
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228555529

Best Practices in Agile Software Development

Article · April 2006

CITATIONS

2
READS

3,339

2 authors:

Steven R. Haynes

Pennsylvania State University

47 PUBLICATIONS 376 CITATIONS

SEE PROFILE

Marc Friedenberg

Pennsylvania State University

6 PUBLICATIONS 53 CITATIONS

SEE PROFILE

All content following this page was uploaded by Marc Friedenberg on 04 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/228555529_Best_Practices_in_Agile_Software_Development?enrichId=rgreq-2918936088dedb5b28972e9a189b2d09-XXX&enrichSource=Y292ZXJQYWdlOzIyODU1NTUyOTtBUzoxMDQxOTQzNDYzMjM5NzVAMTQwMTg1MzI3NjQzMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/228555529_Best_Practices_in_Agile_Software_Development?enrichId=rgreq-2918936088dedb5b28972e9a189b2d09-XXX&enrichSource=Y292ZXJQYWdlOzIyODU1NTUyOTtBUzoxMDQxOTQzNDYzMjM5NzVAMTQwMTg1MzI3NjQzMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2918936088dedb5b28972e9a189b2d09-XXX&enrichSource=Y292ZXJQYWdlOzIyODU1NTUyOTtBUzoxMDQxOTQzNDYzMjM5NzVAMTQwMTg1MzI3NjQzMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steven_Haynes?enrichId=rgreq-2918936088dedb5b28972e9a189b2d09-XXX&enrichSource=Y292ZXJQYWdlOzIyODU1NTUyOTtBUzoxMDQxOTQzNDYzMjM5NzVAMTQwMTg1MzI3NjQzMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steven_Haynes?enrichId=rgreq-2918936088dedb5b28972e9a189b2d09-XXX&enrichSource=Y292ZXJQYWdlOzIyODU1NTUyOTtBUzoxMDQxOTQzNDYzMjM5NzVAMTQwMTg1MzI3NjQzMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pennsylvania_State_University?enrichId=rgreq-2918936088dedb5b28972e9a189b2d09-XXX&enrichSource=Y292ZXJQYWdlOzIyODU1NTUyOTtBUzoxMDQxOTQzNDYzMjM5NzVAMTQwMTg1MzI3NjQzMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steven_Haynes?enrichId=rgreq-2918936088dedb5b28972e9a189b2d09-XXX&enrichSource=Y292ZXJQYWdlOzIyODU1NTUyOTtBUzoxMDQxOTQzNDYzMjM5NzVAMTQwMTg1MzI3NjQzMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marc_Friedenberg?enrichId=rgreq-2918936088dedb5b28972e9a189b2d09-XXX&enrichSource=Y292ZXJQYWdlOzIyODU1NTUyOTtBUzoxMDQxOTQzNDYzMjM5NzVAMTQwMTg1MzI3NjQzMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marc_Friedenberg?enrichId=rgreq-2918936088dedb5b28972e9a189b2d09-XXX&enrichSource=Y292ZXJQYWdlOzIyODU1NTUyOTtBUzoxMDQxOTQzNDYzMjM5NzVAMTQwMTg1MzI3NjQzMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pennsylvania_State_University?enrichId=rgreq-2918936088dedb5b28972e9a189b2d09-XXX&enrichSource=Y292ZXJQYWdlOzIyODU1NTUyOTtBUzoxMDQxOTQzNDYzMjM5NzVAMTQwMTg1MzI3NjQzMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marc_Friedenberg?enrichId=rgreq-2918936088dedb5b28972e9a189b2d09-XXX&enrichSource=Y292ZXJQYWdlOzIyODU1NTUyOTtBUzoxMDQxOTQzNDYzMjM5NzVAMTQwMTg1MzI3NjQzMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marc_Friedenberg?enrichId=rgreq-2918936088dedb5b28972e9a189b2d09-XXX&enrichSource=Y292ZXJQYWdlOzIyODU1NTUyOTtBUzoxMDQxOTQzNDYzMjM5NzVAMTQwMTg1MzI3NjQzMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Best Practices in Agile Software Development

Best Practices in Agile Software Development

Steven R. Haynes, Ph.D.
College of Information Sciences & Technology

The Pennsylvania State University
shaynes@ist.psu.edu

Marc Friedenberg

College of Information Sciences & Technology
The Pennsylvania State University

marcf@psu.edu

Technical Report No. 0018
College of Information Sciences and Technology

The Pennsylvania State University
May 19, 2006

THIS PUBLICATION IS AVAILABLE IN ALTERNATIVE MEDIA ON REQUEST. For more information on the
College of Information Sciences and Technology, visit our website at http://www.ist.psu.edu. Penn State is committed
to affirmative action, equal opportunity, and the diversity of its workplace. U.Ed. IST 06-79.

1

http://www.ist.psu.edu/

Best Practices in Agile Software Development

Abstract
This report describes an investigation into best practices in agile software

development. Agile software development methods represent the latest incarnation of
software engineering methods designed to be user-centric, low cost, and focused on rapid
delivery of high-quality software systems. This survey of empirical and theoretical
studies of agile methods provides a summary of the practices found to be most effective
in promoting the creation of high quality software systems using relatively flexible
prescriptions in the software development process. Our review of agile development
literature, case studies, and empirical findings leads us to a number of conclusions, some
of which run counter to the tenets of agile development. First, organizations should take
an adaptive, pragmatic approach to an agreed-upon methodology, one that carefully and
continually considers how and why elements of agile development may, or may not work
well in different project and team contexts. Second, sustained, constructive customer
involvement in development projects is a key factor in project success. Third, system
development organizations and teams should focus on closely monitoring and managing
the tempo of development projects. Core writings in agile methods promote rapid
development and small iterations as critical to project success, but published experiences
suggest that the appropriate tempo for a given project is always dependent on a range of
project, team, and context-specific factors. Finally, the surveyed work suggests that agile
development’s lack of an architectural focus often leads to poorly designed software
systems, and a level of disorientation on the part of development team members.

2

Best Practices in Agile Software Development

Introduction
As in any design discipline, deciding on the best approach to software

development methods involves resolving a number of trade-offs. A project management

adage says that you can have any product designed and developed to be good, fast, and

cheap, as long as you can live with only ever achieving two of these criteria. As a

discipline, software systems development is immature and its brief history may be

viewed as the struggle to control software development costs while at the same time

delivering high quality systems that meet the needs of system users and other project

stakeholders. A range of methods, or collections of methods bundled as methodologies,

have been proposed to meet these objectives in some reasonably predictable manner.

These methodologies range from highly prescriptive, phase/deliverable focused processes

(Humphrey, 1990) to simple development heuristics and guidelines designed to create a

professional atmosphere conducive to high quality intellectual work (DeMarco & Lister,

1987).

The current status of software development methodology pits “traditionalists”

against those committed to more flexible or agile approaches to building software

systems (Boehm, 2002). Traditionalists argue that a carefully defined and followed set of

planned, discrete tasks is best suited to ensuring predictable, successful software

development projects. Adherents of the recently emerged agile software development

(ASD) approaches argue against this rigid specification of knowledge work and in favor

of methods that explicitly allow for the intellectual and creative nature of software

design, while at the same time prescribing a set of practices to help achieve working

software within constraints of time and cost. Among the most compelling arguments for

agile methods is that they explicitly acknowledge how much can change between initial

requirements analysis and final delivery of a working system. Business and market

operating environments, project stakeholder goals and priorities, and technical standards

and constraints are constantly in flux. The objective of the modern systems development

team is to design and employ a software development process sufficiently adaptive to this

dynamic environment while at the same time capable of predictable and repeatable

system delivery success.

3

Best Practices in Agile Software Development

Software system development has been characterized as a continual cycle of

analysis and experimentation (Mathiassen & Stage, 1992). Developers employ analytic

techniques (e.g. modeling and specification) to reduce the complexity of a given problem

space through functional decomposition, which results in the identification of abstract

entities, attributes, and behaviors at successively more fine-grained levels of detail.

However, this process of analysis and decomposition results in increased uncertainty as

the development team makes decisions about what will be included in the system and

how these entities will behave, and, importantly, what will be excluded from the scope of

the design. Each such analytic decision raises the question: have we got it right? One way

to answer this question is to employ experimentation, often referred to as prototyping in

the software domain, to determine whether the decisions made result in a design that

more or less accurately reflects users’ functional requirements in the application domain.

Agile methods represent a skewing of this analysis-experimentation dichotomy towards

that of experimentation. Implicit in the approach is that analysis of complex domains is of

marginal utility when the critical features of the domain change and evolve with respect

to the organization’s requirements and its operating environment. Agile methods

therefore focus on delivering ‘good-enough’ functionality quickly, allowing development

teams to avoid implementing complete, but obsolete specifications and to evolve systems

that better map to dynamic organizational priorities.

Study Method
We survey the state-of-the-art in agile development methods to derive a set of

best practices to guide creation of a corporate methodology. These best practices are

gleaned from two sources: empirical studies of agile methods in action and theoretical

writings from industry experts. While the former is our preferred source of data as it is

grounded in the practical application of ASD techniques, we carefully selected from the

writings of some highly expert researchers and developers, such as Barry Boehm, Robert

Glass, and Kent Beck, based on their previous successes as analysts and predictors of

how the software development industry would evolve. We reviewed about 30 papers and

derived from these those aspects of ASD found to be most effective in practice and those

mitigating factors that diminish or inhibit success with ASD methods.

4

Best Practices in Agile Software Development

Report Structure
Following this introduction, the report first provides a brief overview of agile

software development with a particular emphasis on eXtreme Programming, arguably to

most pervasive of the agile methods. The next part reports on findings from our review of

the literature in agile software development and presents a set of best practices derived

from our reading. This is followed by a critical discussion of what appear to be the most

important aspects of ASD and the steps that can be taken by development organizations

to help ensure project success. The final section presents our conclusions and some

recommendations for how to best employ ASD adaptively to projects with different

levels of risk.

5

Best Practices in Agile Software Development

Agile Software Development
Agile software development is an approach to building systems that emphasizes

evolutionary development, customer-centricity, and low-documentation/specification

overhead. Agile methods are often further defined with respect to what they are not,

traditional, rigid, plan-based approaches typified by the so-called waterfall model.

Though there are numerous methodologies that fit loosely under the agile umbrella (see

for example Marchesi, 2003), this report uses the term agile software development, or

ASD, to refer to both the shared ethos of these different methods, with specific techniques

drawn from many and with particular focus on the most popular ASD, extreme

programming (Beck, 2000). The central tenets of extreme programming are provided

below as an exemplar for the ASD approach.

Table 1 - Tenets of Extreme Programming, an Exemplar Agile Method (adapted from Beck, 2000)

Tenet Description

The Planning Game Continually plan the next (small) development iteration or
release. The plan should closely integrate organizational
objective and priorities with technical specifications and
constraints. Planning is driven by user ‘stories’. Customers
and developers work together to write, estimate, and then
prioritize the stories that will be realized in the system.
Implementation schedules derived from stories are
constantly renegotiated by the development team and
customer representatives as new requirements are identified
and/or technical or other issues cause schedule delays. The
number and granularity of the stories is used as the major
input to system release planning (see below).

Small releases Keeping software release sizes small contributes to project
success in a number of ways. First, it focuses development
team members on delivering a small piece of working
software in a short amount of time. Second, it limits the
downstream damage of design or coding errors by applying
unit testing and customer verification to the each mini-
deliverable (Kivi, et al., 2000). Small releases are also
significantly easier to estimate though issues arise when
developers attempt to bid on large system projects using
ASD as the basis for the estimates (Pelrine, 2000).

6

Best Practices in Agile Software Development

Tenet Description

Metaphor Architecture and design is driven by a simple story of how
the system will work. The differences between metaphor in
the XP sense and architecture as is usually defined for
software development is the simplistic and narrative form
that the metaphor. The metaphor describes what the system
is all about, what it is ‘like’.

Simple design Design for XP development should be as minimalist as
possible while still meeting the functional requirements of
the user story that drives its purpose. ‘Gold plating’ and
elaborate abstractions built to support envisioned but not
expressed future requirements are to be avoided.

Testing In contrast to its reputation as an undisciplined development
methodology, XP strictly prescribes especially two kinds of
tests: “white box” unit tests written by developers before
coding is started and “black box” acceptance or functional
tests written by customer champions, again before any
actual software development has begun.

Refactoring Programmers continually review designs and code to assess
whether either can be made simpler while still meeting the
functional and performance requirements expressed by the
customer.

Pair programming Developers work in teams of two on a single workstation.
The idea behind pair programming is to embed often-
skipped code reviews into the development process and to
ensure that while one developer is ‘driving’, the other is
thinking about possible alternative designs, how the code
being written might be improved, and how it might fail.

Collective ownership The entire code base for a given project is open to all
development team members to review and to change. The
idea of individual ownership in the sense of the original
developer having sole rights to changing the code he/she
has written, is eschewed in favor of a collective approach to
code ownership, change rights, and accountability for code
quality.

Continuous integration Code units are continually integrated into a compile-able
version of the system under construction. Integration of a

7

Best Practices in Agile Software Development

Tenet Description

programming pair’s code occurs at least every day. Unit and
acceptance tests are applied at each integration to ensure
that the current build of the system is capable of passing all
pre-specified tests in its current form.

40-hour week Members of the development team are encouraged to work
within their cognitive and physical limits. ‘Hero’
programming and ‘death march’ projects are avoided by
ensuring that each developer can face each day’s challenges
with professionalism, deliberation, and care.

On-site customer Every development project has at least one full-time
representative drawn from the customer/user population.
This customer is responsible for assisting with development
of the system metaphor, with providing input to release
plans, and with writing and executing acceptance tests to
ensure the evolving system is meeting functional
requirements at adequate levels of quality and performance.

Coding standards The pace of short release iterations and the collective
ownership approach of XP requires that developers adhere
strictly to agreed upon coding standards. This ensures that
programming pairs can be formed without the added
overhead of ad hoc standards development and that
members of the development team can easily review any
code unit for design simplifications or for reuse
opportunities.

A higher-level set of attributes is provided as part of the Agile Manifesto

(www.agilemanifesto.org) and consist of the following four dichotomies:

“Individuals and interactions over processes and tools”

“Working software over comprehensive documentation”

“Customer collaboration over contract negotiation”

“Responding to change over following a plan”

These representative dichotomies can be summarized as describing software development

as an innately people-oriented enterprise. Software system development for dynamic

organizations is complex and so should focus on incremental delivery of software

8

http://www.agilemanifesto.org/

Best Practices in Agile Software Development

releases that meet some pressing need with the simplest possible solution. Integration of

customer representatives into the system development team is crucial to provide direct

links to the source of system requirements as well as to ensure that accountability is

correctly apportioned between the user group(s) responsible for identifying, clarifying,

and prioritizing system requirements and the system development team responsible for

realizing these requirements in working systems. Finally, agile software development

focuses on the need for adaptability over that of the long-term predictability as suggested

by detailed project plans.

One argument for the current popularity and on-going proliferation of agile

methods is the success of the world-wide web and the fact that so many successful web

applications appear to have been developed without many of the process constraints that

typify corporate development of information systems. Many web sites have evolved page

by page in response to customer and market demand. New pages can be developed in less

than a day without the costly, analysis-design-build-test cycles that governed so much in-

house information systems development in the past. Agile methods may be perceived as

an attempt to codify and legitimize this system development approach with identified

activities and the rationale for their success.

9

Best Practices in Agile Software Development

Best Practices in Agile Software Development
The body of substantially detailed and rigorous studies of agile methods in

practice is still relatively small and immature. Longitudinal studies of the sustained

success (or lack thereof) of these methods over time is essentially non-existent. The many

writings by industry commentators that do exist suggest that agile methods are in fact

succeeding in practice, but these claims have yet to be substantially corroborated with

reliable studies. Many of the empirical studies that have been done were performed using

undergraduate or graduate students as the participant sample. The results of these studies,

while interesting from the perspective of higher education, lack some of the ecological

validity required to generalize their results to the domain of professional software

development. There is however an emerging body of work that describes different short-

term case studies of agile methods in practice. We reviewed this body of work to derive a

framework of lessons learned that might be used to guide organizations setting off on the

agile methods track. The resulting framework is intended as an aid to successful

implementation of the agile methods approach.

The framework consists of a setoff practices ranging from the very high level,

such as evolving an agile development culture, to more low level, detailed prescriptions,

such as the consistency of coding standards. The framework is relatively simple and

consists of the following practices:

• Evolve an adaptive development culture

• Ensure customer champion engagement

• Manage requirements

• Don’t ignore architecture…

• But do practice iterative development

• Paired programming and paired development

• Test, really, and practice test planning

• Develop coding standards, provide training in their use, and then enforce

10

Best Practices in Agile Software Development

We found this set of practices most pervasive in practice, and most compelling in terms

of the effect their implementation may have on successful agile development. Each of

these practices is described in more detail in the sections that follow.

An adaptive culture
Much of the work reviewed suggests that creation of a successful agile

development organization requires focus on creating a culture that embraces the tenets of

ASD while at the same time working to adapt the methods and procedures to the

organization’s unique context (Lindvall, et al., 2002). As with anything new, aspects of

agile development are often met with initial resistance, though this resistance fades as

successes are achieved (Blotner, 2002). In at least one case researchers found that

developers at first embrace ASD but then revert to old practices, e.g., failing to test their

own code, when deadlines loom (Mueller & Borzuchowski, 2002). This suggests that

early ASD projects be given extra slack time to allow practices to evolve and take hold

within development teams. Managers should use early ASD projects to guide evolution

of a methodology to fit the organization’s culture (Blotner, 2002).

Customer champions
Though not limited to agile development practices alone, customer representation

on a software system development project is a crucial factor in their success (Boehm,

2002; Reifer, 2002; Elssamadisy & Schalliol, 2002). It’s important that customer

champions are assigned for the duration of the project and that they do not lose focus as

the project progresses (Elssamadisy & Schalliol, 2002). Also essential is that customer

champions be representative of the target customer/user base rather than proxies from

groups less directly related to the application domain (Elssamadisy & Schalliol, 2002).

One study suggests using two customer champions: one who is a domain or

subject-matter expert, and one a more senior person familiar with the high-level strategic

priorities of the organization (Nawrocki, J., Jasinski, et al. 2002). The former is available

to drive detailed requirements and answer queries related to the domain and the latter is

responsible for mediating conflicts between customer groups and developers and for

ensuring that the design and construction of the system tracks to higher level concerns

within the organizations (e.g., infrastructure, strategy, etc.).

11

Best Practices in Agile Software Development

Manage requirements
Central to the XP approach to ASD is that requirements documents consist

primarily of user stories describing interaction scenarios. User stories are kept necessarily

short and simple so that multiple user stories can potentially be delivered in a single

development iteration (2-4 weeks). Early iterations of a project should include a special

focus on building a productive customer-developer dialog. Developers focus on

understanding the requirements of the customer and customers focus on understanding

the practices and constraints of the developers (Martin, 2000).

The relatively ‘loose’ nature of the story card construct for requirements

determination leads to dangers of miscommunication when story card granularity and

level of analysis are not understood and specified consistently (Elssamadisy & Schalliol,

2002). Careful attention should be paid to development of a shared conception of what

constitutes a story card and the level of detail at which one should be specified. A range

of techniques can be used as the basis for an organization’s story card writing method.

Scenario-based design (Carroll & Rosson, 1992) is a technique close to the ethos of ASD

that has been well-documented and successfully used in practice. The Unified Modeling

Language includes use cases for modeling scenario classes and activity diagrams for

specifying more detailed use scenarios in a widely accepted, graphical form.

The relative lack of documentation in ASD may result in losing key information

related to requirements, despite the presence of an on-site customer. One study suggests

that responsibility for requirements be assigned to one or more members of the test team

(Nawrocki, J., Jasinski, et al. 2002). This provides a direct mechanism to verify that

system releases meet the requirements specified for the development increment.

Don’t ignore architecture
Several works suggest that ASD’s lack of focus on architectural issues can result

in a range of project and organizational inefficiencies (Mueller & Borzuchowski, 2002;

Glass, 2001; Kivi, et al., 2000; Newkirk & Martin, 2000; Elssamadisy & Schalliol, 2002).

Developers and team architects should understand that story card implementations are not

independent (Elssamadisy & Schalliol, 2002). Regardless of the lack of architectural

focus, design of prior code units necessarily constrain design space options for

12

Best Practices in Agile Software Development

subsequent iterations. The need for true architectural work for large systems without

stabile requirements presents a significant challenge to applying ASD to large projects

(Boehm, 2002).

One case study resulted in the authors recommending that one member of the

development team be responsible for the ‘big picture’ seeing the woods of system

architecture for the trees of short, simple software releases (Mueller & Borzuchowski,

2002). However, it’s important not to forget that too much planning for future,

unsubstantiated requirements can radically increase project complexity and can offset

some of the advantages gained from ASD (Hannula, 1999). When requirements are

stabile, plan longer range than is normally dictated by the ASD. This allows the

organization to take advantage of the economies gained through forward planning for

architecture and reusability (Boehm, 2002).

Given the complexity of large scale system designs, expert developers should play

the lead roles in architecture development. One study suggests that up to 80% of

refactoring rework may be attributable to architectural mistakes caused by junior

developers (Lindvall, et al., 2002). The same study suggests that for agile methods to

succeed, 25%-33% of the team members must be “competent and experienced”. Without

an architectural focus, larger projects can end up with refactorings that are larger efforts

than the small increments that initially led to the faulty design. Manage both the size of

the software release AND the size of a refactoring to ensure teams don’t pay later for

rapid development today (Elssamadisy & Schalliol, 2002; Lindvall, et al., 2002).

Practice iterative development
Short, iterative development cycles with small feature set releases is one of the

tenets of ASD and one found to contribute much to the success of the method (e.g.,

Reifer, 2002). However, one study suggests that the pace of one week release cycles was

too frenetic, resulting in low quality software deliverables. In this case the team managed

the pace of development by increasing the release interval to two weeks. In addition, they

found that specifying the activities within this two-week space using a “micro-waterfall”

cycle helped ensure that all necessary steps (design-test writing-build-test implement)

were followed for iteration (Blotner, 2002).

13

Best Practices in Agile Software Development

Though XP prescribes short intervals between software builds, in at least one case

developers found that the overhead involved in integrating software modules into a build

meant that these times needed to be lengthened. Training in and then enforcing of coding

standards is one approach to simplifying the integrate-build task and for helping

developers adapt to shorter release cycles (Mueller & Borzuchowski, 2002).

Paired programming & paired development
Paired programming is a method of gaining the advantages of code reviews,

advantages typically not realized because teams find it difficult to allot time to reviewing

each others’ code (Newkirk & Martin, 2000; Williams & Upchurch, 2001). Paired

programming also helps to mitigate development staff turnover and knowledge

management issues as at least two people have intimate knowledge of any unit of code

(Beck, 1999). Experiments in academic programming suggest that pairs spend 42.5%

fewer elapsed hours than individual programmers on the same task with only 15%

increase in total person-time (Williams & Upchurch, 2001). The same study found 15%

fewer defects in the code written by pairs. Though the lack of ecological validity in this

study may mean that similar results are not achieved in industrial settings, it may suggest

that especially novice programmers may prove more productive working in pairs.

Allow programming pairs to dictate how and the extent to which they pair for

different tasks. One study has found a broad range of preferences among developers in

terms of how they operationalize paired programming, which tasks they choose to work

on as a team and which as individuals (Müller & Tichy, 2001). Some work together

constantly while others divide tasks and synchronize their work as needed. Moving

experienced developers to paired programming may result in failure if team members

find the approach awkward (Wells, 1999).

Paired development goes beyond paired programming, and specifies that

developers work on all aspects of the development task as a team. Although one of the

most pervasive and controversial aspects of ASD, paired work is also one often identified

as having a positive impact on project success, software quality, and organizational

learning (Blotner, 2002; Greening, 2001; Hannula, 1999).

14

Best Practices in Agile Software Development

Testing and Test Planning
A key tenet of XP is that developers write their test plans before writing code to

implement the functionality tested by those plans. At least one study shows that this

approach contributes to the development of higher quality systems (Newkirk & Martin,

2000). The tempo of ASD’s short release cycle times can sometimes result in developers

minimizing their time on testing (Mueller & Borzuchowski, 2002). This can result in the

illusion of rapid progress but at the expense of high-quality software. Ensuring that

developers test their code may involve providing them with specialty training and

purchasing or building tools to support the testing process (Hannula, 1999). The unit test

framework JUnit is often used to support test case development in agile environments

(Müller & Tichy, 2001).

One practice found to contribute to testing success is when software components

are not unit tested by their developers but are passed to another developer pair for testing

to ensure quality (Blotner, 2002). This helps promote a culture of shared software

ownership and ensures that development pairs deliver working code units for integration.

Coding Standards
Lack of coding standards was identified as a significant impediment to short

software build cycles (Mueller & Borzuchowski, 2002). This suggests providing

developers with training and continuing to enforce standards that exist. Keeping coding

standards as simple as possible is another method for ensuring that standards are

followed. In one case the team adopted the simplest of standards: “make new code look

like code that is already there” (Greening, 2001).

15

Best Practices in Agile Software Development

Discussion
Our review of the agile software development literature leads us to suggest a set

of focus points for agile developers and managers. These focus points consist of four

high-level concerns that we think should form the basis for development methodology

planning, implementation, and on-going management. These focus points are:

• Adaptation

• Customer

• Tempo

• Architecture

Adaptation refers to the idea of evolving a customized development methodology

and the need to avoid dogmatism with respect to the organization’s use of agile

development methods. Customer refers to the critical issue of obtaining, sustaining, and

leveraging customer champion representation on agile development projects. Tempo is

the rate at which project activities progress. In many of the cases we reviewed, too fast a

tempo resulted in a number of dysfunctional behaviors including dropping important

aspects of the methodology (e.g., testing and test planning) and delivery of low quality

software components and systems. Architecture refers to the importance of “seeing the

wood for the trees”, in other words, maintaining a strategic perspective on not only the

immediate system under development but also has it fits with the organization’s IT

infrastructure and operating strategy.

Adaptation
An important factor in adoption of ASD is being agile, or adaptive in the adoption

process itself. It is increasingly recognized that methods should be tailored to various

aspects of the development context (Fitzgerald, et al., 2003). Organizations should adopt

an inclusive approach to the techniques and methods they package into a methodology.

Strict adherence to a prescribed methodology only serves to discredit a development

paradigm if it seen as too rigid or lacking a common sense perspective on what works.

Some organizations have reported success incorporating techniques from traditional

16

Best Practices in Agile Software Development

software development methods, including tools and diagrams from UML, into an agile

development setting (Greening, 2001).

Some projects and project components require more careful attention than others

to ensure a high quality product. Assessment of how to apply stricter controls, in the form

of additional methodology steps for example, should be driven by the risks posed both to

and from a given software deliverable. In other words, difficult-to-design and difficult-to-

build components, or those employing construction techniques unfamiliar to the

development team, inherently involve greater risk than simpler, more familiar

development tasks. However, because of architectural dependencies, both simple and

complex components can pose a risk to both a project and to system users. In the case of

safety-critical domains for example, architectural issues should be managed with special

care to ensure high quality, reliable products of development. We propose that

organizations adopting any methodology spend time considering how different aspects of

the methodology relate to the risk profile of their operating environment and how these

aspects can be tailored, relaxed, or enforced depending on the risk level of a given system

project or project component.

Allowing the methodology to evolve to fit the organization’s culture accomplishes

a number of difficult objectives. First, it helps avoid the disenfranchising effect of

dictating how expert knowledge workers approach their work. The personal software

process (Humphrey, 1995), for example, goes so far as to suggest that each individual

developer take responsibility for the procedures they use to produce quality software on

time. However, to avoid complete methodological anarchy, we suggest employing guided

evolution while adopting agile methods. This involves assigning one or more expert and

respected members of the technical organization with the responsibility for ensuring that

methodology evolution maps to organizational priorities and objectives. A dogmatic

approach to methodology adoption seems rarely practical. Techniques from agile

methods can be mixed in with existing methodological practice, especially when existing

practices have proven useful within the organization. For example, ASD can be

integrated into the Capability Maturity Model (CMM) to derive both the institutional and

management benefits of the CMM while at the same time fostering the individual and

small-team quality focus central to the approach (Paulk, 2001).

17

Best Practices in Agile Software Development

Customers
Real customer involvement in requirements analysis, design, and implementation

of management information systems has long been recognized as a significant contributor

to project success. Effective customer participation means resolving a range of tensions

that work against success including involving the ‘right’ customers, fostering customer-

development team communication and trust, and especially sustaining customer

participation when constraints of time work to disengage customers and developers from

one another. Engaging the right customer for most projects probably means involving

representatives from at least two groups. One customer represents the project at the

executive or management level, ensuring the project fits with organizational priorities and

working to gain and sustain resource commitments to the project. The other is drawn

from the target user population and should be a subject matter expert in the application

domain. If possible, both representatives should be information technology savvy so that

they are able to act as effective mediators and translators between customer and

development groups.

Tempo
One of the more important findings derived from this study concerns the role of

tempo in software development methodologies. By tempo we mean the pace at which

development activities proceed. The issue is not that development should necessarily be

fast-paced, as suggested by ASD, but that the pace be appropriate to the complexity of

the project, to the expertise and comfort level of the development team, and to the rate at

which requirements emerge and are specified using design stories. Managing tempo

requires managing the grain size of system development iterations. Too small a grain size

and the tempo may be too fast for team members and customer champions to maintain

focus on quality development practices. Too large and many of the professed advantages

of ASD are lost including the sense of accomplishment and the customer feedback that

comes when system components are implemented in practice.

In systems development, too fast a tempo can result in disorientation with respect

to critical objectives and priorities. This disorientation can affect both the development

team and the customer, and is always counter-productive. One or the other may not be

able to maintain a considered understanding of the course of a project, resulting in a

18

Best Practices in Agile Software Development

myriad of potential maladaptive behaviors such as reverting to older, more comfortable

practices, not necessarily agile, that help to bring a project’s pace under control.

A number of the studies reviewed suggest mismanagement of project tempo as a

significant issue in the quality of project deliverables. In all cases the issue was a tempo

that was too fast to maintain careful, quality oriented practice. One of the many sensible

prescriptions that is abandoned as tempo exceeds team capabilities is adequate test

planning and testing of incremental software releases. Managing ASD requires managing

the tempo of the development project such that the pace of accomplishment is sufficient

to maintain project momentum but at the same time is within the reasonable boundaries

of the development and customer teams’ cognitive and physical capabilities. This issue is

implicitly addressed in the tenets of XP, which includes the 40 hour week prescription.

What we mean by tempo here goes further than this however, is more difficult to achieve,

and requires constant vigilance on the part of team managers. Too slow a tempo results in

losing the focus on rapid delivery of working components to gain a sense of

accomplishment, customer feedback, and customer trust. Too fast a tempo results in an

inability to focus on enacting the proven practices and processes that are most likely to

result in successful projects.

Architecture
One of the most troublesome aspects of ASD is also one at the core of these

methods, a focus on small, incremental deliverables without the detailed architectural

planning seen as detrimental to getting working code completed quickly (Kivi, et al.,

2000). Central to the agile approach is that design documents consist primarily of user

stories describing interaction scenarios. User stories are kept necessarily short and as

simple as possible so that multiple user stories can potentially be delivered in a single

development iteration (2-4 weeks). This short term focus has many advantages including

rapid delivery of working software components, but can lead to inefficiencies if taken to

extremes. Despite ASD’s focus on short release cycles, at least one expert member of the

development team should be tasked with ensuring that the overall architecture of a

system is coherent. This is an element of a federal approach that considers the need to

evolve high quality, ‘grass roots’ communities of practice while at the same time not

losing sight of the economies and technical coherence to be gained by understanding how

19

Best Practices in Agile Software Development

the system and its components fits into the overall organizational IT architecture and

strategy.

Software architecture involves a deep understanding of the trade-offs associated

with design and development decisions. This understanding comes from experience with

large-scale systems projects and their outcomes in terms of meeting customer

requirements, their cost to maintain and extend over time, and the reusable software

components derivable from them. The importance of expert developers continues to be

highlighted as a critical success factor in software systems development (Boehm, 2002)

The lack of people qualified to play the role of system architect and the ramifications

when junior developers are tasked with architecture presents significant challenges to

software team managers. Make the title of architect something that junior people can

strive to achieve through apprenticeship with more experienced developers. Explicitly

acknowledge that it takes time and commitment to high quality development practices to

gain promotion to architect status.

Issues with the turnaround time involved in creating a software build (Mueller &

Borzuchowski, 2002) lead to several possible suggestions. First, development

organizations should invest in people, tools, and processes to support the software

module integration process. Second, organizations should be realistic about what

constitutes a reasonable build cycle time. Software integration of short-cycle builds may

result in significant time lost to preparation and procedures required for system builds,

rather than on progress towards higher-level customer and organizational objectives.

Agile methods raise the question of what, if any, role is played by standard

architecture-oriented modeling environments such as UML. In one case, a development

team successfully replaced XP’s story cards with UML use cases (Greening, 2001). Use

cases may be further elaborated with activity diagrams that describe important variants of

a given use scenario. An important point to remember is that graphical analysis and

design representations such as the UML and associated tools (e.g., Rational Rose) are not

simply documentation formats, they are also meant to serve as cognitive aids and the

basis for shared understanding in the design problem solving process. As such, they play

an important role regardless of the methodological commitments taken on by a

20

Best Practices in Agile Software Development

development organization. As with other aspects of the development process, teams

should carefully consider what aspects of these tools are usefully suited to the context of

the organization and adopt those that make significant contributions without being bound

by any single methodological perspective or approach.

21

Best Practices in Agile Software Development

Conclusion
Though dialog in the literature suggests a polarization between users of

traditional, plan-based methodologies and agile software development adherents, an

increasing number of researchers and practitioners are calling for more open-minded and

compromising perspectives on the methods debate (Boehm, 2002; Glass, 2001). This

seems sensible, since in most cases the approach an organization takes towards applying

a software development methodology will depend on the specifics of the development

project, the development team members, the organizations operating objectives and

priorities, and a host of contextual factors.

One approach to implementation of a coherent software development

methodology when faced with this dynamic range of factors is to adopt a risk-driven,

checklist approach to applying elements of an organizational methodology.

Methodological checklists are an approach to creation of an adaptive software

development methodology that defines the tasks that must be performed as part of any

development project without specifying exactly how each task is performed. This

provides individual project managers technical leads, and developers with a set of

reminders for what they need to consider while at the same time being flexible enough to

allow team members to assess how a given checklist item is to be operationalized. It

suggests what to do but allows individuals the freedom to decide how they do it.

A methodology checklist consists of perhaps as many as 100 items to consider.

The set of checklist items that apply to a given development project is driven by an

assessment of the risk level of the project. For example, a simple, relatively risk-free

project may only require 40 of the 100 checklist items. Projects with intermediate risks

require 70 of the 100. Projects with high risk employ the full set of 100 items. This risk-

driven approach involves identification of a set of criteria for assessing the risk level of a

given development project, and then using more or less structure and prescription in the

methodology for a given project as appropriate for the level of risk associated with the

project. Measures of risk may also be used to adjust tempo in response to project

iterations of more or less complexity. Riskier project components require additional

diligence to ensure that the pace of development coincides with the thoughtfulness

22

Marc Friedenberg
Remove this

Best Practices in Agile Software Development

required to build a high quality complex component. Some examples of project risk

assessment approaches and associated tools include the Constructive Cost Estimation

Model II, or COCOMO II (see Boehm, et al. 1995), and various risk element checklists

(e.g., Karolak, 1996; Software Engineering Institute, 1993).

Over 60% of software development projects that are begun are never completed

(Grudin, 1996) One of the most compelling arguments for the agile approach to

developing systems is that given this completion rate, developers should focus on

delivering working functionality in the shortest possible increments of time so that

project sponsors quickly receive some return on their development investment.

Diminishing the time between analysis and fielding of a system also helps to manage the

fact that organizational requirements change rapidly and that the best way to meet

evolving requirements is through a development approach that is able to evolve in

parallel. The challenge to developers and managers is to create a development team

culture capable of adapting to shifting organizational priorities while at the same time

maintaining a commitment to high-quality processes and delivery of sound software

system products.

One approach to the development of cohesive product development teams capable

of producing high-quality software systems at reasonable and predictable cost is by

fostering communities of practice oriented towards common goals (Lave & Wenger,

1991). Especially important to building such communities is that all members participate

and contribute to the identification of the objectives, priorities, and practices that define

the community ethos. One way to begin building this shared culture is through a

participatory approach to the risk-driven approach described above. All members of the

development organization take part in identification of the methodology checklist and in

assessment of which items are appropriate at different project risk levels. Building this

culture also involves providing training, encouragement, and potentially project slack

time as developers learn to adapt to new methods and ways of working. As with many

collaborative activities, building a critical mass of committed individuals is an essential

prerequisite for widespread adoption of proposed innovations (Grudin, 1994).

23

Marc Friedenberg
Are parentheses necessary?

Best Practices in Agile Software Development

References
Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J., (2002). Agile software development methods:

Review and analysis. Oulu, Finland: VTT.

Ambler, S. (2002). “Lessons in Agility from Internet-Based Development.” IEEE Software. March/April
2002, pp. 66-73.

Beck, K. (2000). eXtreme Programming explained: Embrace Change. Boston: Addison Wesley.

Beck, K. (1999). “Embracing Change with Extreme Programming.” Computer. October, pp. 70-77.

Blotner, J. (2002). “Agile Techniques to Avoid Firefighting at a Start-Up.” Conference on Object Oriented
Programming Systems Languages and Applications, Seattle, Washington, ACM.

Boehm, B. (2002). “Get Ready for Agile Methods, with Care.” Computer. January, pp. 64-69.

Boehm, B., Clark, B., Horowitz, E., Madachy, R., Shelby, R., Westland, C. (1995)."An Overview of the
COCOMO 2.0 Software Cost Model," Software Technology Conference, April, 1995.

Carroll, J.M. & Rosson, M.B. (1992). “Getting around the task-artifact cycle: How to make clains and
design by scenario.” ACM Transaction on Information Systems, 10, 181-212.

DeMarco, T. & Boehm, B. (2002). “The Agile Methods Fray.” Computer. June, pp. 90-92.

DeMarco, T. & Lister, T. (1987). Peopleware: productive projects and teams. New York: Dorset House.

Elssamadisy, A. & Schalliol, G. (2002). “Recognizing and Responding to “Bad Smells” in Extreme
Programming.” Proceedings of the 24th international conference on Software engineering, Orlando,
Florida, ACM.

Fitgerald, B., Russo, N. L., & O’Kane, T. (2003). “Software Development Method Tailoring at Motorola.”
Communications of the ACM, 46(4), April, pp. 64-70.

Glass, R. (2001). “Extreme Programming: The Good, the Bad, and the Bottom Line.” IEEE Software.
November/December, pp. 111-112.

Grenning, J., (2001). “Launching Extreme Programming at a Process-Intensive Company.” IEEE Software.
November/December 2001.

Grudin, J. (1996). “Evaluating Opportunities for Design Capture.” In J. M. Moran & T. P. Carroll (Eds.),
Design Rationale: Concepts, Techniques and Use. Mahwah, NJ: Lawrence Erlbaum, pp. 21-51.

Grudin, J. (1994). “Groupware and social dynamics: Eight challenges for developers.” Communications of
the ACM, 37(1), January, 92-105.

Highsmith, J. & Cockburn, A. (2001). “Agile Software Development: The Business of Innovation.”
Computer. September, pp. 120-122.

Hannula, J. (1999). “Acxiom: Working toward a Common Goal.” Computer. October, pp. 74.

Humphrey, W. H., (1990). Managing the Software Process, Reading,MA: Addison-Wesley.

Humphrey, W. H., (1995). A discipline for software engineering. Reading, MA: Addison Wesley.

Karolak, D. W., (1996). Software Engineering Risk Management. IEEE Computer Society Press.

Kivi, J., Haydon D., et al (2000). “Extreme programming: a university team design experience.” 2000
Canadian Conference on Electrical and Computer Engineering, Halifax, Nova Scotia, Canada, IEEE.

Lave, J. & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK:
Cambridge University Press.

Lindvall M., Basili V. R., Boehm B., Costa P., Dangle K., Shull F., Tesoriero R., Williams L., and
Zelkowitz M. V., (2002). "Empirical Findings in Agile Methods", In Proceedings of Extreme
Programming and Agile Methods - XP/Agile Universe 2002, Wells, D. & Williams, L., Springer,

24

Best Practices in Agile Software Development

August, pp. 197-207. Available at: http://fc-
md.umd.edu/fcmd/Papers/Lindvall_agile_universe_eworkshop.pdf

Marchesi, M. (2003). “Which AM Should I Use?” In Marchesi, M, Succi, G., Wells, D, & Williams, L.
(Eds.) Extreme Programming Perspectives. Boston: Addison-Wesley, pp.17-22.

Martin, R. (2000). “eXtreme Programming Development through Dialog.” IEEE Software. July/August, pp.
12-13.

Mathiassen, L. & Stage, J., (1992). “The Principle of Limited Reduction in Software Design”.. In:
Information, Technology and People, Vol. 6, No. 2, 1992.

Moore, R. (2001). “Evolving to a “Lighter” Software Process: A Case Study.” 26th Annual NASA Goddard
Software Engineering Workshop, Greenbelt, Maryland, IEEE.

Müller, M. & Tichy, W. (2001). “Case Study: Extreme Programming in a University Environment.”
Proceedings of the 23rd international conference on Software engineering, Toronto, Ontario, Canda,
ACM.

Mueller, Gary and Borzuchowski, Janet (2002). Extreme Embedded: A Report from the Front Line.
Proceedings of the 24th international conference on Software Engineering, Orlando, Florida, ACM.

Nawrocki, J., Jasinski, M., Bartosz, W., & Wojciechowski, A. (2002). “Extreme Programming Modified:
Embrace Requirements Engineering Practices.” Proceedings of IEEE Joint International Conference
on Requirements Engineering, IEEE.

Newkirk, J. & Martin, R. (2000). “Extreme Programming in Practice”. Addendum to the 2000 proceedings
of the conference on Object-oriented programming, systems, languages, and applications,
Minneapolis, Minnesota, ACM.

Paulk, M. C., (2001). “Extreme Programming from a CMM Perspective.” IEEE Software.
November/December, pp. 19-26.

Pelrine, J. (2000). “Modelling infection scenarios – a fixed-price extreme Programming success story.”
Addendum to the 2000 proceedings of the conference on Object-oriented programming, systems,
languages, and applications, Minneapolis, Minnesota, ACM.

Reifer, D. (2002). “How Good Are Agile Methods?” IEEE Software, July/August, pp. 16-18.

Schuh, P., (2001). “Recovery, Redemption, and Extreme Programming.” IEEE Software,
November/December.

Shukla, A. & Williams, L. (2002). “Adapting Extreme Programming For A Core Software Engineering
Course.” 15th Conference on Software Engineering Education and Training, Covington, Kentucky,
IEEE.

Software Engineering Institute, (1993). “Taxonomy-Based Risk Identification,” Software Engineering
Institute, Technical Report SEI-93-TR-6.

Wells, D. (1999). “Ford Motor: A Unique Combination of Agility and Quality.” Computer. October, pp.
77.

Williams, L. & Upchurch, R. (2001). “In Support of Student Pair-Programming.” Proceedings of the thirty
second SIGCSE technical symposium on Computer Science Education, Charlotte, North Carolina,
ACM.

25

View publication statsView publication stats

https://www.researchgate.net/publication/228555529

	Abstract
	Introduction
	Study Method
	Report Structure

	Agile Software Development
	Best Practices in Agile Software Development
	An adaptive culture
	Customer champions
	Manage requirements
	Don’t ignore architecture
	Practice iterative development
	Paired programming & paired development
	Testing and Test Planning
	Coding Standards

	Discussion
	Adaptation
	Customers
	Tempo
	Architecture

	Conclusion
	References

