and validate a conceptual model
(boxes and arrows) iteratively; and then develop
variables, resource definitions, routing paths,
control logic, etc. The resulting models will be
easier to maintain, simpler to operate, and more
likely to meet the user’s needs.

14. Formal Inspections should be conducted on at
least the requirements, the project plan, the
conceptual model, the model, and the test plans.
Since inspections have been proven to be the
single most effective defect detection activity,
there’s no reason to skip this recommendation.
The effectiveness of inspections can be improved
by using the excellent guidelines as found in Gilb
(1 993).

15. Manage Testing as a Continuous Process is
accomplished by testing each project deliverable.

16. Compile and Smoke Test Frequently suggests
an iterative or continuous improvement approach
that has been shown to be highly effective.
Whenever an additional capability is added to the
model, a regression test of the prior capabilities
should be done first. In this way we assure that the
new capability does not detract from earlier model
components and functionality.

IMPLEMENTATION

There may be resistance among simulation modelers to
implementation of these Best Practices. In particular,
formal inspections may appear to be intrusions upon an
individual’s responsibility. Tracing requirements may
seem to be an added burden with no return on investment.
Tracking defects may be another intrusion upon an
individual’s process. The overwhelming evidence of
advantage is plentiful in the software engineering
literature. The references and web sites included earlier
contain excellent motivational material. We have used all
of these Best Practices in both software engineering and
simulation modeling projects with great success and
encourage widespread acceptance in the discrete event
modeling community.

437

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:21:53 UTC from IEEE Xplore. Restrictions apply.

Withers

7 CONCLUSION

We have mapped the best ideas on process from two
domains together. Our experience indicates there is a
significant improvement in the probability of project
success if these Best Practices are part of the discrete event
simulation project plan.

ACKNOWLEDGMENT

We would like to thank the anonymous referee who made
several suggestions for-improvement.

REFERENCES

Arthur, James D. and Richard E. Nance. 1996. Independent
Verification and Validation: A Missing Link in
Simulation Methodology? In Proceedings of the 1996
Winter Simulation Conference, ed. J. M. Chames, D. J.
Morrice, D. T. Brunner, and J.J. Swain. 230-236.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Balci, Osman. 1997.Verificatio11, Validation, and
Accreditation of Simulation Models. In Proceedings of
the 1997 Winter Simulation Conference, ed. S .
Andradottir, K.J. Healy, D. H. Withers, and B. L.
Nelson. 135-141. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Brown, Norm. 1999. High-Leverage Best Practices - What
Hot Companies are Doing to Stay Ahead and How
DoD Programs Can Benefit. Crosstalk, October, 1999.

Cook, Dave and Les Dupaix. 1998. Life Cycle Reviews
from a Software Engineering Perspective, Presented at
the 1998 Software Technology Conference, May 1998,
Salt Lake City, Utah.

Fagan, Michael E. 1986. Advances in software inspection,
IEEE Transactions on Software Engineering, 12(7):
744-75 1.

Gilb, Tom and Dorothy Graham. 1993. Software
Inspection. Addison-Wesley, New York, New York.

Hewitt, Willard C., Jr. and Eric E. Miller. 1999. Applying
Simulation in a Consulting Environment - Tips from
Airport Planners. In Proceedings of the 1999 Winter
Simulation Conference, ed. Phillip A. Farrington,
Harriet Black Nembhard, David T. Sturrock, Gerald
W. Evans. 67-71. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Joines, Jeffrey A. and Stephen D. Roberts. 1995. Design of
Object-Oriented Simulations in C++. In Proceedings
of the 1995 Winter Simulation Conference, ed. C.
Alexopoulos, K. Kang, W.R. Lilegdon, and D.
Goldsman. 82-89. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Law, Averill M. 1999. ExpertFit: Total Support for
Simulation Input Modeling. In Proceedings of the I999

Winter Simulation Conference, ed. Phillip A.
Farrington, Harriet Black Nembhard, David T. Sturrock,
Gerald W. Evans. 261-266. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Law, Averill M. and W. David Kelton. 1999. Simulation
Modeling and Analysis, McGraw Hill, Inc., New York,
New York.

Musselman, Kenneth J. 1994. Guidelines for Simulation
Project Success. In Proceedings of the 1994 Winter
Simulation Conference, ed. J. D. Tew, S .
Manivannan, D.A. Sadowski, and A.F. Seila. 88-95.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Pritsker, A. Alan B. and Jean J. O’Reilly. 1999. Simulation
with Visual SLAM and AweSim, John Wiley and Sons,
New York, New York.

Robinson, Stewart and Vinod Bhatia. 1995. Secrets of
Successful Simulation Projects. In Proceedings of the
1995 Winter Simulation Conference, ed. C.
Alexopoulos, K. Kang, W.R. Lilegdon, and D.
Goldsman. 61-67. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Sadowski, Deborah A. and Mark R Grabau. 1999. Tips for
Successhl Practice of Simulation. In Proceedings of
the 1999 Winter Simulation Conference, ed. P.A.
Farrington, H. B. Newbhard, D. T. Sturrock, and G.W.
Evans. 60-66. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Software Program Managers Network (SPMN). 1999. 16
Critical Software PracticesTM for Performance-based
Management. <http://www.spmn.com/
critical-software-practices.html>

Withers, Brian D., A. Alan B. Pritsker, and David H.
Withers. 1993. A Structured Definition of the
Modeling Process, In Proceedings of the 1993 Winter
Simulation Conference, ed G.W. Evans, M.
Mollaghasemi, E.C. Russell, W.E. Biles. 1109-1 117.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Zeigler, B.P. 1990. Object-Oriented Simulation with
Hierarchical, Modular Models, Academic Press, San
Diego, Califomia.

Zeigler, Bernard P. and Sankait Vahie. 1993. DEVS
Formalism and Methodology: Unity of
ConceptiodDiversity of Application. In Proceedings
of the 1993 Winter Simulation Conference, ed G.W.
Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles.
573-579. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

AUTHOR BIOGRAPHY

DAVID WITHERS is a Senior Manager with Dell
Computer Company in Round Rock, Texas. He received a
BS in Engineering from the U.S. Coast Guard Academy,

438

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:21:53 UTC from IEEE Xplore. Restrictions apply.

http://www.spmn.com

Withers

and MS degrees in mathematics and computer science
from Rensselaer Polytechnic Institute. He has held a
variety of management and technical positions with the
U.S. Coast Guard, IBM, and LEXIS-NEXIS. His research
interests are in application of simulation to the solution of
business problems. His publications include contributions
in the Proceedings of the Winter Simulation Conference,
the Journal of Computational Physics, and the IBM
Journal of Research and Development. He is a member of
the Association for Computing Machinery, The Institute
for Operations Research and the Management Sciences
(INFORMS), and the INFORMS College on Simulation.
He was the General Chair for the 1997 Winter Simulation
Conference. His e-mail address is <David-Wi thers
@ d e l l . com>.

439

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:21:53 UTC from IEEE Xplore. Restrictions apply.

