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Foreword

I am delighted to write this foreword. This book, a reference where one
can look up the details of most any algorithm to find a clear unambiguous
description, has long been needed and here it finally is. A concise reference
that has taken many hours to write but which has the capacity to save vast
amounts of time previously spent digging out original papers.

I have known the author for several years and have had experience of his
amazing capacity for work and the sheer quality of his output, so this book
comes as no surprise to me. But I hope it will be a surprise and delight to
you, the reader for whom it has been written.

But useful as this book is, it is only a beginning. There are so many
algorithms that no one author could hope to cover them all. So if you know
of an algorithm that is not yet here, how about contributing it using the
same clear and lucid style?

Professor Tim Hendtlass
Complex Intelligent Systems Laboratory

Faculty of Information and Communication Technologies
Swinburne University of Technology

Melbourne, Australia
2010
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Preface

About the book

The need for this project was born of frustration while working towards my
PhD. I was investigating optimization algorithms and was implementing
a large number of them for a software platform called the Optimization
Algorithm Toolkit (OAT)1. Each algorithm required considerable effort
to locate the relevant source material (from books, papers, articles, and
existing implementations), decipher and interpret the technique, and finally
attempt to piece together a working implementation.

Taking a broader perspective, I realized that the communication of
algorithmic techniques in the field of Artificial Intelligence was clearly a
difficult and outstanding open problem. Generally, algorithm descriptions
are:

� Incomplete: many techniques are ambiguously described, partially
described, or not described at all.

� Inconsistent : a given technique may be described using a variety of
formal and semi-formal methods that vary across different techniques,
limiting the transferability of background skills an audience requires
to read a technique (such as mathematics, pseudocode, program code,
and narratives). An inconsistent representation for techniques means
that the skills used to understand and internalize one technique may
not be transferable to realizing different techniques or even extensions
of the same technique.

� Distributed : the description of data structures, operations, and pa-
rameterization of a given technique may span a collection of papers,
articles, books, and source code published over a number of years, the
access to which may be restricted and difficult to obtain.

For the practitioner, a badly described algorithm may be simply frus-
trating, where the gaps in available information are filled with intuition and

1OAT located at http://optalgtoolkit.sourceforge.net
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x Preface

‘best guess’. At the other end of the spectrum, a badly described algorithm
may be an example of bad science and the failure of the scientific method,
where the inability to understand and implement a technique may prevent
the replication of results, the application, or the investigation and extension
of a technique.

The software I produced provided a first step solution to this problem: a
set of working algorithms implemented in a (somewhat) consistent way and
downloaded from a single location (features likely provided by any library of
artificial intelligence techniques). The next logical step needed to address this
problem is to develop a methodology that anybody can follow. The strategy
to address the open problem of poor algorithm communication is to present
complete algorithm descriptions (rather than just implementations) in a
consistent manner, and in a centralized location. This book is the outcome
of developing such a strategy that not only provides a methodology for
standardized algorithm descriptions, but provides a large corpus of complete
and consistent algorithm descriptions in a single centralized location.

The algorithms described in this work are practical, interesting, and
fun, and the goal of this project was to promote these features by making
algorithms from the field more accessible, usable, and understandable.
This project was developed over a number years through a lot of writing,
discussion, and revision. This book has been released under a permissive
license that encourages the reader to explore new and creative ways of
further communicating its message and content.

I hope that this project has succeeded in some small way and that you
too can enjoy applying, learning, and playing with Clever Algorithms.

Jason Brownlee

Melbourne, Australia
2011
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Chapter 1

Introduction

Welcome to Clever Algorithms! This is a handbook of recipes for com-
putational problem solving techniques from the fields of Computational
Intelligence, Biologically Inspired Computation, and Metaheuristics. Clever
Algorithms are interesting, practical, and fun to learn about and implement.
Research scientists may be interested in browsing algorithm inspirations in
search of an interesting system or process analogs to investigate. Developers
and software engineers may compare various problem solving algorithms
and technique-specific guidelines. Practitioners, students, and interested
amateurs may implement state-of-the-art algorithms to address business or
scientific needs, or simply play with the fascinating systems they represent.

This introductory chapter provides relevant background information on
Artificial Intelligence and Algorithms. The core of the book provides a large
corpus of algorithms presented in a complete and consistent manner. The
final chapter covers some advanced topics to consider once a number of
algorithms have been mastered. This book has been designed as a reference
text, where specific techniques are looked up, or where the algorithms across
whole fields of study can be browsed, rather than being read cover-to-cover.
This book is an algorithm handbook and a technique guidebook, and I hope
you find something useful.

1.1 What is AI

1.1.1 Artificial Intelligence

The field of classical Artificial Intelligence (AI) coalesced in the 1950s
drawing on an understanding of the brain from neuroscience, the new
mathematics of information theory, control theory referred to as cybernetics,
and the dawn of the digital computer. AI is a cross-disciplinary field
of research that is generally concerned with developing and investigating

3



4 Chapter 1. Introduction

systems that operate or act intelligently. It is considered a discipline in the
field of computer science given the strong focus on computation.

Russell and Norvig provide a perspective that defines Artificial Intel-
ligence in four categories: 1) systems that think like humans, 2) systems
that act like humans, 3) systems that think rationally, 4) systems that
act rationally [43]. In their definition, acting like a human suggests that
a system can do some specific things humans can do, this includes fields
such as the Turing test, natural language processing, automated reasoning,
knowledge representation, machine learning, computer vision, and robotics.
Thinking like a human suggests systems that model the cognitive informa-
tion processing properties of humans, for example a general problem solver
and systems that build internal models of their world. Thinking rationally
suggests laws of rationalism and structured thought, such as syllogisms and
formal logic. Finally, acting rationally suggests systems that do rational
things such as expected utility maximization and rational agents.

Luger and Stubblefield suggest that AI is a sub-field of computer science
concerned with the automation of intelligence, and like other sub-fields
of computer science has both theoretical concerns (how and why do the
systems work? ) and application concerns (where and when can the systems
be used? ) [34]. They suggest a strong empirical focus to research, because
although there may be a strong desire for mathematical analysis, the systems
themselves defy analysis given their complexity. The machines and software
investigated in AI are not black boxes, rather analysis proceeds by observing
the systems interactions with their environments, followed by an internal
assessment of the system to relate its structure back to its behavior.

Artificial Intelligence is therefore concerned with investigating mecha-
nisms that underlie intelligence and intelligence behavior. The traditional
approach toward designing and investigating AI (the so-called ‘good old
fashioned’ AI) has been to employ a symbolic basis for these mechanisms.
A newer approach historically referred to as scruffy artificial intelligence or
soft computing does not necessarily use a symbolic basis, instead patterning
these mechanisms after biological or natural processes. This represents a
modern paradigm shift in interest from symbolic knowledge representations,
to inference strategies for adaptation and learning, and has been referred to
as neat versus scruffy approaches to AI. The neat philosophy is concerned
with formal symbolic models of intelligence that can explain why they work,
whereas the scruffy philosophy is concerned with intelligent strategies that
explain how they work [44].

Neat AI

The traditional stream of AI concerns a top down perspective of problem
solving, generally involving symbolic representations and logic processes
that most importantly can explain why the systems work. The successes of
this prescriptive stream include a multitude of specialist approaches such
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as rule-based expert systems, automatic theorem provers, and operations
research techniques that underly modern planning and scheduling software.
Although traditional approaches have resulted in significant success they
have their limits, most notably scalability. Increases in problem size result in
an unmanageable increase in the complexity of such problems meaning that
although traditional techniques can guarantee an optimal, precise, or true
solution, the computational execution time or computing memory required
can be intractable.

Scruffy AI

There have been a number of thrusts in the field of AI toward less crisp
techniques that are able to locate approximate, imprecise, or partially-true
solutions to problems with a reasonable cost of resources. Such approaches
are typically descriptive rather than prescriptive, describing a process for
achieving a solution (how), but not explaining why they work (like the
neater approaches).

Scruffy AI approaches are defined as relatively simple procedures that
result in complex emergent and self-organizing behavior that can defy
traditional reductionist analyses, the effects of which can be exploited for
quickly locating approximate solutions to intractable problems. A common
characteristic of such techniques is the incorporation of randomness in
their processes resulting in robust probabilistic and stochastic decision
making contrasted to the sometimes more fragile determinism of the crisp
approaches. Another important common attribute is the adoption of an
inductive rather than deductive approach to problem solving, generalizing
solutions or decisions from sets of specific observations made by the system.

1.1.2 Natural Computation

An important perspective on scruffy Artificial Intelligence is the motivation
and inspiration for the core information processing strategy of a given
technique. Computers can only do what they are instructed, therefore a
consideration is to distill information processing from other fields of study,
such as the physical world and biology. The study of biologically motivated
computation is called Biologically Inspired Computing [16], and is one of
three related fields of Natural Computing [22, 23, 39]. Natural Computing
is an interdisciplinary field concerned with the relationship of computation
and biology, which in addition to Biologically Inspired Computing is also
comprised of Computationally Motivated Biology and Computing with
Biology [36, 40].
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Biologically Inspired Computation

Biologically Inspired Computation is computation inspired by biological
metaphor, also referred to as Biomimicry, and Biomemetics in other engi-
neering disciplines [6, 17]. The intent of this field is to devise mathematical
and engineering tools to generate solutions to computation problems. The
field involves using procedures for finding solutions abstracted from the
natural world for addressing computationally phrased problems.

Computationally Motivated Biology

Computationally Motivated Biology involves investigating biology using
computers. The intent of this area is to use information sciences and
simulation to model biological systems in digital computers with the aim
to replicate and better understand behaviors in biological systems. The
field facilitates the ability to better understand life-as-it-is and investigate
life-as-it-could-be. Typically, work in this sub-field is not concerned with
the construction of mathematical and engineering tools, rather it is focused
on simulating natural phenomena. Common examples include Artificial
Life, Fractal Geometry (L-systems, Iterative Function Systems, Particle
Systems, Brownian motion), and Cellular Automata. A related field is that
of Computational Biology generally concerned with modeling biological
systems and the application of statistical methods such as in the sub-field
of Bioinformatics.

Computation with Biology

Computation with Biology is the investigation of substrates other than
silicon in which to implement computation [1]. Common examples include
molecular or DNA Computing and Quantum Computing.

1.1.3 Computational Intelligence

Computational Intelligence is a modern name for the sub-field of AI con-
cerned with sub-symbolic (also called messy, scruffy, and soft) techniques.
Computational Intelligence describes techniques that focus on strategy and
outcome. The field broadly covers sub-disciplines that focus on adaptive
and intelligence systems, not limited to: Evolutionary Computation, Swarm
Intelligence (Particle Swarm and Ant Colony Optimization), Fuzzy Systems,
Artificial Immune Systems, and Artificial Neural Networks [20, 41]. This
section provides a brief summary of the each of the five primary areas of
study.
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Evolutionary Computation

A paradigm that is concerned with the investigation of systems inspired by
the neo-Darwinian theory of evolution by means of natural selection (natural
selection theory and an understanding of genetics). Popular evolutionary
algorithms include the Genetic Algorithm, Evolution Strategy, Genetic
and Evolutionary Programming, and Differential Evolution [4, 5]. The
evolutionary process is considered an adaptive strategy and is typically
applied to search and optimization domains [26, 28].

Swarm Intelligence

A paradigm that considers collective intelligence as a behavior that emerges
through the interaction and cooperation of large numbers of lesser intelligent
agents. The paradigm consists of two dominant sub-fields 1) Ant Colony
Optimization that investigates probabilistic algorithms inspired by the
foraging behavior of ants [10, 18], and 2) Particle Swarm Optimization that
investigates probabilistic algorithms inspired by the flocking and foraging
behavior of birds and fish [30]. Like evolutionary computation, swarm
intelligence-based techniques are considered adaptive strategies and are
typically applied to search and optimization domains.

Artificial Neural Networks

Neural Networks are a paradigm that is concerned with the investigation of
architectures and learning strategies inspired by the modeling of neurons
in the brain [8]. Learning strategies are typically divided into supervised
and unsupervised which manage environmental feedback in different ways.
Neural network learning processes are considered adaptive learning and
are typically applied to function approximation and pattern recognition
domains.

Fuzzy Intelligence

Fuzzy Intelligence is a paradigm that is concerned with the investigation of
fuzzy logic, which is a form of logic that is not constrained to true and false
determinations like propositional logic, but rather functions which define
approximate truth, or degrees of truth [52]. Fuzzy logic and fuzzy systems
are a logic system used as a reasoning strategy and are typically applied to
expert system and control system domains.

Artificial Immune Systems

A collection of approaches inspired by the structure and function of the
acquired immune system of vertebrates. Popular approaches include clonal
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selection, negative selection, the dendritic cell algorithm, and immune net-
work algorithms. The immune-inspired adaptive processes vary in strategy
and show similarities to the fields of Evolutionary Computation and Artifi-
cial Neural Networks, and are typically used for optimization and pattern
recognition domains [15].

1.1.4 Metaheuristics

Another popular name for the strategy-outcome perspective of scruffy AI is
metaheuristics. In this context, heuristic is an algorithm that locates ‘good
enough’ solutions to a problem without concern for whether the solution
can be proven to be correct or optimal [37]. Heuristic methods trade-off
concerns such as precision, quality, and accuracy in favor of computational
effort (space and time efficiency). The greedy search procedure that only
takes cost-improving steps is an example of heuristic method.

Like heuristics, metaheuristics may be considered a general algorithmic
framework that can be applied to different optimization problems with
relative few modifications to adapt them to a specific problem [25, 46]. The
difference is that metaheuristics are intended to extend the capabilities
of heuristics by combining one or more heuristic methods (referred to as
procedures) using a higher-level strategy (hence ‘meta’). A procedure in a
metaheuristic is considered black-box in that little (if any) prior knowledge
is known about it by the metaheuristic, and as such it may be replaced with
a different procedure. Procedures may be as simple as the manipulation of
a representation, or as complex as another complete metaheuristic. Some
examples of metaheuristics include iterated local search, tabu search, the
genetic algorithm, ant colony optimization, and simulated annealing.

Blum and Roli outline nine properties of metaheuristics [9], as follows:

� Metaheuristics are strategies that “guide” the search process.

� The goal is to efficiently explore the search space in order to find
(near-)optimal solutions.

� Techniques which constitute metaheuristic algorithms range from
simple local search procedures to complex learning processes.

� Metaheuristic algorithms are approximate and usually non-deterministic.

� They may incorporate mechanisms to avoid getting trapped in confined
areas of the search space.

� The basic concepts of metaheuristics permit an abstract level descrip-
tion.

� Metaheuristics are not problem-specific.
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� Metaheuristics may make use of domain-specific knowledge in the
form of heuristics that are controlled by the upper level strategy.

� Todays more advanced metaheuristics use search experience (embodied
in some form of memory) to guide the search.

Hyperheuristics are yet another extension that focuses on heuristics
that modify their parameters (online or offline) to improve the efficacy
of solution, or the efficiency of the computation. Hyperheuristics provide
high-level strategies that may employ machine learning and adapt their
search behavior by modifying the application of the sub-procedures or even
which procedures are used (operating on the space of heuristics which in
turn operate within the problem domain) [12, 13].

1.1.5 Clever Algorithms

This book is concerned with ‘clever algorithms’, which are algorithms
drawn from many sub-fields of artificial intelligence not limited to the
scruffy fields of biologically inspired computation, computational intelligence
and metaheuristics. The term ‘clever algorithms’ is intended to unify a
collection of interesting and useful computational tools under a consistent
and accessible banner. An alternative name (Inspired Algorithms) was
considered, although ultimately rejected given that not all of the algorithms
to be described in the project have an inspiration (specifically a biological or
physical inspiration) for their computational strategy. The set of algorithms
described in this book may generally be referred to as ‘unconventional
optimization algorithms’ (for example, see [14]), as optimization is the main
form of computation provided by the listed approaches. A technically more
appropriate name for these approaches is stochastic global optimization (for
example, see [49] and [35]).

Algorithms were selected in order to provide a rich and interesting
coverage of the fields of Biologically Inspired Computation, Metaheuristics
and Computational Intelligence. Rather than a coverage of just the state-of-
the-art and popular methods, the algorithms presented also include historic
and newly described methods. The final selection was designed to provoke
curiosity and encourage exploration and a wider view of the field.

1.2 Problem Domains

Algorithms from the fields of Computational Intelligence, Biologically In-
spired Computing, and Metaheuristics are applied to difficult problems, to
which more traditional approaches may not be suited. Michalewicz and
Fogel propose five reasons why problems may be difficult [37] (page 11):

� The number of possible solutions in the search space is so large as to
forbid an exhaustive search for the best answer.
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� The problem is so complicated, that just to facilitate any answer at
all, we have to use such simplified models of the problem that any
result is essentially useless.

� The evaluation function that describes the quality of any proposed
solution is noisy or varies with time, thereby requiring not just a single
solution but an entire series of solutions.

� The possible solutions are so heavily constrained that constructing
even one feasible answer is difficult, let alone searching for an optimal
solution.

� The person solving the problem is inadequately prepared or imagines
some psychological barrier that prevents them from discovering a
solution.

This section introduces two problem formalisms that embody many of the
most difficult problems faced by Artificial and Computational Intelligence.
They are: Function Optimization and Function Approximation. Each class
of problem is described in terms of its general properties, a formalism, and
a set of specialized sub-problems. These problem classes provide a tangible
framing of the algorithmic techniques described throughout the work.

1.2.1 Function Optimization

Real-world optimization problems and generalizations thereof can be drawn
from most fields of science, engineering, and information technology (for
a sample [2, 48]). Importantly, function optimization problems have had
a long tradition in the fields of Artificial Intelligence in motivating basic
research into new problem solving techniques, and for investigating and
verifying systemic behavior against benchmark problem instances.

Problem Description

Mathematically, optimization is defined as the search for a combination of pa-
rameters commonly referred to as decision variables (x = {x1, x2, x3, . . . xn})
which minimize or maximize some ordinal quantity (c) (typically a scalar
called a score or cost) assigned by an objective function or cost function (f),
under a set of constraints (g = {g1, g2, g3, . . . gn}). For example, a general
minimization case would be as follows: f(x′) ≤ f(x), ∀xi ∈ x. Constraints
may provide boundaries on decision variables (for example in a real-value hy-
percube ℜn), or may generally define regions of feasibility and in-feasibility
in the decision variable space. In applied mathematics the field may be
referred to as Mathematical Programming. More generally the field may
be referred to as Global or Function Optimization given the focus on the
objective function. For more general information on optimization refer to
Horst et al. [29].
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Sub-Fields of Study

The study of optimization is comprised of many specialized sub-fields, based
on an overlapping taxonomy that focuses on the principle concerns in the
general formalism. For example, with regard to the decision variables,
one may consider univariate and multivariate optimization problems. The
type of decision variables promotes specialities for continuous, discrete,
and permutations of variables. Dependencies between decision variables
under a cost function define the fields of Linear Programming, Quadratic
Programming, and Nonlinear Programming. A large class of optimization
problems can be reduced to discrete sets and are considered in the field
of Combinatorial Optimization, to which many theoretical properties are
known, most importantly that many interesting and relevant problems
cannot be solved by an approach with polynomial time complexity (so-
called NP, for example see Papadimitriou and Steiglitz [38]).

THe evaluation of variables against a cost function, collectively may
be considered a response surface. The shape of such a response surface
may be convex, which is a class of functions to which many important
theoretical findings have been made, not limited to the fact that location of
the local optimal configuration also means the global optimal configuration
of decision variables has been located [11]. Many interesting and real-world
optimization problems produce cost surfaces that are non-convex or so called
multi-modal1 (rather than unimodal) suggesting that there are multiple
peaks and valleys. Further, many real-world optimization problems with
continuous decision variables cannot be differentiated given their complexity
or limited information availability, meaning that derivative-based gradient
decent methods (that are well understood) are not applicable, necessitating
the use of so-called ‘direct search’ (sample or pattern-based) methods [33].
Real-world objective function evaluation may be noisy, discontinuous, and/or
dynamic, and the constraints of real-world problem solving may require
an approximate solution in limited time or using resources, motivating the
need for heuristic approaches.

1.2.2 Function Approximation

Real-world Function Approximation problems are among the most computa-
tionally difficult considered in the broader field of Artificial Intelligence for
reasons including: incomplete information, high-dimensionality, noise in the
sample observations, and non-linearities in the target function. This section
considers the Function Approximation formalism and related specialization’s
as a general motivating problem to contrast and compare with Function
Optimization.

1Taken from statistics referring to the centers of mass in distributions, although in
optimization it refers to ‘regions of interest’ in the search space, in particular valleys in
minimization, and peaks in maximization cost surfaces.
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Problem Description

Function Approximation is the problem of finding a function (f) that ap-
proximates a target function (g), where typically the approximated function
is selected based on a sample of observations (x, also referred to as the
training set) taken from the unknown target function. In machine learning,
the function approximation formalism is used to describe general problem
types commonly referred to as pattern recognition, such as classification,
clustering, and curve fitting (called a decision or discrimination function).
Such general problem types are described in terms of approximating an
unknown Probability Density Function (PDF), which underlies the relation-
ships in the problem space, and is represented in the sample data. This
perspective of such problems is commonly referred to as statistical machine
learning and/or density estimation [8, 24].

Sub-Fields of Study

The function approximation formalism can be used to phrase some of the
hardest problems faced by Computer Science, and Artificial Intelligence
in particular, such as natural language processing and computer vision.
The general process focuses on 1) the collection and preparation of the
observations from the target function, 2) the selection and/or preparation of
a model of the target function, and 3) the application and ongoing refinement
of the prepared model. Some important problem-based sub-fields include:

� Feature Selection where a feature is considered an aggregation of
one-or-more attributes, where only those features that have meaning
in the context of the target function are necessary to the modeling
function [27, 32].

� Classification where observations are inherently organized into la-
belled groups (classes) and a supervised process models an underlying
discrimination function to classify unobserved samples.

� Clustering where observations may be organized into groups based
on underlying common features, although the groups are unlabeled
requiring a process to model an underlying discrimination function
without corrective feedback.

� Curve or Surface Fitting where a model is prepared that provides a
‘best-fit’ (called a regression) for a set of observations that may be
used for interpolation over known observations and extrapolation for
observations outside what has been modeled.

The field of Function Optimization is related to Function Approxima-
tion, as many-sub-problems of Function Approximation may be defined as
optimization problems. Many of the technique paradigms used for function
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approximation are differentiated based on the representation and the op-
timization process used to minimize error or maximize effectiveness on a
given approximation problem. The difficulty of Function Approximation
problems centre around 1) the nature of the unknown relationships between
attributes and features, 2) the number (dimensionality) of attributes and
features, and 3) general concerns of noise in such relationships and the
dynamic availability of samples from the target function. Additional diffi-
culties include the incorporation of prior knowledge (such as imbalance in
samples, incomplete information and the variable reliability of data), and
problems of invariant features (such as transformation, translation, rotation,
scaling, and skewing of features).

1.3 Unconventional Optimization

Not all algorithms described in this book are for optimization, although
those that are may be referred to as ‘unconventional’ to differentiate them
from the more traditional approaches. Examples of traditional approaches
include (but are not not limited) mathematical optimization algorithms
(such as Newton’s method and Gradient Descent that use derivatives to
locate a local minimum) and direct search methods (such as the Simplex
method and the Nelder-Mead method that use a search pattern to locate
optima). Unconventional optimization algorithms are designed for the
more difficult problem instances, the attributes of which were introduced in
Section 1.2.1. This section introduces some common attributes of this class
of algorithm.

1.3.1 Black Box Algorithms

Black Box optimization algorithms are those that exploit little, if any,
information from a problem domain in order to devise a solution. They are
generalized problem solving procedures that may be applied to a range of
problems with very little modification [19]. Domain specific knowledge refers
to known relationships between solution representations and the objective
cost function. Generally speaking, the less domain specific information
incorporated into a technique, the more flexible the technique, although the
less efficient it will be for a given problem. For example, ‘random search’ is
the most general black box approach and is also the most flexible requiring
only the generation of random solutions for a given problem. Random
search allows resampling of the domain which gives it a worst case behavior
that is worse than enumerating the entire search domain. In practice, the
more prior knowledge available about a problem, the more information that
can be exploited by a technique in order to efficiently locate a solution for
the problem, heuristically or otherwise. Therefore, black box methods are
those methods suitable for those problems where little information from the



14 Chapter 1. Introduction

problem domain is available to be used by a problem solving approach.

1.3.2 No-Free-Lunch

The No-Free-Lunch Theorem of search and optimization by Wolpert and
Macready proposes that all black box optimization algorithms are the same
for searching for the extremum of a cost function when averaged over all
possible functions [50, 51]. The theorem has caused a lot of pessimism and
misunderstanding, particularly in relation to the evaluation and comparison
of Metaheuristic and Computational Intelligence algorithms.

The implication of the theorem is that searching for the ‘best’ general-
purpose black box optimization algorithm is irresponsible as no such pro-
cedure is theoretically possible. No-Free-Lunch applies to stochastic and
deterministic optimization algorithms as well as to algorithms that learn and
adjust their search strategy over time. It is independent of the performance
measure used and the representation selected. Wolpert and Macready’s
original paper was produced at a time when grandiose generalizations were
being made as to algorithm, representation, or configuration superiority.
The practical impact of the theory is to encourage practitioners to bound
claims of applicability for search and optimization algorithms. Wolpert and
Macready encouraged effort be put into devising practical problem classes
and into the matching of suitable algorithms to problem classes. Further,
they compelled practitioners to exploit domain knowledge in optimization
algorithm application, which is now an axiom in the field.

1.3.3 Stochastic Optimization

Stochastic optimization algorithms are those that use randomness to elicit
non-deterministic behaviors, contrasted to purely deterministic procedures.
Most algorithms from the fields of Computational Intelligence, Biologically
Inspired Computation, and Metaheuristics may be considered to belong the
field of Stochastic Optimization. Algorithms that exploit randomness are not
random in behavior, rather they sample a problem space in a biased manner,
focusing on areas of interest and neglecting less interesting areas [45]. A
class of techniques that focus on the stochastic sampling of a domain, called
Markov Chain Monte Carlo (MCMC) algorithms, provide good average
performance, and generally offer a low chance of the worst case performance.
Such approaches are suited to problems with many coupled degrees of
freedom, for example large, high-dimensional spaces. MCMC approaches
involve stochastically sampling from a target distribution function similar
to Monte Carlo simulation methods using a process that resembles a biased
Markov chain.

� Monte Carlo methods are used for selecting a statistical sample to
approximate a given target probability density function and are tradi-
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tionally used in statistical physics. Samples are drawn sequentially
and the process may include criteria for rejecting samples and biasing
the sampling locations within high-dimensional spaces.

� Markov Chain processes provide a probabilistic model for state tran-
sitions or moves within a discrete domain called a walk or a chain of
steps. A Markov system is only dependent on the current position in
the domain in order to probabilistically determine the next step in
the walk.

MCMC techniques combine these two approaches to solve integration
and optimization problems in large dimensional spaces by generating sam-
ples while exploring the space using a Markov chain process, rather than
sequentially or independently [3]. The step generation is configured to bias
sampling in more important regions of the domain. Three examples of
MCMC techniques include the Metropolis-Hastings algorithm, Simulated
Annealing for global optimization, and the Gibbs sampler which are com-
monly employed in the fields of physics, chemistry, statistics, and economics.

1.3.4 Inductive Learning

Many unconventional optimization algorithms employ a process that includes
the iterative improvement of candidate solutions against an objective cost
function. This process of adaptation is generally a method by which the
process obtains characteristics that improve the system’s (candidate solution)
relative performance in an environment (cost function). This adaptive
behavior is commonly achieved through a ‘selectionist process’ of repetition
of the steps: generation, test, and selection. The use of non-deterministic
processes mean that the sampling of the domain (the generation step) is
typically non-parametric, although guided by past experience.

The method of acquiring information is called inductive learning or
learning from example, where the approach uses the implicit assumption
that specific examples are representative of the broader information content
of the environment, specifically with regard to anticipated need. Many
unconventional optimization approaches maintain a single candidate solution,
a population of samples, or a compression thereof that provides both an
instantaneous representation of all of the information acquired by the process,
and the basis for generating and making future decisions.

This method of simultaneously acquiring and improving information
from the domain and the optimization of decision making (where to direct
future effort) is called the k-armed bandit (two-armed and multi-armed
bandit) problem from the field of statistical decision making known as game
theory [7, 42]. This formalism considers the capability of a strategy to
allocate available resources proportional to the future payoff the strategy
is expected to receive. The classic example is the 2-armed bandit problem
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used by Goldberg to describe the behavior of the genetic algorithm [26]. The
example involves an agent that learns which one of the two slot machines
provides more return by pulling the handle of each (sampling the domain)
and biasing future handle pulls proportional to the expected utility, based
on the probabilistic experience with the past distribution of the payoff.
The formalism may also be used to understand the properties of inductive
learning demonstrated by the adaptive behavior of most unconventional
optimization algorithms.

The stochastic iterative process of generate and test can be computation-
ally wasteful, potentially re-searching areas of the problem space already
searched, and requiring many trials or samples in order to achieve a ‘good
enough’ solution. The limited use of prior knowledge from the domain
(black box) coupled with the stochastic sampling process mean that the
adapted solutions are created without top-down insight or instruction can
sometimes be interesting, innovative, and even competitive with decades of
human expertise [31].

1.4 Book Organization

The remainder of this book is organized into two parts: Algorithms that
describes a large number of techniques in a complete and a consistent
manner presented in a rough algorithm groups, and Extensions that reviews
more advanced topics suitable for when a number of algorithms have been
mastered.

1.4.1 Algorithms

Algorithms are presented in six groups or kingdoms distilled from the broader
fields of study each in their own chapter, as follows:

� Stochastic Algorithms that focuses on the introduction of randomness
into heuristic methods (Chapter 2).

� Evolutionary Algorithms inspired by evolution by means of natural
selection (Chapter 3).

� Physical Algorithms inspired by physical and social systems (Chap-
ter 4).

� Probabilistic Algorithms that focuses on methods that build models
and estimate distributions in search domains (Chapter 5).

� Swarm Algorithms that focuses on methods that exploit the properties
of collective intelligence (Chapter 6).

� Immune Algorithms inspired by the adaptive immune system of verte-
brates (Chapter 7).
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� Neural Algorithms inspired by the plasticity and learning qualities of
the human nervous system (Chapter 8).

A given algorithm is more than just a procedure or code listing, each
approach is an island of research. The meta-information that define the
context of a technique is just as important to understanding and application
as abstract recipes and concrete implementations. A standardized algorithm
description is adopted to provide a consistent presentation of algorithms
with a mixture of softer narrative descriptions, programmatic descriptions
both abstract and concrete, and most importantly useful sources for finding
out more information about the technique.

The standardized algorithm description template covers the following
subjects:

� Name: The algorithm name defines the canonical name used to refer
to the technique, in addition to common aliases, abbreviations, and
acronyms. The name is used as the heading of an algorithm description.

� Taxonomy : The algorithm taxonomy defines where a technique fits
into the field, both the specific sub-fields of Computational Intelligence
and Biologically Inspired Computation as well as the broader field
of Artificial Intelligence. The taxonomy also provides a context for
determining the relationships between algorithms.

� Inspiration: (where appropriate) The inspiration describes the specific
system or process that provoked the inception of the algorithm. The
inspiring system may non-exclusively be natural, biological, physical,
or social. The description of the inspiring system may include relevant
domain specific theory, observation, nomenclature, and those salient
attributes of the system that are somehow abstractly or conceptually
manifest in the technique.

� Metaphor : (where appropriate) The metaphor is a description of the
technique in the context of the inspiring system or a different suitable
system. The features of the technique are made apparent through
an analogous description of the features of the inspiring system. The
explanation through analogy is not expected to be literal, rather the
method is used as an allegorical communication tool. The inspiring
system is not explicitly described, this is the role of the ‘inspiration’
topic, which represents a loose dependency for this topic.

� Strategy : The strategy is an abstract description of the computational
model. The strategy describes the information processing actions
a technique shall take in order to achieve an objective, providing a
logical separation between a computational realization (procedure) and
an analogous system (metaphor). A given problem solving strategy
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may be realized as one of a number of specific algorithms or problem
solving systems.

� Procedure: The algorithmic procedure summarizes the specifics of
realizing a strategy as a systemized and parameterized computation.
It outlines how the algorithm is organized in terms of the computation,
data structures, and representations.

� Heuristics: The heuristics section describes the commonsense, best
practice, and demonstrated rules for applying and configuring a pa-
rameterized algorithm. The heuristics relate to the technical details
of the technique’s procedure and data structures for general classes
of application (neither specific implementations nor specific problem
instances).

� Code Listing : The code listing description provides a minimal but
functional version of the technique implemented with a programming
language. The code description can be typed into a computer and
provide a working execution of the technique. The technique imple-
mentation also includes a minimal problem instance to which it is
applied, and both the problem and algorithm implementations are
complete enough to demonstrate the techniques procedure. The de-
scription is presented as a programming source code listing with a
terse introductory summary.

� References: The references section includes a listing of both primary
sources of information about the technique as well as useful intro-
ductory sources for novices to gain a deeper understanding of the
theory and application of the technique. The description consists
of hand-selected reference material including books, peer reviewed
conference papers, and journal articles.

Source code examples are included in the algorithm descriptions, and
the Ruby Programming Language was selected for use throughout the
book. Ruby was selected because it supports the procedural program-
ming paradigm, adopted to ensure that examples can be easily ported to
object-oriented and other paradigms. Additionally, Ruby is an interpreted
language, meaning the code can be directly executed without an introduced
compilation step, and it is free to download and use from the Internet.2

Ruby is concise, expressive, and supports meta-programming features that
improve the readability of code examples.

The sample code provides a working version of a given technique for
demonstration purposes. Having a tinker with a technique can really
bring it to life and provide valuable insight into a method. The sample
code is a minimum implementation, providing plenty of opportunity to

2Ruby can be downloaded for free from http://www.ruby-lang.org

http://www.ruby-lang.org
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explore, extend and optimize. All of the source code for the algorithms
presented in this book is available from the companion website, online at
http://www.CleverAlgorithms.com. All algorithm implementations were
tested with Ruby 1.8.6, 1.8.7 and 1.9.

1.4.2 Extensions

There are some some advanced topics that cannot be meaningfully considered
until one has a firm grasp of a number of algorithms, and these are discussed
at the back of the book. The Advanced Topics chapter addresses topics such
as: the use of alternative programming paradigms when implementing clever
algorithms, methodologies used when devising entirely new approaches,
strategies to consider when testing clever algorithms, visualizing the behavior
and results of algorithms, and comparing algorithms based on the results
they produce using statistical methods. Like the background information
provided in this chapter, the extensions provide a gentle introduction and
starting point into some advanced topics, and references for seeking a deeper
understanding.

1.5 How to Read this Book

This book is a reference text that provides a large compendium of algorithm
descriptions. It is a trusted handbook of practical computational recipes to
be consulted when one is confronted with difficult function optimization and
approximation problems. It is also an encompassing guidebook of modern
heuristic methods that may be browsed for inspiration, exploration, and
general interest.

The audience for this work may be interested in the fields of Computa-
tional Intelligence, Biologically Inspired Computation, and Metaheuristics
and may count themselves as belonging to one of the following broader
groups:

� Scientists: Research scientists concerned with theoretically or empir-
ically investigating algorithms, addressing questions such as: What
is the motivating system and strategy for a given technique? What
are some algorithms that may be used in a comparison within a given
subfield or across subfields?

� Engineers : Programmers and developers concerned with implementing,
applying, or maintaining algorithms, addressing questions such as:
What is the procedure for a given technique? What are the best practice
heuristics for employing a given technique?

� Students: Undergraduate and graduate students interested in learn-
ing about techniques, addressing questions such as: What are some
interesting algorithms to study? How to implement a given approach?

http://www.CleverAlgorithms.com
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� Amateurs : Practitioners interested in knowing more about algorithms,
addressing questions such as: What classes of techniques exist and what
algorithms do they provide? How to conceptualize the computation of
a technique?

1.6 Further Reading

This book is not an introduction to Artificial Intelligence or related sub-fields,
nor is it a field guide for a specific class of algorithms. This section provides
some pointers to selected books and articles for those readers seeking a
deeper understanding of the fields of study to which the Clever Algorithms
described in this book belong.

1.6.1 Artificial Intelligence

Artificial Intelligence is large field of study and many excellent texts have
been written to introduce the subject. Russell and Novig’s “Artificial
Intelligence: A Modern Approach” is an excellent introductory text providing
a broad and deep review of what the field has to offer and is useful for
students and practitioners alike [43]. Luger and Stubblefield’s “Artificial
Intelligence: Structures and Strategies for Complex Problem Solving” is also
an excellent reference text, providing a more empirical approach to the field
[34].

1.6.2 Computational Intelligence

Introductory books for the field of Computational Intelligence generally
focus on a handful of specific sub-fields and their techniques. Engelbrecht’s
“Computational Intelligence: An Introduction” provides a modern and de-
tailed introduction to the field covering classic subjects such as Evolutionary
Computation and Artificial Neural Networks, as well as more recent tech-
niques such as Swarm Intelligence and Artificial Immune Systems [20].
Pedrycz’s slightly more dated “Computational Intelligence: An Introduction”
also provides a solid coverage of the core of the field with some deeper
insights into fuzzy logic and fuzzy systems [41].

1.6.3 Biologically Inspired Computation

Computational methods inspired by natural and biologically systems repre-
sent a large portion of the algorithms described in this book. The collection
of articles published in de Castro and Von Zuben’s “Recent Developments
in Biologically Inspired Computing” provides an overview of the state of
the field, and the introductory chapter on need for such methods does an
excellent job to motivate the field of study [17]. Forbes’s “Imitation of Life:
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How Biology Is Inspiring Computing” sets the scene for Natural Computing
and the interrelated disciplines, of which Biologically Inspired Computing
is but one useful example [22]. Finally, Benyus’s “Biomimicry: Innovation
Inspired by Nature” provides a good introduction into the broader related
field of a new frontier in science and technology that involves building
systems inspired by an understanding of the biological world [6].

1.6.4 Metaheuristics

The field of Metaheuristics was initially constrained to heuristics for applying
classical optimization procedures, although has expanded to encompass a
broader and diverse set of techniques. Michalewicz and Fogel’s “How to
Solve It: Modern Heuristics” provides a practical tour of heuristic methods
with a consistent set of worked examples [37]. Glover and Kochenberger’s
“Handbook of Metaheuristics” provides a solid introduction into a broad
collection of techniques and their capabilities [25].

1.6.5 The Ruby Programming Language

The Ruby Programming Language is a multi-paradigm dynamic language
that appeared in approximately 1995. Its meta-programming capabilities
coupled with concise and readable syntax have made it a popular language
of choice for web development, scripting, and application development.
The classic reference text for the language is Thomas, Fowler, and Hunt’s
“Programming Ruby: The Pragmatic Programmers’ Guide” referred to as the
‘pickaxe book’ because of the picture of the pickaxe on the cover [47]. An
updated edition is available that covers version 1.9 (compared to 1.8 in the
cited version) that will work just as well for use as a reference for the examples
in this book. Flanagan and Matsumoto’s “The Ruby Programming Language”
also provides a seminal reference text with contributions from Yukihiro
Matsumoto, the author of the language [21]. For more information on the
Ruby Programming Language, see the quick-start guide in Appendix A.
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Chapter 2

Stochastic Algorithms

2.1 Overview

This chapter describes Stochastic Algorithms.

2.1.1 Stochastic Optimization

The majority of the algorithms to be described in this book are comprised
of probabilistic and stochastic processes. What differentiates the ‘stochastic
algorithms’ in this chapter from the remaining algorithms is the specific lack
of 1) an inspiring system, and 2) a metaphorical explanation. Both ‘inspira-
tion’ and ‘metaphor’ refer to the descriptive elements in the standardized
algorithm description.

These described algorithms are predominately global optimization al-
gorithms and metaheuristics that manage the application of an embedded
neighborhood exploring (local) search procedure. As such, with the excep-
tion of ‘Stochastic Hill Climbing’ and ‘Random Search’ the algorithms may
be considered extensions of the multi-start search (also known as multi-
restart search). This set of algorithms provide various different strategies by
which ‘better’ and varied starting points can be generated and issued to a
neighborhood searching technique for refinement, a process that is repeated
with potentially improving or unexplored areas to search.

29
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2.2 Random Search

Random Search, RS, Blind Random Search, Blind Search, Pure Random
Search, PRS

2.2.1 Taxonomy

Random search belongs to the fields of Stochastic Optimization and Global
Optimization. Random search is a direct search method as it does not
require derivatives to search a continuous domain. This base approach is
related to techniques that provide small improvements such as Directed
Random Search, and Adaptive Random Search (Section 2.3).

2.2.2 Strategy

The strategy of Random Search is to sample solutions from across the entire
search space using a uniform probability distribution. Each future sample
is independent of the samples that come before it.

2.2.3 Procedure

Algorithm 2.2.1 provides a pseudocode listing of the Random Search Algo-
rithm for minimizing a cost function.

Algorithm 2.2.1: Pseudocode for Random Search.

Input: NumIterations, ProblemSize, SearchSpace
Output: Best
Best ← ∅;1

foreach iteri ∈ NumIterations do2

candidatei ← RandomSolution(ProblemSize, SearchSpace);3

if Cost(candidatei) < Cost(Best) then4

Best ← candidatei;5

end6

end7

return Best;8

2.2.4 Heuristics

� Random search is minimal in that it only requires a candidate solution
construction routine and a candidate solution evaluation routine, both
of which may be calibrated using the approach.
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� The worst case performance for Random Search for locating the
optima is worse than an Enumeration of the search domain, given
that Random Search has no memory and can blindly resample.

� Random Search can return a reasonable approximation of the optimal
solution within a reasonable time under low problem dimensionality,
although the approach does not scale well with problem size (such as
the number of dimensions).

� Care must be taken with some problem domains to ensure that random
candidate solution construction is unbiased

� The results of a Random Search can be used to seed another search
technique, like a local search technique (such as the Hill Climbing algo-
rithm) that can be used to locate the best solution in the neighborhood
of the ‘good’ candidate solution.

2.2.5 Code Listing

Listing 2.1 provides an example of the Random Search Algorithm imple-
mented in the Ruby Programming Language. In the example, the algorithm
runs for a fixed number of iterations and returns the best candidate solution
discovered. The example problem is an instance of a continuous function
optimization that seeks min f(x) where f =

∑n

i=1 x
2
i , −5.0 ≤ xi ≤ 5.0 and

n = 2. The optimal solution for this basin function is (v0, . . . , vn−1) = 0.0.

1 def objective_function(vector)

2 return vector.inject(0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def search(search_space, max_iter)

12 best = nil

13 max_iter.times do |iter|

14 candidate = {}

15 candidate[:vector] = random_vector(search_space)

16 candidate[:cost] = objective_function(candidate[:vector])

17 best = candidate if best.nil? or candidate[:cost] < best[:cost]

18 puts " > iteration=#{(iter+1)}, best=#{best[:cost]}"

19 end

20 return best

21 end

22

23 if __FILE__ == $0

24 # problem configuration

25 problem_size = 2

26 search_space = Array.new(problem_size) {|i| [-5, +5]}
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27 # algorithm configuration

28 max_iter = 100

29 # execute the algorithm

30 best = search(search_space, max_iter)

31 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

32 end

Listing 2.1: Random Search in Ruby

2.2.6 References

Primary Sources

There is no seminal specification of the Random Search algorithm, rather
there are discussions of the general approach and related random search
methods from the 1950s through to the 1970s. This was around the time
that pattern and direct search methods were actively researched. Brooks is
credited with the so-called ‘pure random search’ [1]. Two seminal reviews
of ‘random search methods’ of the time include: Karnopp [2] and prhaps
Kul’chitskii [3].

Learn More

For overviews of Random Search Methods see Zhigljavsky [9], Solis and
Wets [4], and also White [7] who provide an insightful review article. Spall
provides a detailed overview of the field of Stochastic Optimization, including
the Random Search method [5] (for example, see Chapter 2). For a shorter
introduction by Spall, see [6] (specifically Section 6.2). Also see Zabinsky
for another detailed review of the broader field [8].

2.2.7 Bibliography
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2.3 Adaptive Random Search

Adaptive Random Search, ARS, Adaptive Step Size Random Search, ASSRS,
Variable Step-Size Random Search.

2.3.1 Taxonomy

The Adaptive Random Search algorithm belongs to the general set of
approaches known as Stochastic Optimization and Global Optimization. It
is a direct search method in that it does not require derivatives to navigate
the search space. Adaptive Random Search is an extension of the Random
Search (Section 2.2) and Localized Random Search algorithms.

2.3.2 Strategy

The Adaptive Random Search algorithm was designed to address the lim-
itations of the fixed step size in the Localized Random Search algorithm.
The strategy for Adaptive Random Search is to continually approximate
the optimal step size required to reach the global optimum in the search
space. This is achieved by trialling and adopting smaller or larger step sizes
only if they result in an improvement in the search performance.

The Strategy of the Adaptive Step Size Random Search algorithm (the
specific technique reviewed) is to trial a larger step in each iteration and
adopt the larger step if it results in an improved result. Very large step
sizes are trialled in the same manner although with a much lower frequency.
This strategy of preferring large moves is intended to allow the technique to
escape local optima. Smaller step sizes are adopted if no improvement is
made for an extended period.

2.3.3 Procedure

Algorithm 2.3.1 provides a pseudocode listing of the Adaptive Random
Search Algorithm for minimizing a cost function based on the specification
for ‘Adaptive Step-Size Random Search’ by Schummer and Steiglitz [6].

2.3.4 Heuristics

� Adaptive Random Search was designed for continuous function opti-
mization problem domains.

� Candidates with equal cost should be considered improvements to
allow the algorithm to make progress across plateaus in the response
surface.

� Adaptive Random Search may adapt the search direction in addition
to the step size.
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Algorithm 2.3.1: Pseudocode for Adaptive Random Search.

Input: Itermax, Problemsize, SearchSpace, StepSize
init
factor,

StepSizesmall
factor, StepSize

large
factor, StepSize

iter
factor,

NoChangemax

Output: S
NoChangecount ← 0;1

StepSizei ← InitializeStepSize(SearchSpace, StepSizeinitfactor);2

S ← RandomSolution(Problemsize, SearchSpace);3

for i = 0 to Itermax do4

S1 ← TakeStep(SearchSpace, S, StepSizei);5

StepSizelargei ← 0;6

if i modStepSizeiterfactor then7

StepSizelargei ← StepSizei × StepSizelargefactor;8

else9

StepSizelargei ← StepSizei × StepSizesmall
factor;10

end11

S2 ← TakeStep(SearchSpace, S, StepSizelargei );12

if Cost(S1)≤Cost(S) —— Cost(S2)≤Cost(S) then13

if Cost(S2)<Cost(S1) then14

S ← S2;15

StepSizei ← StepSizelargei ;16

else17

S ← S1;18

end19

NoChangecount ← 0;20

else21

NoChangecount ← NoChangecount + 1;22

if NoChangecount > NoChangemax then23

NoChangecount ← 0;24

StepSizei ←
StepSizei

StepSizesmall
factor

;
25

end26

end27

end28

return S;29
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� The step size may be adapted for all parameters, or for each parameter
individually.

2.3.5 Code Listing

Listing 2.2 provides an example of the Adaptive Random Search Algorithm
implemented in the Ruby Programming Language, based on the specification
for ‘Adaptive Step-Size Random Search’ by Schummer and Steiglitz [6].
In the example, the algorithm runs for a fixed number of iterations and
returns the best candidate solution discovered. The example problem is an
instance of a continuous function optimization that seeks min f(x) where
f =

∑n

i=1 x
2
i , −5.0 < xi < 5.0 and n = 2. The optimal solution for this

basin function is (v0, . . . , vn−1) = 0.0.

1 def objective_function(vector)

2 return vector.inject(0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def rand_in_bounds(min, max)

6 return min + ((max-min) * rand())

7 end

8

9 def random_vector(minmax)

10 return Array.new(minmax.size) do |i|

11 rand_in_bounds(minmax[i][0], minmax[i][1])

12 end

13 end

14

15 def take_step(minmax, current, step_size)

16 position = Array.new(current.size)

17 position.size.times do |i|

18 min = [minmax[i][0], current[i]-step_size].max

19 max = [minmax[i][1], current[i]+step_size].min

20 position[i] = rand_in_bounds(min, max)

21 end

22 return position

23 end

24

25 def large_step_size(iter, step_size, s_factor, l_factor, iter_mult)

26 return step_size * l_factor if iter>0 and iter.modulo(iter_mult) == 0

27 return step_size * s_factor

28 end

29

30 def take_steps(bounds, current, step_size, big_stepsize)

31 step, big_step = {}, {}

32 step[:vector] = take_step(bounds, current[:vector], step_size)

33 step[:cost] = objective_function(step[:vector])

34 big_step[:vector] = take_step(bounds,current[:vector],big_stepsize)

35 big_step[:cost] = objective_function(big_step[:vector])

36 return step, big_step

37 end

38

39 def search(max_iter, bounds, init_factor, s_factor, l_factor, iter_mult,

max_no_impr)
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40 step_size = (bounds[0][1]-bounds[0][0]) * init_factor

41 current, count = {}, 0

42 current[:vector] = random_vector(bounds)

43 current[:cost] = objective_function(current[:vector])

44 max_iter.times do |iter|

45 big_stepsize = large_step_size(iter, step_size, s_factor, l_factor,

iter_mult)

46 step, big_step = take_steps(bounds, current, step_size, big_stepsize)

47 if step[:cost] <= current[:cost] or big_step[:cost] <= current[:cost]

48 if big_step[:cost] <= step[:cost]

49 step_size, current = big_stepsize, big_step

50 else

51 current = step

52 end

53 count = 0

54 else

55 count += 1

56 count, stepSize = 0, (step_size/s_factor) if count >= max_no_impr

57 end

58 puts " > iteration #{(iter+1)}, best=#{current[:cost]}"

59 end

60 return current

61 end

62

63 if __FILE__ == $0

64 # problem configuration

65 problem_size = 2

66 bounds = Array.new(problem_size) {|i| [-5, +5]}

67 # algorithm configuration

68 max_iter = 1000

69 init_factor = 0.05

70 s_factor = 1.3

71 l_factor = 3.0

72 iter_mult = 10

73 max_no_impr = 30

74 # execute the algorithm

75 best = search(max_iter, bounds, init_factor, s_factor, l_factor,

iter_mult, max_no_impr)

76 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

77 end

Listing 2.2: Adaptive Random Search in Ruby

2.3.6 References

Primary Sources

Many works in the 1960s and 1970s experimented with variable step sizes for
Random Search methods. Schummer and Steiglitz are commonly credited
the adaptive step size procedure, which they called ‘Adaptive Step-Size
Random Search’ [6]. Their approach only modifies the step size based on an
approximation of the optimal step size required to reach the global optima.
Kregting and White review adaptive random search methods and propose
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an approach called ‘Adaptive Directional Random Search’ that modifies
both the algorithms step size and direction in response to the cost function
[2].

Learn More

White reviews extensions to Rastrigin’s ‘Creeping Random Search’ [4] (fixed
step size) that use probabilistic step sizes drawn stochastically from uniform
and probabilistic distributions [7]. White also reviews works that propose
dynamic control strategies for the step size, such as Karnopp [1] who proposes
increases and decreases to the step size based on performance over very
small numbers of trials. Schrack and Choit review random search methods
that modify their step size in order to approximate optimal moves while
searching, including the property of reversal [5]. Masri et al. describe an
adaptive random search strategy that alternates between periods of fixed
and variable step sizes [3].
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2.4 Stochastic Hill Climbing

Stochastic Hill Climbing, SHC, Random Hill Climbing, RHC, Random
Mutation Hill Climbing, RMHC.

2.4.1 Taxonomy

The Stochastic Hill Climbing algorithm is a Stochastic Optimization algo-
rithm and is a Local Optimization algorithm (contrasted to Global Opti-
mization). It is a direct search technique, as it does not require derivatives
of the search space. Stochastic Hill Climbing is an extension of deterministic
hill climbing algorithms such as Simple Hill Climbing (first-best neighbor),
Steepest-Ascent Hill Climbing (best neighbor), and a parent of approaches
such as Parallel Hill Climbing and Random-Restart Hill Climbing.

2.4.2 Strategy

The strategy of the Stochastic Hill Climbing algorithm is iterate the process
of randomly selecting a neighbor for a candidate solution and only accept it
if it results in an improvement. The strategy was proposed to address the
limitations of deterministic hill climbing techniques that were likely to get
stuck in local optima due to their greedy acceptance of neighboring moves.

2.4.3 Procedure

Algorithm 2.4.1 provides a pseudocode listing of the Stochastic Hill Climbing
algorithm for minimizing a cost function, specifically the Random Mutation
Hill Climbing algorithm described by Forrest and Mitchell applied to a
maximization optimization problem [3].

Algorithm 2.4.1: Pseudocode for Stochastic Hill Climbing.

Input: Itermax, ProblemSize

Output: Current
Current ← RandomSolution(ProblemSize);1

foreach iteri ∈ Itermax do2

Candidate ← RandomNeighbor(Current);3

if Cost(Candidate) ≥ Cost(Current) then4

Current ← Candidate;5

end6

end7

return Current;8
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2.4.4 Heuristics

� Stochastic Hill Climbing was designed to be used in discrete domains
with explicit neighbors such as combinatorial optimization (compared
to continuous function optimization).

� The algorithm’s strategy may be applied to continuous domains by
making use of a step-size to define candidate-solution neighbors (such
as Localized Random Search and Fixed Step-Size Random Search).

� Stochastic Hill Climbing is a local search technique (compared to
global search) and may be used to refine a result after the execution
of a global search algorithm.

� Even though the technique uses a stochastic process, it can still get
stuck in local optima.

� Neighbors with better or equal cost should be accepted, allowing the
technique to navigate across plateaus in the response surface.

� The algorithm can be restarted and repeated a number of times after
it converges to provide an improved result (called Multiple Restart
Hill Climbing).

� The procedure can be applied to multiple candidate solutions concur-
rently, allowing multiple algorithm runs to be performed at the same
time (called Parallel Hill Climbing).

2.4.5 Code Listing

Listing 2.3 provides an example of the Stochastic Hill Climbing algorithm
implemented in the Ruby Programming Language, specifically the Random
Mutation Hill Climbing algorithm described by Forrest and Mitchell [3].
The algorithm is executed for a fixed number of iterations and is applied to
a binary string optimization problem called ‘One Max’. The objective of
this maximization problem is to prepare a string of all ‘1’ bits, where the
cost function only reports the number of bits in a given string.

1 def onemax(vector)

2 return vector.inject(0.0){|sum, v| sum + ((v=="1") ? 1 : 0)}

3 end

4

5 def random_bitstring(num_bits)

6 return Array.new(num_bits){|i| (rand<0.5) ? "1" : "0"}

7 end

8

9 def random_neighbor(bitstring)

10 mutant = Array.new(bitstring)

11 pos = rand(bitstring.size)

12 mutant[pos] = (mutant[pos]=='1') ? '0' : '1'
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13 return mutant

14 end

15

16 def search(max_iterations, num_bits)

17 candidate = {}

18 candidate[:vector] = random_bitstring(num_bits)

19 candidate[:cost] = onemax(candidate[:vector])

20 max_iterations.times do |iter|

21 neighbor = {}

22 neighbor[:vector] = random_neighbor(candidate[:vector])

23 neighbor[:cost] = onemax(neighbor[:vector])

24 candidate = neighbor if neighbor[:cost] >= candidate[:cost]

25 puts " > iteration #{(iter+1)}, best=#{candidate[:cost]}"

26 break if candidate[:cost] == num_bits

27 end

28 return candidate

29 end

30

31 if __FILE__ == $0

32 # problem configuration

33 num_bits = 64

34 # algorithm configuration

35 max_iterations = 1000

36 # execute the algorithm

37 best = search(max_iterations, num_bits)

38 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].join}"

39 end

Listing 2.3: Stochastic Hill Climbing in Ruby

2.4.6 References

Primary Sources

Perhaps the most popular implementation of the Stochastic Hill Climbing
algorithm is by Forrest and Mitchell, who proposed the Random Muta-
tion Hill Climbing (RMHC) algorithm (with communication from Richard
Palmer) in a study that investigated the behavior of the genetic algorithm
on a deceptive class of (discrete) bit-string optimization problems called
‘royal road’ functions [3]. The RMHC was compared to two other hill
climbing algorithms in addition to the genetic algorithm, specifically: the
Steepest-Ascent Hill Climber, and the Next-Ascent Hill Climber. This study
was then followed up by Mitchell and Holland [5].

Jules and Wattenberg were also early to consider stochastic hill climbing
as an approach to compare to the genetic algorithm [4]. Skalak applied the
RMHC algorithm to a single long bit-string that represented a number of
prototype vectors for use in classification [8].
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Learn More

The Stochastic Hill Climbing algorithm is related to the genetic algorithm
without crossover. Simplified version’s of the approach are investigated for
bit-string based optimization problems with the population size of the genetic
algorithm reduced to one. The general technique has been investigated
under the names Iterated Hillclimbing [6], ES(1+1,m,hc) [7], Random Bit
Climber [2], and (1+1)-Genetic Algorithm [1]. This main difference between
RMHC and ES(1+1) is that the latter uses a fixed probability of a mutation
for each discrete element of a solution (meaning the neighborhood size is
probabilistic), whereas RMHC will only stochastically modify one element.
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2.5 Iterated Local Search

Iterated Local Search, ILS.

2.5.1 Taxonomy

Iterated Local Search is a Metaheuristic and a Global Optimization tech-
nique. It is an extension of Mutli Start Search and may be considered a
parent of many two-phase search approaches such as the Greedy Random-
ized Adaptive Search Procedure (Section 2.8) and Variable Neighborhood
Search (Section 2.7).

2.5.2 Strategy

The objective of Iterated Local Search is to improve upon stochastic Mutli-
Restart Search by sampling in the broader neighborhood of candidate
solutions and using a Local Search technique to refine solutions to their
local optima. Iterated Local Search explores a sequence of solutions created
as perturbations of the current best solution, the result of which is refined
using an embedded heuristic.

2.5.3 Procedure

Algorithm 2.5.1 provides a pseudocode listing of the Iterated Local Search
algorithm for minimizing a cost function.

Algorithm 2.5.1: Pseudocode for Iterated Local Search.

Input:
Output: Sbest

Sbest ← ConstructInitialSolution();1

Sbest ← LocalSearch();2

SearchHistory ← Sbest;3

while ¬ StopCondition() do4

Scandidate ← Perturbation(Sbest, SearchHistory);5

Scandidate ← LocalSearch(Scandidate);6

SearchHistory ← Scandidate;7

if AcceptanceCriterion(Sbest, Scandidate, SearchHistory) then8

Sbest ← Scandidate;9

end10

end11

return Sbest;12
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2.5.4 Heuristics

� Iterated Local Search was designed for and has been predominately
applied to discrete domains, such as combinatorial optimization prob-
lems.

� The perturbation of the current best solution should be in a neighbor-
hood beyond the reach of the embedded heuristic and should not be
easily undone.

� Perturbations that are too small make the algorithm too greedy,
perturbations that are too large make the algorithm too stochastic.

� The embedded heuristic is most commonly a problem-specific local
search technique.

� The starting point for the search may be a randomly constructed
candidate solution, or constructed using a problem-specific heuristic
(such as nearest neighbor).

� Perturbations can be made deterministically, although stochastic and
probabilistic (adaptive based on history) are the most common.

� The procedure may store as much or as little history as needed to
be used during perturbation and acceptance criteria. No history
represents a random walk in a larger neighborhood of the best solution
and is the most common implementation of the approach.

� The simplest and most common acceptance criteria is an improvement
in the cost of constructed candidate solutions.

2.5.5 Code Listing

Listing 2.4 provides an example of the Iterated Local Search algorithm
implemented in the Ruby Programming Language. The algorithm is applied
to the Berlin52 instance of the Traveling Salesman Problem (TSP), taken
from the TSPLIB. The problem seeks a permutation of the order to visit
cities (called a tour) that minimizes the total distance traveled. The optimal
tour distance for Berlin52 instance is 7542 units.

The Iterated Local Search runs for a fixed number of iterations. The
implementation is based on a common algorithm configuration for the TSP,
where a ‘double-bridge move’ (4-opt) is used as the perturbation technique,
and a stochastic 2-opt is used as the embedded Local Search heuristic.
The double-bridge move involves partitioning a permutation into 4 pieces
(a,b,c,d) and putting it back together in a specific and jumbled ordering
(a,d,c,b).
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1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(permutation, cities)

6 distance =0

7 permutation.each_with_index do |c1, i|

8 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def stochastic_two_opt(permutation)

24 perm = Array.new(permutation)

25 c1, c2 = rand(perm.size), rand(perm.size)

26 exclude = [c1]

27 exclude << ((c1==0) ? perm.size-1 : c1-1)

28 exclude << ((c1==perm.size-1) ? 0 : c1+1)

29 c2 = rand(perm.size) while exclude.include?(c2)

30 c1, c2 = c2, c1 if c2 < c1

31 perm[c1...c2] = perm[c1...c2].reverse

32 return perm

33 end

34

35 def local_search(best, cities, max_no_improv)

36 count = 0

37 begin

38 candidate = {:vector=>stochastic_two_opt(best[:vector])}

39 candidate[:cost] = cost(candidate[:vector], cities)

40 count = (candidate[:cost] < best[:cost]) ? 0 : count+1

41 best = candidate if candidate[:cost] < best[:cost]

42 end until count >= max_no_improv

43 return best

44 end

45

46 def double_bridge_move(perm)

47 pos1 = 1 + rand(perm.size / 4)

48 pos2 = pos1 + 1 + rand(perm.size / 4)

49 pos3 = pos2 + 1 + rand(perm.size / 4)

50 p1 = perm[0...pos1] + perm[pos3..perm.size]

51 p2 = perm[pos2...pos3] + perm[pos1...pos2]

52 return p1 + p2

53 end

54

55 def perturbation(cities, best)
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56 candidate = {}

57 candidate[:vector] = double_bridge_move(best[:vector])

58 candidate[:cost] = cost(candidate[:vector], cities)

59 return candidate

60 end

61

62 def search(cities, max_iterations, max_no_improv)

63 best = {}

64 best[:vector] = random_permutation(cities)

65 best[:cost] = cost(best[:vector], cities)

66 best = local_search(best, cities, max_no_improv)

67 max_iterations.times do |iter|

68 candidate = perturbation(cities, best)

69 candidate = local_search(candidate, cities, max_no_improv)

70 best = candidate if candidate[:cost] < best[:cost]

71 puts " > iteration #{(iter+1)}, best=#{best[:cost]}"

72 end

73 return best

74 end

75

76 if __FILE__ == $0

77 # problem configuration

78 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

79 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

80 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

81 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

82 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

83 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

84 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

85 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

86 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

87 # algorithm configuration

88 max_iterations = 100

89 max_no_improv = 50

90 # execute the algorithm

91 best = search(berlin52, max_iterations, max_no_improv)

92 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

93 end

Listing 2.4: Iterated Local Search in Ruby

2.5.6 References

Primary Sources

The definition and framework for Iterated Local Search was described by
Stützle in his PhD dissertation [12]. Specifically he proposed constrains on
what constitutes an Iterated Local Search algorithm as 1) a single chain of
candidate solutions, and 2) the method used to improve candidate solutions
occurs within a reduced space by a black-box heuristic. Stützle does not take
credit for the approach, instead highlighting specific instances of Iterated
Local Search from the literature, such as ‘iterated descent’ [1], ‘large-step
Markov chains’ [7], ‘iterated Lin-Kernighan’ [3], ‘chained local optimization’
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[6], as well as [2] that introduces the principle, and [4] that summarized it
(list taken from [8]).

Learn More

Two early technical reports by Stützle that present applications of Iterated
Local Search include a report on the Quadratic Assignment Problem [10],
and another on the permutation flow shop problem [9]. Stützle and Hoos
also published an early paper studying Iterated Local Search for to the TSP
[11]. Lourenco, Martin, and Stützle provide a concise presentation of the
technique, related techniques and the framework, much as it is presented in
Stützle’s dissertation [5]. The same author’s also preset an authoritative
summary of the approach and its applications as a book chapter [8].
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iterated local search. In Proceedings 4th Metaheuristics International
Conference (MIC2001), 2001.

[6] O. Martin and S. W. Otto. Combining simulated annealing with local
search heuristics. Annals of Operations Research, 63:57–75, 1996.

[7] O. Martin, S. W. Otto, and E. W. Felten. Large-step markov chains
for the traveling salesman problems. Complex Systems, 5(3):299–326,
1991.

[8] H. Ramalhinho-Lourenco, O. C. Martin, and T. Stützle. Handbook of
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2.6 Guided Local Search

Guided Local Search, GLS.

2.6.1 Taxonomy

The Guided Local Search algorithm is a Metaheuristic and a Global Op-
timization algorithm that makes use of an embedded Local Search algo-
rithm. It is an extension to Local Search algorithms such as Hill Climbing
(Section 2.4) and is similar in strategy to the Tabu Search algorithm (Sec-
tion 2.10) and the Iterated Local Search algorithm (Section 2.5).

2.6.2 Strategy

The strategy for the Guided Local Search algorithm is to use penalties to
encourage a Local Search technique to escape local optima and discover the
global optima. A Local Search algorithm is run until it gets stuck in a local
optima. The features from the local optima are evaluated and penalized,
the results of which are used in an augmented cost function employed by the
Local Search procedure. The Local Search is repeated a number of times
using the last local optima discovered and the augmented cost function that
guides exploration away from solutions with features present in discovered
local optima.

2.6.3 Procedure

Algorithm 2.6.1 provides a pseudocode listing of the Guided Local Search
algorithm for minimization. The Local Search algorithm used by the
Guided Local Search algorithm uses an augmented cost function in the form
h(s) = g(s) +λ ·

∑M

i=1 fi, where h(s) is the augmented cost function, g(s) is
the problem cost function,λ is the ‘regularization parameter’ (a coefficient
for scaling the penalties), s is a locally optimal solution of M features,
and fi is the i’th feature in locally optimal solution. The augmented cost
function is only used by the local search procedure, the Guided Local Search
algorithm uses the problem specific cost function without augmentation.

Penalties are only updated for those features in a locally optimal solution
that maximize utility, updated by adding 1 to the penalty for the future
(a counter). The utility for a feature is calculated as Ufeature =

Cfeature

1+Pfeature
,

where Ufeature is the utility for penalizing a feature (maximizing), Cfeature

is the cost of the feature, and Pfeature is the current penalty for the feature.

2.6.4 Heuristics

� The Guided Local Search procedure is independent of the Local
Search procedure embedded within it. A suitable domain-specific
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Algorithm 2.6.1: Pseudocode for Guided Local Search.

Input: Itermax, λ
Output: Sbest

fpenalties ← ∅;1

Sbest ← RandomSolution();2

foreach Iteri ∈ Itermax do3

Scurr ← LocalSearch(Sbest, λ, fpenalties);4

futilities ← CalculateFeatureUtilities(Scurr, fpenalties);5

fpenalties ← UpdateFeaturePenalties(Scurr, fpenalties,6

futilities);
if Cost(Scurr) ≤ Cost(Sbest) then7

Sbest ← Scurr;8

end9

end10

return Sbest;11

search procedure should be identified and employed.

� The Guided Local Search procedure may need to be executed for
thousands to hundreds-of-thousands of iterations, each iteration of
which assumes a run of a Local Search algorithm to convergence.

� The algorithm was designed for discrete optimization problems where
a solution is comprised of independently assessable ‘features’ such as
Combinatorial Optimization, although it has been applied to continu-
ous function optimization modeled as binary strings.

� The λ parameter is a scaling factor for feature penalization that must
be in the same proportion to the candidate solution costs from the
specific problem instance to which the algorithm is being applied.
As such, the value for λ must be meaningful when used within the
augmented cost function (such as when it is added to a candidate
solution cost in minimization and subtracted from a cost in the case
of a maximization problem).

2.6.5 Code Listing

Listing 2.5 provides an example of the Guided Local Search algorithm
implemented in the Ruby Programming Language. The algorithm is applied
to the Berlin52 instance of the Traveling Salesman Problem (TSP), taken
from the TSPLIB. The problem seeks a permutation of the order to visit
cities (called a tour) that minimizes the total distance traveled. The optimal
tour distance for Berlin52 instance is 7542 units.
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The implementation of the algorithm for the TSP was based on the
configuration specified by Voudouris in [7]. A TSP-specific local search
algorithm is used called 2-opt that selects two points in a permutation and
reconnects the tour, potentially untwisting the tour at the selected points.
The stopping condition for 2-opt was configured to be a fixed number of
non-improving moves.

The equation for setting λ for TSP instances is λ = α · cost(optima)
N

,
where N is the number of cities, cost(optima) is the cost of a local optimum
found by a local search, and α ∈ (0, 1] (around 0.3 for TSP and 2-opt).
The cost of a local optima was fixed to the approximated value of 15000
for the Berlin52 instance. The utility function for features (edges) in the

TSP is Uedge =
Dedge

1+Pedge
, where Uedge is the utility for penalizing an edge

(maximizing), Dedge is the cost of the edge (distance between cities) and
Pedge is the current penalty for the edge.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def random_permutation(cities)

6 perm = Array.new(cities.size){|i| i}

7 perm.each_index do |i|

8 r = rand(perm.size-i) + i

9 perm[r], perm[i] = perm[i], perm[r]

10 end

11 return perm

12 end

13

14 def stochastic_two_opt(permutation)

15 perm = Array.new(permutation)

16 c1, c2 = rand(perm.size), rand(perm.size)

17 exclude = [c1]

18 exclude << ((c1==0) ? perm.size-1 : c1-1)

19 exclude << ((c1==perm.size-1) ? 0 : c1+1)

20 c2 = rand(perm.size) while exclude.include?(c2)

21 c1, c2 = c2, c1 if c2 < c1

22 perm[c1...c2] = perm[c1...c2].reverse

23 return perm

24 end

25

26 def augmented_cost(permutation, penalties, cities, lambda)

27 distance, augmented = 0, 0

28 permutation.each_with_index do |c1, i|

29 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

30 c1, c2 = c2, c1 if c2 < c1

31 d = euc_2d(cities[c1], cities[c2])

32 distance += d

33 augmented += d + (lambda * (penalties[c1][c2]))

34 end

35 return [distance, augmented]

36 end

37

38 def cost(cand, penalties, cities, lambda)
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39 cost, acost = augmented_cost(cand[:vector], penalties, cities, lambda)

40 cand[:cost], cand[:aug_cost] = cost, acost

41 end

42

43 def local_search(current, cities, penalties, max_no_improv, lambda)

44 cost(current, penalties, cities, lambda)

45 count = 0

46 begin

47 candidate = {:vector=> stochastic_two_opt(current[:vector])}

48 cost(candidate, penalties, cities, lambda)

49 count = (candidate[:aug_cost] < current[:aug_cost]) ? 0 : count+1

50 current = candidate if candidate[:aug_cost] < current[:aug_cost]

51 end until count >= max_no_improv

52 return current

53 end

54

55 def calculate_feature_utilities(penal, cities, permutation)

56 utilities = Array.new(permutation.size,0)

57 permutation.each_with_index do |c1, i|

58 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

59 c1, c2 = c2, c1 if c2 < c1

60 utilities[i] = euc_2d(cities[c1], cities[c2]) / (1.0 + penal[c1][c2])

61 end

62 return utilities

63 end

64

65 def update_penalties!(penalties, cities, permutation, utilities)

66 max = utilities.max()

67 permutation.each_with_index do |c1, i|

68 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

69 c1, c2 = c2, c1 if c2 < c1

70 penalties[c1][c2] += 1 if utilities[i] == max

71 end

72 return penalties

73 end

74

75 def search(max_iterations, cities, max_no_improv, lambda)

76 current = {:vector=>random_permutation(cities)}

77 best = nil

78 penalties = Array.new(cities.size){ Array.new(cities.size, 0) }

79 max_iterations.times do |iter|

80 current=local_search(current, cities, penalties, max_no_improv, lambda)

81 utilities=calculate_feature_utilities(penalties,cities,current[:vector])

82 update_penalties!(penalties, cities, current[:vector], utilities)

83 best = current if best.nil? or current[:cost] < best[:cost]

84 puts " > iter=#{(iter+1)}, best=#{best[:cost]}, aug=#{best[:aug_cost]}"

85 end

86 return best

87 end

88

89 if __FILE__ == $0

90 # problem configuration

91 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

92 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

93 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

94 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],



2.6. Guided Local Search 53

95 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

96 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

97 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

98 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

99 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

100 # algorithm configuration

101 max_iterations = 150

102 max_no_improv = 20

103 alpha = 0.3

104 local_search_optima = 12000.0

105 lambda = alpha * (local_search_optima/berlin52.size.to_f)

106 # execute the algorithm

107 best = search(max_iterations, berlin52, max_no_improv, lambda)

108 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

109 end

Listing 2.5: Guided Local Search in Ruby

2.6.6 References

Primary Sources

Guided Local Search emerged from an approach called GENET, which is
a connectionist approach to constraint satisfaction [6, 13]. Guided Local
Search was presented by Voudouris and Tsang in a series of technical re-
ports (that were later published) that described the technique and provided
example applications of it to constraint satisfaction [8], combinatorial opti-
mization [5, 10], and function optimization [9]. The seminal work on the
technique was Voudouris’ PhD dissertation [7].

Learn More

Voudouris and Tsang provide a high-level introduction to the technique [11],
and a contemporary summary of the approach in Glover and Kochenberger’s
‘Handbook of metaheuristics’ [12] that includes a review of the technique,
application areas, and demonstration applications on a diverse set of problem
instances. Mills et al. elaborated on the approach, devising an ‘Extended
Guided Local Search’ (EGLS) technique that added ‘aspiration criteria’ and
random moves to the procedure [4], work which culminated in Mills’ PhD
dissertation [3]. Lau and Tsang further extended the approach by integrating
it with a Genetic Algorithm, called the ‘Guided Genetic Algorithm’ (GGA)
[2], that also culminated in a PhD dissertation by Lau [1].
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2.7 Variable Neighborhood Search

Variable Neighborhood Search, VNS.

2.7.1 Taxonomy

Variable Neighborhood Search is a Metaheuristic and a Global Optimization
technique that manages a Local Search technique. It is related to the
Iterative Local Search algorithm (Section 2.5).

2.7.2 Strategy

The strategy for the Variable Neighborhood Search involves iterative ex-
ploration of larger and larger neighborhoods for a given local optima until
an improvement is located after which time the search across expanding
neighborhoods is repeated. The strategy is motivated by three principles:
1) a local minimum for one neighborhood structure may not be a local
minimum for a different neighborhood structure, 2) a global minimum is a
local minimum for all possible neighborhood structures, and 3) local minima
are relatively close to global minima for many problem classes.

2.7.3 Procedure

Algorithm 2.7.1 provides a pseudocode listing of the Variable Neighborhood
Search algorithm for minimizing a cost function. The Pseudocode shows
that the systematic search of expanding neighborhoods for a local optimum
is abandoned when a global improvement is achieved (shown with the Break
jump).

2.7.4 Heuristics

� Approximation methods (such as stochastic hill climbing) are suggested
for use as the Local Search procedure for large problem instances in
order to reduce the running time.

� Variable Neighborhood Search has been applied to a very wide array
of combinatorial optimization problems as well as clustering and
continuous function optimization problems.

� The embedded Local Search technique should be specialized to the
problem type and instance to which the technique is being applied.

� The Variable Neighborhood Descent (VND) can be embedded in the
Variable Neighborhood Search as a the Local Search procedure and
has been shown to be most effective.
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Algorithm 2.7.1: Pseudocode for VNS.

Input: Neighborhoods
Output: Sbest

Sbest ← RandomSolution();1

while ¬ StopCondition() do2

foreach Neighborhoodi ∈ Neighborhoods do3

Neighborhoodcurr ← CalculateNeighborhood(Sbest,4

Neighborhoodi);
Scandidate ←5

RandomSolutionInNeighborhood(Neighborhoodcurr);
Scandidate ← LocalSearch(Scandidate);6

if Cost(Scandidate) < Cost(Sbest) then7

Sbest ← Scandidate;8

Break;9

end10

end11

end12

return Sbest;13

2.7.5 Code Listing

Listing 2.6 provides an example of the Variable Neighborhood Search algo-
rithm implemented in the Ruby Programming Language. The algorithm is
applied to the Berlin52 instance of the Traveling Salesman Problem (TSP),
taken from the TSPLIB. The problem seeks a permutation of the order to
visit cities (called a tour) that minimizes the total distance traveled. The
optimal tour distance for Berlin52 instance is 7542 units.

The Variable Neighborhood Search uses a stochastic 2-opt procedure as
the embedded local search. The procedure deletes two edges and reverses
the sequence in-between the deleted edges, potentially removing ‘twists’ in
the tour. The neighborhood structure used in the search is the number of
times the 2-opt procedure is performed on a permutation, between 1 and 20
times. The stopping condition for the local search procedure is a maximum
number of iterations without improvement. The same stop condition is
employed by the higher-order Variable Neighborhood Search procedure,
although with a lower boundary on the number of non-improving iterations.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(perm, cities)

6 distance =0

7 perm.each_with_index do |c1, i|

8 c2 = (i==perm.size-1) ? perm[0] : perm[i+1]
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9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def stochastic_two_opt!(perm)

24 c1, c2 = rand(perm.size), rand(perm.size)

25 exclude = [c1]

26 exclude << ((c1==0) ? perm.size-1 : c1-1)

27 exclude << ((c1==perm.size-1) ? 0 : c1+1)

28 c2 = rand(perm.size) while exclude.include?(c2)

29 c1, c2 = c2, c1 if c2 < c1

30 perm[c1...c2] = perm[c1...c2].reverse

31 return perm

32 end

33

34 def local_search(best, cities, max_no_improv, neighborhood)

35 count = 0

36 begin

37 candidate = {}

38 candidate[:vector] = Array.new(best[:vector])

39 neighborhood.times{stochastic_two_opt!(candidate[:vector])}

40 candidate[:cost] = cost(candidate[:vector], cities)

41 if candidate[:cost] < best[:cost]

42 count, best = 0, candidate

43 else

44 count += 1

45 end

46 end until count >= max_no_improv

47 return best

48 end

49

50 def search(cities, neighborhoods, max_no_improv, max_no_improv_ls)

51 best = {}

52 best[:vector] = random_permutation(cities)

53 best[:cost] = cost(best[:vector], cities)

54 iter, count = 0, 0

55 begin

56 neighborhoods.each do |neigh|

57 candidate = {}

58 candidate[:vector] = Array.new(best[:vector])

59 neigh.times{stochastic_two_opt!(candidate[:vector])}

60 candidate[:cost] = cost(candidate[:vector], cities)

61 candidate = local_search(candidate, cities, max_no_improv_ls, neigh)

62 puts " > iteration #{(iter+1)}, neigh=#{neigh}, best=#{best[:cost]}"

63 iter += 1

64 if(candidate[:cost] < best[:cost])
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65 best, count = candidate, 0

66 puts "New best, restarting neighborhood search."

67 break

68 else

69 count += 1

70 end

71 end

72 end until count >= max_no_improv

73 return best

74 end

75

76 if __FILE__ == $0

77 # problem configuration

78 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

79 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

80 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

81 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

82 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

83 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

84 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

85 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

86 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

87 # algorithm configuration

88 max_no_improv = 50

89 max_no_improv_ls = 70

90 neighborhoods = 1...20

91 # execute the algorithm

92 best = search(berlin52, neighborhoods, max_no_improv, max_no_improv_ls)

93 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

94 end

Listing 2.6: Variable Neighborhood Search in Ruby

2.7.6 References

Primary Sources

The seminal paper for describing Variable Neighborhood Search was by
Mladenovic and Hansen in 1997 [7], although an early abstract by Mladenovic
is sometimes cited [6]. The approach is explained in terms of three different
variations on the general theme. Variable Neighborhood Descent (VND)
refers to the use of a Local Search procedure and the deterministic (as
opposed to stochastic or probabilistic) change of neighborhood size. Reduced
Variable Neighborhood Search (RVNS) involves performing a stochastic
random search within a neighborhood and no refinement via a local search
technique. Basic Variable Neighborhood Search is the canonical approach
described by Mladenovic and Hansen in the seminal paper.

Learn More

There are a large number of papers published on Variable Neighborhood
Search, its applications and variations. Hansen and Mladenovic provide an
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overview of the approach that includes its recent history, extensions and a
detailed review of the numerous areas of application [4]. For some additional
useful overviews of the technique, its principles, and applications, see [1–3].

There are many extensions to Variable Neighborhood Search. Some
popular examples include: Variable Neighborhood Decomposition Search
(VNDS) that involves embedding a second heuristic or metaheuristic ap-
proach in VNS to replace the Local Search procedure [5], Skewed Variable
Neighborhood Search (SVNS) that encourages exploration of neighborhoods
far away from discovered local optima, and Parallel Variable Neighborhood
Search (PVNS) that either parallelizes the local search of a neighborhood
or parallelizes the searching of the neighborhoods themselves.
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[6] N. Mladenović. A variable neighborhood algorithm - a new metaheuristic
for combinatorial optimization. In Abstracts of papers presented at
Optimization Days, 1995.
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2.8 Greedy Randomized Adaptive Search

Greedy Randomized Adaptive Search Procedure, GRASP.

2.8.1 Taxonomy

The Greedy Randomized Adaptive Search Procedure is a Metaheuristic
and Global Optimization algorithm, originally proposed for the Operations
Research practitioners. The iterative application of an embedded Local
Search technique relate the approach to Iterative Local Search (Section 2.5)
and Multi-Start techniques.

2.8.2 Strategy

The objective of the Greedy Randomized Adaptive Search Procedure is to
repeatedly sample stochastically greedy solutions, and then use a local search
procedure to refine them to a local optima. The strategy of the procedure
is centered on the stochastic and greedy step-wise construction mechanism
that constrains the selection and order-of-inclusion of the components of a
solution based on the value they are expected to provide.

2.8.3 Procedure

Algorithm 2.8.1 provides a pseudocode listing of the Greedy Randomized
Adaptive Search Procedure for minimizing a cost function.

Algorithm 2.8.1: Pseudocode for the GRASP.

Input: α
Output: Sbest

Sbest ← ConstructRandomSolution();1

while ¬ StopCondition() do2

Scandidate ← GreedyRandomizedConstruction(α);3

Scandidate ← LocalSearch(Scandidate);4

if Cost(Scandidate) < Cost(Sbest) then5

Sbest ← Scandidate;6

end7

end8

return Sbest;9

Algorithm 2.8.2 provides the pseudocode the Greedy Randomized Con-
struction function. The function involves the step-wise construction of a
candidate solution using a stochastically greedy construction process. The
function works by building a Restricted Candidate List (RCL) that con-
straints the components of a solution (features) that may be selected from
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each cycle. The RCL may be constrained by an explicit size, or by using
a threshold (α ∈ [0, 1]) on the cost of adding each feature to the current
candidate solution.

Algorithm 2.8.2: Pseudocode the GreedyRandomizedConstruction
function.
Input: α
Output: Scandidate

Scandidate ← ∅;1

while Scandidate 6= ProblemSize do2

Featurecosts ← ∅;3

for Featurei /∈ Scandidate do4

Featurecosts ←5

CostOfAddingFeatureToSolution(Scandidate, Featurei);
end6

RCL ← ∅;7

Fcostmin ← MinCost(Featurecosts);8

Fcostmax ← MaxCost(Featurecosts);9

for Ficost ∈ Featurecosts do10

if Ficost ≤ Fcostmin + α · (Fcostmax − Fcostmin) then11

RCL ← Featurei;12

end13

end14

Scandidate ← SelectRandomFeature(RCL);15

end16

return Scandidate;17

2.8.4 Heuristics

� The α threshold defines the amount of greediness of the construction
mechanism, where values close to 0 may be too greedy, and values
close to 1 may be too generalized.

� As an alternative to using the α threshold, the RCL can be constrained
to the top n% of candidate features that may be selected from each
construction cycle.

� The technique was designed for discrete problem classes such as com-
binatorial optimization problems.

2.8.5 Code Listing

Listing 2.7 provides an example of the Greedy Randomized Adaptive Search
Procedure implemented in the Ruby Programming Language. The algorithm
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is applied to the Berlin52 instance of the Traveling Salesman Problem (TSP),
taken from the TSPLIB. The problem seeks a permutation of the order to
visit cities (called a tour) that minimizes the total distance traveled. The
optimal tour distance for Berlin52 instance is 7542 units.

The stochastic and greedy step-wise construction of a tour involves
evaluating candidate cities by the the cost they contribute as being the
next city in the tour. The algorithm uses a stochastic 2-opt procedure for
the Local Search with a fixed number of non-improving iterations as the
stopping condition.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(perm, cities)

6 distance =0

7 perm.each_with_index do |c1, i|

8 c2 = (i==perm.size-1) ? perm[0] : perm[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def stochastic_two_opt(permutation)

15 perm = Array.new(permutation)

16 c1, c2 = rand(perm.size), rand(perm.size)

17 exclude = [c1]

18 exclude << ((c1==0) ? perm.size-1 : c1-1)

19 exclude << ((c1==perm.size-1) ? 0 : c1+1)

20 c2 = rand(perm.size) while exclude.include?(c2)

21 c1, c2 = c2, c1 if c2 < c1

22 perm[c1...c2] = perm[c1...c2].reverse

23 return perm

24 end

25

26 def local_search(best, cities, max_no_improv)

27 count = 0

28 begin

29 candidate = {:vector=>stochastic_two_opt(best[:vector])}

30 candidate[:cost] = cost(candidate[:vector], cities)

31 count = (candidate[:cost] < best[:cost]) ? 0 : count+1

32 best = candidate if candidate[:cost] < best[:cost]

33 end until count >= max_no_improv

34 return best

35 end

36

37 def construct_randomized_greedy_solution(cities, alpha)

38 candidate = {}

39 candidate[:vector] = [rand(cities.size)]

40 allCities = Array.new(cities.size) {|i| i}

41 while candidate[:vector].size < cities.size

42 candidates = allCities - candidate[:vector]

43 costs = Array.new(candidates.size) do |i|

44 euc_2d(cities[candidate[:vector].last], cities[i])
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45 end

46 rcl, max, min = [], costs.max, costs.min

47 costs.each_with_index do |c,i|

48 rcl << candidates[i] if c <= (min + alpha*(max-min))

49 end

50 candidate[:vector] << rcl[rand(rcl.size)]

51 end

52 candidate[:cost] = cost(candidate[:vector], cities)

53 return candidate

54 end

55

56 def search(cities, max_iter, max_no_improv, alpha)

57 best = nil

58 max_iter.times do |iter|

59 candidate = construct_randomized_greedy_solution(cities, alpha);

60 candidate = local_search(candidate, cities, max_no_improv)

61 best = candidate if best.nil? or candidate[:cost] < best[:cost]

62 puts " > iteration #{(iter+1)}, best=#{best[:cost]}"

63 end

64 return best

65 end

66

67 if __FILE__ == $0

68 # problem configuration

69 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

70 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

71 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

72 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

73 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

74 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

75 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

76 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

77 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

78 # algorithm configuration

79 max_iter = 50

80 max_no_improv = 50

81 greediness_factor = 0.3

82 # execute the algorithm

83 best = search(berlin52, max_iter, max_no_improv, greediness_factor)

84 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

85 end

Listing 2.7: Greedy Randomized Adaptive Search Procedure in Ruby

2.8.6 References

Primary Sources

The seminal paper that introduces the general approach of stochastic and
greedy step-wise construction of candidate solutions is by Feo and Resende
[3]. The general approach was inspired by greedy heuristics by Hart and
Shogan [9]. The seminal review paper that is cited with the preliminary
paper is by Feo and Resende [4], and provides a coherent description
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of the GRASP technique, an example, and review of early applications.
An early application was by Feo, Venkatraman and Bard for a machine
scheduling problem [7]. Other early applications to scheduling problems
include technical reports [2] (later published as [1]) and [5] (also later
published as [6]).

Learn More

There are a vast number of review, application, and extension papers for
GRASP. Pitsoulis and Resende provide an extensive contemporary overview
of the field as a review chapter [11], as does Resende and Ribeiro that
includes a clear presentation of the use of the α threshold parameter instead
of a fixed size for the RCL [13]. Festa and Resende provide an annotated
bibliography as a review chapter that provides some needed insight into large
amount of study that has gone into the approach [8]. There are numerous
extensions to GRASP, not limited to the popular Reactive GRASP for
adapting α [12], the use of long term memory to allow the technique to
learn from candidate solutions discovered in previous iterations, and parallel
implementations of the procedure such as ‘Parallel GRASP’ [10].
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2.9 Scatter Search

Scatter Search, SS.

2.9.1 Taxonomy

Scatter search is a Metaheuristic and a Global Optimization algorithm. It is
also sometimes associated with the field of Evolutionary Computation given
the use of a population and recombination in the structure of the technique.
Scatter Search is a sibling of Tabu Search (Section 2.10), developed by the
same author and based on similar origins.

2.9.2 Strategy

The objective of Scatter Search is to maintain a set of diverse and high-
quality candidate solutions. The principle of the approach is that useful
information about the global optima is stored in a diverse and elite set of
solutions (the reference set) and that recombining samples from the set
can exploit this information. The strategy involves an iterative process,
where a population of diverse and high-quality candidate solutions that
are partitioned into subsets and linearly recombined to create weighted
centroids of sample-based neighborhoods. The results of recombination
are refined using an embedded heuristic and assessed in the context of the
reference set as to whether or not they are retained.

2.9.3 Procedure

Algorithm 2.9.1 provides a pseudocode listing of the Scatter Search algorithm
for minimizing a cost function. The procedure is based on the abstract form
presented by Glover as a template for the general class of technique [3], with
influences from an application of the technique to function optimization by
Glover [3].

2.9.4 Heuristics

� Scatter search is suitable for both discrete domains such as combina-
torial optimization as well as continuous domains such as non-linear
programming (continuous function optimization).

� Small set sizes are preferred for the ReferenceSet, such as 10 or 20
members.

� Subset sizes can be 2, 3, 4 or more members that are all recombined
to produce viable candidate solutions within the neighborhood of the
members of the subset.
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Algorithm 2.9.1: Pseudocode for Scatter Search.

Input: DiverseSetsize, ReferenceSetsize
Output: ReferenceSet
InitialSet ← ConstructInitialSolution(DiverseSetsize);1

RefinedSet ← ∅;2

for Si ∈ InitialSet do3

RefinedSet ← LocalSearch(Si);4

end5

ReferenceSet ← SelectInitialReferenceSet(ReferenceSetsize);6

while ¬ StopCondition() do7

Subsets ← SelectSubset(ReferenceSet);8

CandidateSet ← ∅;9

for Subseti ∈ Subsets do10

RecombinedCandidates ← RecombineMembers(Subseti);11

for Si ∈ RecombinedCandidates do12

CandidateSet ← LocalSearch(Si);13

end14

end15

ReferenceSet ← Select(ReferenceSet, CandidateSet,16

ReferenceSetsize);
end17

return ReferenceSet;18

� Each subset should comprise at least one member added to the set in
the previous algorithm iteration.

� The Local Search procedure should be a problem-specific improvement
heuristic.

� The selection of members for the ReferenceSet at the end of each
iteration favors solutions with higher quality and may also promote
diversity.

� The ReferenceSet may be updated at the end of an iteration, or
dynamically as candidates are created (a so-called steady-state popu-
lation in some evolutionary computation literature).

� A lack of changes to the ReferenceSet may be used as a signal to
stop the current search, and potentially restart the search with a newly
initialized ReferenceSet.

2.9.5 Code Listing

Listing 2.8 provides an example of the Scatter Search algorithm implemented
in the Ruby Programming Language. The example problem is an instance of
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a continuous function optimization that seeks min f(x) where f =
∑n

i=1 x
2
i ,

−5.0 ≤ xi ≤ 5.0 and n = 3. The optimal solution for this basin function is
(v1, . . . , vn) = 0.0.

The algorithm is an implementation of Scatter Search as described in
an application of the technique to unconstrained non-linear optimization by
Glover [6]. The seeds for initial solutions are generated as random vectors,
as opposed to stratified samples. The example was further simplified by
not including a restart strategy, and the exclusion of diversity maintenance
in the ReferenceSet. A stochastic local search algorithm is used as the
embedded heuristic that uses a stochastic step size in the range of half a
percent of the search space.

1 def objective_function(vector)

2 return vector.inject(0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def rand_in_bounds(min, max)

6 return min + ((max-min) * rand())

7 end

8

9 def random_vector(minmax)

10 return Array.new(minmax.size) do |i|

11 rand_in_bounds(minmax[i][0], minmax[i][1])

12 end

13 end

14

15 def take_step(minmax, current, step_size)

16 position = Array.new(current.size)

17 position.size.times do |i|

18 min = [minmax[i][0], current[i]-step_size].max

19 max = [minmax[i][1], current[i]+step_size].min

20 position[i] = rand_in_bounds(min, max)

21 end

22 return position

23 end

24

25 def local_search(best, bounds, max_no_improv, step_size)

26 count = 0

27 begin

28 candidate = {:vector=>take_step(bounds, best[:vector], step_size)}

29 candidate[:cost] = objective_function(candidate[:vector])

30 count = (candidate[:cost] < best[:cost]) ? 0 : count+1

31 best = candidate if candidate[:cost] < best[:cost]

32 end until count >= max_no_improv

33 return best

34 end

35

36 def construct_initial_set(bounds, set_size, max_no_improv, step_size)

37 diverse_set = []

38 begin

39 cand = {:vector=>random_vector(bounds)}

40 cand[:cost] = objective_function(cand[:vector])

41 cand = local_search(cand, bounds, max_no_improv, step_size)

42 diverse_set << cand if !diverse_set.any? {|x| x[:vector]==cand[:vector]}
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43 end until diverse_set.size == set_size

44 return diverse_set

45 end

46

47 def euclidean_distance(c1, c2)

48 sum = 0.0

49 c1.each_index {|i| sum += (c1[i]-c2[i])**2.0}

50 return Math.sqrt(sum)

51 end

52

53 def distance(v, set)

54 return set.inject(0){|s,x| s + euclidean_distance(v, x[:vector])}

55 end

56

57 def diversify(diverse_set, num_elite, ref_set_size)

58 diverse_set.sort!{|x,y| x[:cost] <=> y[:cost]}

59 ref_set = Array.new(num_elite){|i| diverse_set[i]}

60 remainder = diverse_set - ref_set

61 remainder.each{|c| c[:dist] = distance(c[:vector], ref_set)}

62 remainder.sort!{|x,y| y[:dist]<=>x[:dist]}

63 ref_set = ref_set + remainder.first(ref_set_size-ref_set.size)

64 return [ref_set, ref_set[0]]

65 end

66

67 def select_subsets(ref_set)

68 additions = ref_set.select{|c| c[:new]}

69 remainder = ref_set - additions

70 remainder = additions if remainder.nil? or remainder.empty?

71 subsets = []

72 additions.each do |a|

73 remainder.each{|r| subsets << [a,r] if a!=r && !subsets.include?([r,a])}

74 end

75 return subsets

76 end

77

78 def recombine(subset, minmax)

79 a, b = subset

80 d = rand(euclidean_distance(a[:vector], b[:vector]))/2.0

81 children = []

82 subset.each do |p|

83 step = (rand<0.5) ? +d : -d

84 child = {:vector=>Array.new(minmax.size)}

85 child[:vector].each_index do |i|

86 child[:vector][i] = p[:vector][i] + step

87 child[:vector][i]=minmax[i][0] if child[:vector][i]<minmax[i][0]

88 child[:vector][i]=minmax[i][1] if child[:vector][i]>minmax[i][1]

89 end

90 child[:cost] = objective_function(child[:vector])

91 children << child

92 end

93 return children

94 end

95

96 def explore_subsets(bounds, ref_set, max_no_improv, step_size)

97 was_change = false

98 subsets = select_subsets(ref_set)
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99 ref_set.each{|c| c[:new] = false}

100 subsets.each do |subset|

101 candidates = recombine(subset, bounds)

102 improved = Array.new(candidates.size) do |i|

103 local_search(candidates[i], bounds, max_no_improv, step_size)

104 end

105 improved.each do |c|

106 if !ref_set.any? {|x| x[:vector]==c[:vector]}

107 c[:new] = true

108 ref_set.sort!{|x,y| x[:cost] <=> y[:cost]}

109 if c[:cost] < ref_set.last[:cost]

110 ref_set.delete(ref_set.last)

111 ref_set << c

112 puts " >> added, cost=#{c[:cost]}"

113 was_change = true

114 end

115 end

116 end

117 end

118 return was_change

119 end

120

121 def search(bounds, max_iter, ref_set_size, div_set_size, max_no_improv,

step_size, max_elite)

122 diverse_set = construct_initial_set(bounds, div_set_size, max_no_improv,

step_size)

123 ref_set, best = diversify(diverse_set, max_elite, ref_set_size)

124 ref_set.each{|c| c[:new] = true}

125 max_iter.times do |iter|

126 was_change = explore_subsets(bounds, ref_set, max_no_improv, step_size)

127 ref_set.sort!{|x,y| x[:cost] <=> y[:cost]}

128 best = ref_set.first if ref_set.first[:cost] < best[:cost]

129 puts " > iter=#{(iter+1)}, best=#{best[:cost]}"

130 break if !was_change

131 end

132 return best

133 end

134

135 if __FILE__ == $0

136 # problem configuration

137 problem_size = 3

138 bounds = Array.new(problem_size) {|i| [-5, +5]}

139 # algorithm configuration

140 max_iter = 100

141 step_size = (bounds[0][1]-bounds[0][0])*0.005

142 max_no_improv = 30

143 ref_set_size = 10

144 diverse_set_size = 20

145 no_elite = 5

146 # execute the algorithm

147 best = search(bounds, max_iter, ref_set_size, diverse_set_size,

max_no_improv, step_size, no_elite)

148 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

149 end

Listing 2.8: Scatter Search in Ruby
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2.9.6 References

Primary Sources

A form of the Scatter Search algorithm was proposed by Glover for integer
programming [1], based on Glover’s earlier work on surrogate constraints.
The approach remained idle until it was revisited by Glover and combined
with Tabu Search [2]. The modern canonical reference of the approach was
proposed by Glover who provides an abstract template of the procedure
that may be specialized for a given application domain [3].

Learn More

The primary reference for the approach is the book by Laguna and Mart́ı
that reviews the principles of the approach in detail and presents tutorials on
applications of the approach on standard problems using the C programming
language [7]. There are many review articles and chapters on Scatter Search
that may be used to supplement an understanding of the approach, such
as a detailed review chapter by Glover [4], a review of the fundamentals of
the approach and its relationship to an abstraction called ‘path linking’ by
Glover, Laguna, and Mart́ı [5], and a modern overview of the technique by
Mart́ı, Laguna, and Glover [8].
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2.10 Tabu Search

Tabu Search, TS, Taboo Search.

2.10.1 Taxonomy

Tabu Search is a Global Optimization algorithm and a Metaheuristic or
Meta-strategy for controlling an embedded heuristic technique. Tabu Search
is a parent for a large family of derivative approaches that introduce memory
structures in Metaheuristics, such as Reactive Tabu Search (Section 2.11)
and Parallel Tabu Search.

2.10.2 Strategy

The objective for the Tabu Search algorithm is to constrain an embedded
heuristic from returning to recently visited areas of the search space, referred
to as cycling. The strategy of the approach is to maintain a short term
memory of the specific changes of recent moves within the search space
and preventing future moves from undoing those changes. Additional
intermediate-term memory structures may be introduced to bias moves
toward promising areas of the search space, as well as longer-term memory
structures that promote a general diversity in the search across the search
space.

2.10.3 Procedure

Algorithm 2.10.1 provides a pseudocode listing of the Tabu Search algorithm
for minimizing a cost function. The listing shows the simple Tabu Search
algorithm with short term memory, without intermediate and long term
memory management.

2.10.4 Heuristics

� Tabu search was designed to manage an embedded hill climbing
heuristic, although may be adapted to manage any neighborhood
exploration heuristic.

� Tabu search was designed for, and has predominately been applied to
discrete domains such as combinatorial optimization problems.

� Candidates for neighboring moves can be generated deterministically
for the entire neighborhood or the neighborhood can be stochastically
sampled to a fixed size, trading off efficiency for accuracy.

� Intermediate-term memory structures can be introduced (complement-
ing the short-term memory) to focus the search on promising areas of
the search space (intensification), called aspiration criteria.
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Algorithm 2.10.1: Pseudocode for Tabu Search.

Input: TabuListsize
Output: Sbest

Sbest ← ConstructInitialSolution();1

TabuList ← ∅;2

while ¬ StopCondition() do3

CandidateList ← ∅;4

for Scandidate ∈ Sbestneighborhood do5

if ¬ ContainsAnyFeatures(Scandidate, TabuList) then6

CandidateList ← Scandidate;7

end8

end9

Scandidate ← LocateBestCandidate(CandidateList);10

if Cost(Scandidate) ≤ Cost(Sbest) then11

Sbest ← Scandidate;12

TabuList ← FeatureDifferences(Scandidate, Sbest);13

while TabuList > TabuListsize do14

DeleteFeature(TabuList);15

end16

end17

end18

return Sbest;19

� Long-term memory structures can be introduced (complementing the
short-term memory) to encourage useful exploration of the broader
search space, called diversification. Strategies may include generating
solutions with rarely used components and biasing the generation
away from the most commonly used solution components.

2.10.5 Code Listing

Listing 2.9 provides an example of the Tabu Search algorithm implemented
in the Ruby Programming Language. The algorithm is applied to the
Berlin52 instance of the Traveling Salesman Problem (TSP), taken from
the TSPLIB. The problem seeks a permutation of the order to visit cities
(called a tour) that minimizes the total distance traveled. The optimal tour
distance for Berli52 instance is 7542 units.

The algorithm is an implementation of the simple Tabu Search with a
short term memory structure that executes for a fixed number of iterations.
The starting point for the search is prepared using a random permutation
that is refined using a stochastic 2-opt Local Search procedure. The stochas-
tic 2-opt procedure is used as the embedded hill climbing heuristic with
a fixed sized candidate list. The two edges that are deleted in each 2-opt
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move are stored on the tabu list. This general approach is similar to that
used by Knox in his work on Tabu Search for symmetrical TSP [12] and
Fiechter for the Parallel Tabu Search for the TSP [2].

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(perm, cities)

6 distance = 0

7 perm.each_with_index do |c1, i|

8 c2 = (i==perm.size-1) ? perm[0] : perm[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def stochastic_two_opt(parent)

24 perm = Array.new(parent)

25 c1, c2 = rand(perm.size), rand(perm.size)

26 exclude = [c1]

27 exclude << ((c1==0) ? perm.size-1 : c1-1)

28 exclude << ((c1==perm.size-1) ? 0 : c1+1)

29 c2 = rand(perm.size) while exclude.include?(c2)

30 c1, c2 = c2, c1 if c2 < c1

31 perm[c1...c2] = perm[c1...c2].reverse

32 return perm, [[parent[c1-1], parent[c1]], [parent[c2-1], parent[c2]]]

33 end

34

35 def is_tabu?(permutation, tabu_list)

36 permutation.each_with_index do |c1, i|

37 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

38 tabu_list.each do |forbidden_edge|

39 return true if forbidden_edge == [c1, c2]

40 end

41 end

42 return false

43 end

44

45 def generate_candidate(best, tabu_list, cities)

46 perm, edges = nil, nil

47 begin

48 perm, edges = stochastic_two_opt(best[:vector])

49 end while is_tabu?(perm, tabu_list)

50 candidate = {:vector=>perm}

51 candidate[:cost] = cost(candidate[:vector], cities)

52 return candidate, edges
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53 end

54

55 def search(cities, tabu_list_size, candidate_list_size, max_iter)

56 current = {:vector=>random_permutation(cities)}

57 current[:cost] = cost(current[:vector], cities)

58 best = current

59 tabu_list = Array.new(tabu_list_size)

60 max_iter.times do |iter|

61 candidates = Array.new(candidate_list_size) do |i|

62 generate_candidate(current, tabu_list, cities)

63 end

64 candidates.sort! {|x,y| x.first[:cost] <=> y.first[:cost]}

65 best_candidate = candidates.first[0]

66 best_candidate_edges = candidates.first[1]

67 if best_candidate[:cost] < current[:cost]

68 current = best_candidate

69 best = best_candidate if best_candidate[:cost] < best[:cost]

70 best_candidate_edges.each {|edge| tabu_list.push(edge)}

71 tabu_list.pop while tabu_list.size > tabu_list_size

72 end

73 puts " > iteration #{(iter+1)}, best=#{best[:cost]}"

74 end

75 return best

76 end

77

78 if __FILE__ == $0

79 # problem configuration

80 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

81 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

82 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

83 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

84 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

85 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

86 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

87 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

88 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

89 # algorithm configuration

90 max_iter = 100

91 tabu_list_size = 15

92 max_candidates = 50

93 # execute the algorithm

94 best = search(berlin52, tabu_list_size, max_candidates, max_iter)

95 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

96 end

Listing 2.9: Tabu Search in Ruby

2.10.6 References

Primary Sources

Tabu Search was introduced by Glover applied to scheduling employees to
duty rosters [9] and a more general overview in the context of the TSP [5],
based on his previous work on surrogate constraints on integer programming
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problems [4]. Glover provided a seminal overview of the algorithm in a
two-part journal article, the first part of which introduced the algorithm
and reviewed then-recent applications [6], and the second which focused on
advanced topics and open areas of research [7].

Learn More

Glover provides a high-level introduction to Tabu Search in the form of a
practical tutorial [8], as does Glover and Taillard in a user guide format
[10]. The best source of information for Tabu Search is the book dedicated
to the approach by Glover and Laguna that covers the principles of the
technique in detail as well as an in-depth review of applications [11]. The
approach appeared in Science, that considered a modification for its appli-
cation to continuous function optimization problems [1]. Finally, Gendreau
provides an excellent contemporary review of the algorithm, highlighting
best practices and application heuristics collected from across the field of
study [3].
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2.11 Reactive Tabu Search

Reactive Tabu Search, RTS, R-TABU, Reactive Taboo Search.

2.11.1 Taxonomy

Reactive Tabu Search is a Metaheuristic and a Global Optimization algo-
rithm. It is an extension of Tabu Search (Section 2.10) and the basis for a
field of reactive techniques called Reactive Local Search and more broadly
the field of Reactive Search Optimization.

2.11.2 Strategy

The objective of Tabu Search is to avoid cycles while applying a local search
technique. The Reactive Tabu Search addresses this objective by explicitly
monitoring the search and reacting to the occurrence of cycles and their
repetition by adapting the tabu tenure (tabu list size). The strategy of the
broader field of Reactive Search Optimization is to automate the process by
which a practitioner configures a search procedure by monitoring its online
behavior and to use machine learning techniques to adapt a techniques
configuration.

2.11.3 Procedure

Algorithm 2.11.1 provides a pseudocode listing of the Reactive Tabu Search
algorithm for minimizing a cost function. The Pseudocode is based on the
version of the Reactive Tabu Search described by Battiti and Tecchiolli in [9]
with supplements like the IsTabu function from [7]. The procedure has been
modified for brevity to exude the diversification procedure (escape move).
Algorithm 2.11.2 describes the memory based reaction that manipulates
the size of the ProhibitionPeriod in response to identified cycles in the
ongoing search. Algorithm 2.11.3 describes the selection of the best move
from a list of candidate moves in the neighborhood of a given solution. The
function permits prohibited moves in the case where a prohibited move is
better than the best know solution and the selected admissible move (called
aspiration). Algorithm 2.11.4 determines whether a given neighborhood
move is tabu based on the current ProhibitionPeriod, and is employed
by sub-functions of the Algorithm 2.11.3 function.

2.11.4 Heuristics

� Reactive Tabu Search is an extension of Tabu Search and as such
should exploit the best practices used for the parent algorithm.
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Algorithm 2.11.1: Pseudocode for Reactive Tabu Search.

Input: Iterationmax, Increase, Decrease, ProblemSize

Output: Sbest

Scurr ← ConstructInitialSolution();1

Sbest ← Scurr;2

TabuList ← ∅;3

ProhibitionPeriod ← 1;4

foreach Iterationi ∈ Iterationmax do5

MemoryBasedReaction(Increase, Decrease, ProblemSize);6

CandidateList ← GenerateCandidateNeighborhood(Scurr);7

Scurr ← BestMove(CandidateList);8

TabuList ← Scurrfeature;9

if Cost(Scurr) ≤ Cost(Sbest) then10

Sbest ← Scurr;11

end12

end13

return Sbest;14

Algorithm 2.11.2: Pseudocode for the MemoryBasedReaction func-
tion.
Input: Increase, Decrease, ProblemSize

Output:
if HaveVisitedSolutionBefore(Scurr, VisitedSolutions) then1

Scurrt ← RetrieveLastTimeVisited(VisitedSolutions, Scurr);2

RepetitionInterval ← Iterationi − Scurrt;3

Scurrt ← Iterationi;4

if RepetitionInterval < 2 × ProblemSize then5

RepetitionIntervalavg ← 0.1 × RepetitionInterval + 0.9 ×6

RepetitionIntervalavg;
ProhibitionPeriod ← ProhibitionPeriod × Increase;7

ProhibitionPeriodt ← Iterationi;8

end9

else10

VisitedSolutions ← Scurr;11

Scurrt ← Iterationi;12

end13

if Iterationi − ProhibitionPeriodt > RepetitionIntervalavg then14

ProhibitionPeriod ← Max(1, ProhibitionPeriod × Decrease);15

ProhibitionPeriodt ← Iterationi;16

end17
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Algorithm 2.11.3: Pseudocode for the BestMove function.

Input: ProblemSize

Output: Scurr

CandidateListadmissible ← GetAdmissibleMoves(CandidateList);1

CandidateListtabu ← CandidateList − CandidateListadmissible;2

if Size(CandidateListadmissible) < 2 then3

ProhibitionPeriod ← ProblemSize − 2;4

ProhibitionPeriodt ← Iterationi;5

end6

Scurr ← GetBest(CandidateListadmissible);7

Sbesttabu ← GetBest(CandidateListtabu);8

if Cost(Sbesttabu) < Cost(Sbest) ∧ Cost(Sbesttabu) < Cost(Scurr)9

then

Scurr ← Sbesttabu;10

end11

return Scurr;12

Algorithm 2.11.4: Pseudocode for the IsTabu function.

Input:
Output: Tabu
Tabu ← FALSE;1

Scurrtfeature ← RetrieveTimeFeatureLastUsed(Scurrfeature);2

if Scurrtfeature ≥ Iterationcurr − ProhibitionPeriod then3

Tabu ← TRUE;4

end5

return Tabu;6

� Reactive Tabu Search was designed for discrete domains such as
combinatorial optimization, although has been applied to continuous
function optimization.

� Reactive Tabu Search was proposed to use efficient memory data
structures such as hash tables.

� Reactive Tabu Search was proposed to use an long-term memory to
diversify the search after a threshold of cycle repetitions has been
reached.

� The increase parameter should be greater than one (such as 1.1 or
1.3) and the decrease parameter should be less than one (such as 0.9
or 0.8).
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2.11.5 Code Listing

Listing 2.10 provides an example of the Reactive Tabu Search algorithm
implemented in the Ruby Programming Language. The algorithm is applied
to the Berlin52 instance of the Traveling Salesman Problem (TSP), taken
from the TSPLIB. The problem seeks a permutation of the order to visit
cities (called a tour) that minimizes the total distance traveled. The optimal
tour distance for Berlin52 instance is 7542 units.

The procedure is based on the code listing described by Battiti and
Tecchiolli in [9] with supplements like the IsTabu function from [7]. The
implementation does not use efficient memory data structures such as hash
tables. The algorithm is initialized with a stochastic 2-opt local search,
and the neighborhood is generated as a fixed candidate list of stochastic
2-opt moves. The edges selected for changing in the 2-opt move are stored
as features in the tabu list. The example does not implement the escape
procedure for search diversification.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(perm, cities)

6 distance = 0

7 perm.each_with_index do |c1, i|

8 c2 = (i==perm.size-1) ? perm[0] : perm[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def stochastic_two_opt(parent)

24 perm = Array.new(parent)

25 c1, c2 = rand(perm.size), rand(perm.size)

26 exclude = [c1]

27 exclude << ((c1==0) ? perm.size-1 : c1-1)

28 exclude << ((c1==perm.size-1) ? 0 : c1+1)

29 c2 = rand(perm.size) while exclude.include?(c2)

30 c1, c2 = c2, c1 if c2 < c1

31 perm[c1...c2] = perm[c1...c2].reverse

32 return perm, [[parent[c1-1], parent[c1]], [parent[c2-1], parent[c2]]]

33 end

34

35 def is_tabu?(edge, tabu_list, iter, prohib_period)

36 tabu_list.each do |entry|
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37 if entry[:edge] == edge

38 return true if entry[:iter] >= iter-prohib_period

39 return false

40 end

41 end

42 return false

43 end

44

45 def make_tabu(tabu_list, edge, iter)

46 tabu_list.each do |entry|

47 if entry[:edge] == edge

48 entry[:iter] = iter

49 return entry

50 end

51 end

52 entry = {:edge=>edge, :iter=>iter}

53 tabu_list.push(entry)

54 return entry

55 end

56

57 def to_edge_list(perm)

58 list = []

59 perm.each_with_index do |c1, i|

60 c2 = (i==perm.size-1) ? perm[0] : perm[i+1]

61 c1, c2 = c2, c1 if c1 > c2

62 list << [c1, c2]

63 end

64 return list

65 end

66

67 def equivalent?(el1, el2)

68 el1.each {|e| return false if !el2.include?(e) }

69 return true

70 end

71

72 def generate_candidate(best, cities)

73 candidate = {}

74 candidate[:vector], edges = stochastic_two_opt(best[:vector])

75 candidate[:cost] = cost(candidate[:vector], cities)

76 return candidate, edges

77 end

78

79 def get_candidate_entry(visited_list, permutation)

80 edgeList = to_edge_list(permutation)

81 visited_list.each do |entry|

82 return entry if equivalent?(edgeList, entry[:edgelist])

83 end

84 return nil

85 end

86

87 def store_permutation(visited_list, permutation, iteration)

88 entry = {}

89 entry[:edgelist] = to_edge_list(permutation)

90 entry[:iter] = iteration

91 entry[:visits] = 1

92 visited_list.push(entry)
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93 return entry

94 end

95

96 def sort_neighborhood(candidates, tabu_list, prohib_period, iteration)

97 tabu, admissable = [], []

98 candidates.each do |a|

99 if is_tabu?(a[1][0], tabu_list, iteration, prohib_period) or

100 is_tabu?(a[1][1], tabu_list, iteration, prohib_period)

101 tabu << a

102 else

103 admissable << a

104 end

105 end

106 return [tabu, admissable]

107 end

108

109 def search(cities, max_cand, max_iter, increase, decrease)

110 current = {:vector=>random_permutation(cities)}

111 current[:cost] = cost(current[:vector], cities)

112 best = current

113 tabu_list, prohib_period = [], 1

114 visited_list, avg_size, last_change = [], 1, 0

115 max_iter.times do |iter|

116 candidate_entry = get_candidate_entry(visited_list, current[:vector])

117 if !candidate_entry.nil?

118 repetition_interval = iter - candidate_entry[:iter]

119 candidate_entry[:iter] = iter

120 candidate_entry[:visits] += 1

121 if repetition_interval < 2*(cities.size-1)

122 avg_size = 0.1*(iter-candidate_entry[:iter]) + 0.9*avg_size

123 prohib_period = (prohib_period.to_f * increase)

124 last_change = iter

125 end

126 else

127 store_permutation(visited_list, current[:vector], iter)

128 end

129 if iter-last_change > avg_size

130 prohib_period = [prohib_period*decrease,1].max

131 last_change = iter

132 end

133 candidates = Array.new(max_cand) do |i|

134 generate_candidate(current, cities)

135 end

136 candidates.sort! {|x,y| x.first[:cost] <=> y.first[:cost]}

137 tabu,admis = sort_neighborhood(candidates,tabu_list,prohib_period,iter)

138 if admis.size < 2

139 prohib_period = cities.size-2

140 last_change = iter

141 end

142 current,best_move_edges = (admis.empty?) ? tabu.first : admis.first

143 if !tabu.empty?

144 tf = tabu.first[0]

145 if tf[:cost]<best[:cost] and tf[:cost]<current[:cost]

146 current, best_move_edges = tabu.first

147 end

148 end
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149 best_move_edges.each {|edge| make_tabu(tabu_list, edge, iter)}

150 best = candidates.first[0] if candidates.first[0][:cost] < best[:cost]

151 puts " > it=#{iter}, tenure=#{prohib_period.round}, best=#{best[:cost]}"

152 end

153 return best

154 end

155

156 if __FILE__ == $0

157 # problem configuration

158 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

159 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

160 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

161 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

162 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

163 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

164 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

165 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

166 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

167 # algorithm configuration

168 max_iter = 100

169 max_candidates = 50

170 increase = 1.3

171 decrease = 0.9

172 # execute the algorithm

173 best = search(berlin52, max_candidates, max_iter, increase, decrease)

174 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

175 end

Listing 2.10: Reactive Tabu Search in Ruby

2.11.6 References

Primary Sources

Reactive Tabu Search was proposed by Battiti and Tecchiolli as an extension
to Tabu Search that included an adaptive tabu list size in addition to a
diversification mechanism [7]. The technique also used efficient memory
structures that were based on an earlier work by Battiti and Tecchiolli that
considered a parallel tabu search [6]. Some early application papers by
Battiti and Tecchiolli include a comparison to Simulated Annealing applied
to the Quadratic Assignment Problem [8], benchmarked on instances of
the knapsack problem and N-K models and compared with Repeated Local
Minima Search, Simulated Annealing, and Genetic Algorithms [9], and
training neural networks on an array of problem instances [10].

Learn More

Reactive Tabu Search was abstracted to a form called Reactive Local
Search that considers adaptive methods that learn suitable parameters for
heuristics that manage an embedded local search technique [4, 5]. Under
this abstraction, the Reactive Tabu Search algorithm is a single example
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of the Reactive Local Search principle applied to the Tabu Search. This
framework was further extended to the use of any adaptive machine learning
techniques to adapt the parameters of an algorithm by reacting to algorithm
outcomes online while solving a problem, called Reactive Search [1]. The
best reference for this general framework is the book on Reactive Search
Optimization by Battiti, Brunato, and Mascia [3]. Additionally, the review
chapter by Battiti and Brunato provides a contemporary description [2].
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Chapter 3

Evolutionary Algorithms

3.1 Overview

This chapter describes Evolutionary Algorithms.

3.1.1 Evolution

Evolutionary Algorithms belong to the Evolutionary Computation field of
study concerned with computational methods inspired by the process and
mechanisms of biological evolution. The process of evolution by means
of natural selection (descent with modification) was proposed by Darwin
to account for the variety of life and its suitability (adaptive fit) for its
environment. The mechanisms of evolution describe how evolution actually
takes place through the modification and propagation of genetic material
(proteins). Evolutionary Algorithms are concerned with investigating com-
putational systems that resemble simplified versions of the processes and
mechanisms of evolution toward achieving the effects of these processes
and mechanisms, namely the development of adaptive systems. Additional
subject areas that fall within the realm of Evolutionary Computation are
algorithms that seek to exploit the properties from the related fields of
Population Genetics, Population Ecology, Coevolutionary Biology, and
Developmental Biology.

3.1.2 References

Evolutionary Algorithms share properties of adaptation through an iterative
process that accumulates and amplifies beneficial variation through trial
and error. Candidate solutions represent members of a virtual population
striving to survive in an environment defined by a problem specific objective
function. In each case, the evolutionary process refines the adaptive fit of
the population of candidate solutions in the environment, typically using

87
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surrogates for the mechanisms of evolution such as genetic recombination
and mutation.

There are many excellent texts on the theory of evolution, although
Darwin’s original source can be an interesting and surprisingly enjoyable
read [5]. Huxley’s book defined the modern synthesis in evolutionary biology
that combined Darwin’s natural selection with Mendel’s genetic mechanisms
[25], although any good textbook on evolution will suffice (such as Futuyma’s
“Evolution” [13]). Popular science books on evolution are an easy place to
start, such as Dawkins’ “The Selfish Gene” that presents a gene-centric
perspective on evolution [6], and Dennett’s “Darwin’s Dangerous Idea” that
considers the algorithmic properties of the process [8].

Goldberg’s classic text is still a valuable resource for the Genetic Algo-
rithm [14], and Holland’s text is interesting for those looking to learn about
the research into adaptive systems that became the Genetic Algorithm
[23]. Additionally, the seminal work by Koza should be considered for
those interested in Genetic Programming [30], and Schwefel’s seminal work
should be considered for those with an interest in Evolution Strategies [34].
For an in-depth review of the history of research into the use of simulated
evolutionary processed for problem solving, see Fogel [12] For a rounded and
modern review of the field of Evolutionary Computation, Bäck, Fogel, and
Michalewicz’s two volumes of “Evolutionary Computation” are an excellent
resource covering the major techniques, theory, and application specific
concerns [2, 3]. For some additional modern books on the unified field of
Evolutionary Computation and Evolutionary Algorithms, see De Jong [26],
a recent edition of Fogel [11], and Eiben and Smith [9].

3.1.3 Extensions

There are many other algorithms and classes of algorithm that were not
described from the field of Evolutionary Computation, not limited to:

� Distributed Evolutionary Computation: that are designed to
partition a population across computer networks or computational
units such as the Distributed or ‘Island Population’ Genetic Algorithm
[4, 35] and Diffusion Genetic Algorithms (also known as Cellular
Genetic Algorithms) [1].

� Niching Genetic Algorithms: that form groups or sub-populations
automatically within a population such as the Deterministic Crowding
Genetic Algorithm [31, 32], Restricted Tournament Selection [20, 21],
and Fitness Sharing Genetic Algorithm [7, 19].

� Evolutionary Multiple Objective Optimization Algorithms:
such as Vector-Evaluated Genetic Algorithm (VEGA) [33], Pareto
Archived Evolution Strategy (PAES) [28, 29], and the Niched Pareto
Genetic Algorithm (NPGA) [24].
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� Classical Techniques: such as GENITOR [36], and the CHC Ge-
netic Algorithm [10].

� Competent Genetic Algorithms: (so-called [15]) such as the
Messy Genetic Algorithm [17, 18], Fast Messy Genetic Algorithm
[16], Gene Expression Messy Genetic Algorithm [27], and the Linkage-
Learning Genetic Algorithm [22].
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3.2 Genetic Algorithm

Genetic Algorithm, GA, Simple Genetic Algorithm, SGA, Canonical Genetic
Algorithm, CGA.

3.2.1 Taxonomy

The Genetic Algorithm is an Adaptive Strategy and a Global Optimization
technique. It is an Evolutionary Algorithm and belongs to the broader
study of Evolutionary Computation. The Genetic Algorithm is a sibling of
other Evolutionary Algorithms such as Genetic Programming (Section 3.3),
Evolution Strategies (Section 3.4), Evolutionary Programming (Section 3.6),
and Learning Classifier Systems (Section 3.9). The Genetic Algorithm is a
parent of a large number of variant techniques and sub-fields too numerous
to list.

3.2.2 Inspiration

The Genetic Algorithm is inspired by population genetics (including heredity
and gene frequencies), and evolution at the population level, as well as the
Mendelian understanding of the structure (such as chromosomes, genes,
alleles) and mechanisms (such as recombination and mutation). This is the
so-called new or modern synthesis of evolutionary biology.

3.2.3 Metaphor

Individuals of a population contribute their genetic material (called the
genotype) proportional to their suitability of their expressed genome (called
their phenotype) to their environment, in the form of offspring. The next
generation is created through a process of mating that involves recombination
of two individuals genomes in the population with the introduction of random
copying errors (called mutation). This iterative process may result in an
improved adaptive-fit between the phenotypes of individuals in a population
and the environment.

3.2.4 Strategy

The objective of the Genetic Algorithm is to maximize the payoff of candidate
solutions in the population against a cost function from the problem domain.
The strategy for the Genetic Algorithm is to repeatedly employ surrogates
for the recombination and mutation genetic mechanisms on the population
of candidate solutions, where the cost function (also known as objective or
fitness function) applied to a decoded representation of a candidate governs
the probabilistic contributions a given candidate solution can make to the
subsequent generation of candidate solutions.
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3.2.5 Procedure

Algorithm 3.2.1 provides a pseudocode listing of the Genetic Algorithm for
minimizing a cost function.

Algorithm 3.2.1: Pseudocode for the Genetic Algorithm.

Input: Populationsize, Problemsize, Pcrossover, Pmutation

Output: Sbest

Population ← InitializePopulation(Populationsize,1

Problemsize);
EvaluatePopulation(Population);2

Sbest ← GetBestSolution(Population);3

while ¬StopCondition() do4

Parents ← SelectParents(Population, Populationsize);5

Children ← ∅;6

foreach Parent1, Parent2 ∈ Parents do7

Child1, Child2 ← Crossover(Parent1, Parent2, Pcrossover);8

Children ← Mutate(Child1, Pmutation);9

Children ← Mutate(Child2, Pmutation);10

end11

EvaluatePopulation(Children);12

Sbest ← GetBestSolution(Children);13

Population ← Replace(Population, Children);14

end15

return Sbest;16

3.2.6 Heuristics

� Binary strings (referred to as ‘bitstrings’) are the classical represen-
tation as they can be decoded to almost any desired representation.
Real-valued and integer variables can be decoded using the binary
coded decimal method, one’s or two’s complement methods, or the
gray code method, the latter of which is generally preferred.

� Problem specific representations and customized genetic operators
should be adopted, incorporating as much prior information about
the problem domain as possible.

� The size of the population must be large enough to provide sufficient
coverage of the domain and mixing of the useful sub-components of
the solution [7].

� The Genetic Algorithm is classically configured with a high probability
of recombination (such as 95%-99% of the selected population) and
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a low probability of mutation (such as 1
L

where L is the number of
components in a solution) [1, 18].

� The fitness-proportionate selection of candidate solutions to contribute
to the next generation should be neither too greedy (to avoid the
takeover of fitter candidate solutions) nor too random.

3.2.7 Code Listing

Listing 3.1 provides an example of the Genetic Algorithm implemented in the
Ruby Programming Language. The demonstration problem is a maximizing
binary optimization problem called OneMax that seeks a binary string of
unity (all ‘1’ bits). The objective function provides only an indication of
the number of correct bits in a candidate string, not the positions of the
correct bits.

The Genetic Algorithm is implemented with a conservative configuration
including binary tournament selection for the selection operator, one-point
crossover for the recombination operator, and point mutations for the
mutation operator.

1 def onemax(bitstring)

2 sum = 0

3 bitstring.size.times {|i| sum+=1 if bitstring[i].chr=='1'}

4 return sum

5 end

6

7 def random_bitstring(num_bits)

8 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

9 end

10

11 def binary_tournament(pop)

12 i, j = rand(pop.size), rand(pop.size)

13 j = rand(pop.size) while j==i

14 return (pop[i][:fitness] > pop[j][:fitness]) ? pop[i] : pop[j]

15 end

16

17 def point_mutation(bitstring, rate=1.0/bitstring.size)

18 child = ""

19 bitstring.size.times do |i|

20 bit = bitstring[i].chr

21 child << ((rand()<rate) ? ((bit=='1') ? "0" : "1") : bit)

22 end

23 return child

24 end

25

26 def crossover(parent1, parent2, rate)

27 return ""+parent1 if rand()>=rate

28 point = 1 + rand(parent1.size-2)

29 return parent1[0...point]+parent2[point...(parent1.size)]

30 end

31

32 def reproduce(selected, pop_size, p_cross, p_mutation)
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33 children = []

34 selected.each_with_index do |p1, i|

35 p2 = (i.modulo(2)==0) ? selected[i+1] : selected[i-1]

36 p2 = selected[0] if i == selected.size-1

37 child = {}

38 child[:bitstring] = crossover(p1[:bitstring], p2[:bitstring], p_cross)

39 child[:bitstring] = point_mutation(child[:bitstring], p_mutation)

40 children << child

41 break if children.size >= pop_size

42 end

43 return children

44 end

45

46 def search(max_gens, num_bits, pop_size, p_crossover, p_mutation)

47 population = Array.new(pop_size) do |i|

48 {:bitstring=>random_bitstring(num_bits)}

49 end

50 population.each{|c| c[:fitness] = onemax(c[:bitstring])}

51 best = population.sort{|x,y| y[:fitness] <=> x[:fitness]}.first

52 max_gens.times do |gen|

53 selected = Array.new(pop_size){|i| binary_tournament(population)}

54 children = reproduce(selected, pop_size, p_crossover, p_mutation)

55 children.each{|c| c[:fitness] = onemax(c[:bitstring])}

56 children.sort!{|x,y| y[:fitness] <=> x[:fitness]}

57 best = children.first if children.first[:fitness] >= best[:fitness]

58 population = children

59 puts " > gen #{gen}, best: #{best[:fitness]}, #{best[:bitstring]}"

60 break if best[:fitness] == num_bits

61 end

62 return best

63 end

64

65 if __FILE__ == $0

66 # problem configuration

67 num_bits = 64

68 # algorithm configuration

69 max_gens = 100

70 pop_size = 100

71 p_crossover = 0.98

72 p_mutation = 1.0/num_bits

73 # execute the algorithm

74 best = search(max_gens, num_bits, pop_size, p_crossover, p_mutation)

75 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:bitstring]}"

76 end

Listing 3.1: Genetic Algorithm in Ruby

3.2.8 References

Primary Sources

Holland is the grandfather of the field that became Genetic Algorithms.
Holland investigated adaptive systems in the late 1960s proposing an adap-
tive system formalism and adaptive strategies referred to as ‘adaptive plans’
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[8–10]. Holland’s theoretical framework was investigated and elaborated
by his Ph.D. students at the University of Michigan. Rosenberg investi-
gated a chemical and molecular model of a biological inspired adaptive plan
[19]. Bagley investigated meta-environments and a genetic adaptive plan
referred to as a genetic algorithm applied to a simple game called hexapawn
[2]. Cavicchio further elaborated the genetic adaptive plan by proposing
numerous variations, referring to some as ‘reproductive plans’ [15].

Other important contributions were made by Frantz who investigated
what were referred to as genetic algorithms for search [3], and Hollstien who
investigated genetic plans for adaptive control and function optimization [12].
De Jong performed a seminal investigation of the genetic adaptive model
(genetic plans) applied to continuous function optimization and his suite of
test problems adopted are still commonly used [13]. Holland wrote the the
seminal book on his research focusing on the proposed adaptive systems
formalism, the reproductive and genetic adaptive plans, and provided a
theoretical framework for the mechanisms used and explanation for the
capabilities of what would become genetic algorithms [11].

Learn More

The field of genetic algorithms is very large, resulting in large numbers of
variations on the canonical technique. Goldberg provides a classical overview
of the field in a review article [5], as does Mitchell [16]. Whitley describes
a classical tutorial for the Genetic Algorithm covering both practical and
theoretical concerns [20].

The algorithm is highly-modular and a sub-field exists to study each sub-
process, specifically: selection, recombination, mutation, and representation.
The Genetic Algorithm is most commonly used as an optimization technique,
although it should also be considered a general adaptive strategy [14]. The
schema theorem is a classical explanation for the power of the Genetic
Algorithm proposed by Holland [11], and investigated by Goldberg under
the name of the building block hypothesis [4].

The classical book on genetic algorithms as an optimization and machine
learning technique was written by Goldberg and provides an in-depth review
and practical study of the approach [4]. Mitchell provides a contemporary
reference text introducing the technique and the field [17]. Finally, Goldberg
provides a modern study of the field, the lessons learned, and reviews the
broader toolset of optimization algorithms that the field has produced [6].
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3.3 Genetic Programming

Genetic Programming, GP.

3.3.1 Taxonomy

The Genetic Programming algorithm is an example of an Evolutionary
Algorithm and belongs to the field of Evolutionary Computation and more
broadly Computational Intelligence and Biologically Inspired Computation.
The Genetic Programming algorithm is a sibling to other Evolutionary
Algorithms such as the Genetic Algorithm (Section 3.2), Evolution Strate-
gies (Section 3.4), Evolutionary Programming (Section 3.6), and Learning
Classifier Systems (Section 3.9). Technically, the Genetic Programming
algorithm is an extension of the Genetic Algorithm. The Genetic Algorithm
is a parent to a host of variations and extensions.

3.3.2 Inspiration

The Genetic Programming algorithm is inspired by population genetics
(including heredity and gene frequencies), and evolution at the population
level, as well as the Mendelian understanding of the structure (such as
chromosomes, genes, alleles) and mechanisms (such as recombination and
mutation). This is the so-called new or modern synthesis of evolutionary
biology.

3.3.3 Metaphor

Individuals of a population contribute their genetic material (called the
genotype) proportional to their suitability of their expressed genome (called
their phenotype) to their environment. The next generation is created
through a process of mating that involves genetic operators such as recom-
bination of two individuals genomes in the population and the introduction
of random copying errors (called mutation). This iterative process may
result in an improved adaptive-fit between the phenotypes of individuals in
a population and the environment.

Programs may be evolved and used in a secondary adaptive process,
where an assessment of candidates at the end of that secondary adaptive
process is used for differential reproductive success in the first evolution-
ary process. This system may be understood as the inter-dependencies
experienced in evolutionary development where evolution operates upon
an embryo that in turn develops into an individual in an environment that
eventually may reproduce.
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3.3.4 Strategy

The objective of the Genetic Programming algorithm is to use induction to
devise a computer program. This is achieved by using evolutionary operators
on candidate programs with a tree structure to improve the adaptive fit
between the population of candidate programs and an objective function.
An assessment of a candidate solution involves its execution.

3.3.5 Procedure

Algorithm 3.3.1 provides a pseudocode listing of the Genetic Programming
algorithm for minimizing a cost function, based on Koza and Poli’s tutorial
[9].

The Genetic Program uses LISP-like symbolic expressions called S-
expressions that represent the graph of a program with function nodes and
terminal nodes. While the algorithm is running, the programs are treated
like data, and when they are evaluated they are executed. The traversal of
a program graph is always depth first, and functions must always return a
value.

3.3.6 Heuristics

� The Genetic Programming algorithm was designed for inductive auto-
matic programming and is well suited to symbolic regression, controller
design, and machine learning tasks under the broader name of function
approximation.

� Traditionally Lisp symbolic expressions are evolved and evaluated
in a virtual machine, although the approach has been applied with
compiled programming languages.

� The evaluation (fitness assignment) of a candidate solution typically
takes the structure of the program into account, rewarding parsimony.

� The selection process should be balanced between random selection and
greedy selection to bias the search towards fitter candidate solutions
(exploitation), whilst promoting useful diversity into the population
(exploration).

� A program may respond to zero or more input values and may produce
one or more outputs.

� All functions used in the function node set must return a usable result.
For example, the division function must return a sensible value (such
as zero or one) when a division by zero occurs.

� All genetic operations ensure (or should ensure) that syntactically valid
and executable programs are produced as a result of their application.
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Algorithm 3.3.1: Pseudocode for Genetic Programming.

Input: Populationsize, nodesfunc, nodesterm, Pcrossover, Pmutation,
Preproduction, Palteration

Output: Sbest

Population ← InitializePopulation(Populationsize, nodesfunc,1

nodesterm);
EvaluatePopulation(Population);2

Sbest ← GetBestSolution(Population);3

while ¬StopCondition() do4

Children ← ∅;5

while Size(Children) < Populationsize do6

Operator ← SelectGeneticOperator(Pcrossover, Pmutation,7

Preproduction, Palteration);
if Operator ≡ CrossoverOperator then8

Parent1, Parent2 ← SelectParents(Population,9

Populationsize);
Child1, Child2 ← Crossover(Parent1, Parent2);10

Children ← Child1;11

Children ← Child2;12

else if Operator ≡ MutationOperator then13

Parent1 ← SelectParents(Population, Populationsize);14

Child1 ← Mutate(Parent1);15

Children ← Child1;16

else if Operator ≡ ReproductionOperator then17

Parent1 ← SelectParents(Population, Populationsize);18

Child1 ← Reproduce(Parent1);19

Children ← Child1;20

else if Operator ≡ AlterationOperator then21

Parent1 ← SelectParents(Population, Populationsize);22

Child1 ← AlterArchitecture(Parent1);23

Children ← Child1;24

end25

end26

EvaluatePopulation(Children);27

Sbest ← GetBestSolution(Children, Sbest);28

Population ← Children;29

end30

return Sbest;31
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� The Genetic Programming algorithm is commonly configured with a
high-probability of crossover (≥ 90%) and a low-probability of muta-
tion (≤ 1%). Other operators such as reproduction and architecture
alterations are used with moderate-level probabilities and fill in the
probabilistic gap.

� Architecture altering operations are not limited to the duplication
and deletion of sub-structures of a given program.

� The crossover genetic operator in the algorithm is commonly configured
to select a function as a the cross-point with a high-probability (≥ 90%)
and low-probability of selecting a terminal as a cross-point (≤ 10%).

� The function set may also include control structures such as conditional
statements and loop constructs.

� The Genetic Programing algorithm can be realized as a stack-based
virtual machine as opposed to a call graph [11].

� The Genetic Programming algorithm can make use of Automatically
Defined Functions (ADFs) that are sub-graphs and are promoted to
the status of functions for reuse and are co-evolved with the programs.

� The genetic operators employed during reproduction in the algorithm
may be considered transformation programs for candidate solutions
and may themselves be co-evolved in the algorithm [1].

3.3.7 Code Listing

Listing 3.2 provides an example of the Genetic Programming algorithm
implemented in the Ruby Programming Language based on Koza and Poli’s
tutorial [9].

The demonstration problem is an instance of a symbolic regression, where
a function must be devised to match a set of observations. In this case the
target function is a quadratic polynomial x2 + x+ 1 where x ∈ [−1, 1]. The
observations are generated directly from the target function without noise
for the purposes of this example. In practical problems, if one knew and
had access to the target function then the genetic program would not be
required.

The algorithm is configured to search for a program with the function
set {+,−,×,÷} and the terminal set {X,R}, where X is the input value,
and R is a static random variable generated for a program X ∈ [−5, 5]. A
division by zero returns a value of one. The fitness of a candidate solution is
calculated by evaluating the program on range of random input values and
calculating the Root Mean Squared Error (RMSE). The algorithm is config-
ured with a 90% probability of crossover, 8% probability of reproduction
(copying), and a 2% probability of mutation. For brevity, the algorithm
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does not implement the architecture altering genetic operation and does not
bias crossover points towards functions over terminals.

1 def rand_in_bounds(min, max)

2 return min + (max-min)*rand()

3 end

4

5 def print_program(node)

6 return node if !node.kind_of?(Array)

7 return "(#{node[0]} #{print_program(node[1])} #{print_program(node[2])})"

8 end

9

10 def eval_program(node, map)

11 if !node.kind_of?(Array)

12 return map[node].to_f if !map[node].nil?

13 return node.to_f

14 end

15 arg1, arg2 = eval_program(node[1], map), eval_program(node[2], map)

16 return 0 if node[0] === :/ and arg2 == 0.0

17 return arg1.__send__(node[0], arg2)

18 end

19

20 def generate_random_program(max, funcs, terms, depth=0)

21 if depth==max-1 or (depth>1 and rand()<0.1)

22 t = terms[rand(terms.size)]

23 return ((t=='R') ? rand_in_bounds(-5.0, +5.0) : t)

24 end

25 depth += 1

26 arg1 = generate_random_program(max, funcs, terms, depth)

27 arg2 = generate_random_program(max, funcs, terms, depth)

28 return [funcs[rand(funcs.size)], arg1, arg2]

29 end

30

31 def count_nodes(node)

32 return 1 if !node.kind_of?(Array)

33 a1 = count_nodes(node[1])

34 a2 = count_nodes(node[2])

35 return a1+a2+1

36 end

37

38 def target_function(input)

39 return input**2 + input + 1

40 end

41

42 def fitness(program, num_trials=20)

43 sum_error = 0.0

44 num_trials.times do |i|

45 input = rand_in_bounds(-1.0, 1.0)

46 error = eval_program(program, {'X'=>input}) - target_function(input)

47 sum_error += error.abs

48 end

49 return sum_error / num_trials.to_f

50 end

51

52 def tournament_selection(pop, bouts)

53 selected = Array.new(bouts){pop[rand(pop.size)]}
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54 selected.sort!{|x,y| x[:fitness]<=>y[:fitness]}

55 return selected.first

56 end

57

58 def replace_node(node, replacement, node_num, cur_node=0)

59 return [replacement,(cur_node+1)] if cur_node == node_num

60 cur_node += 1

61 return [node,cur_node] if !node.kind_of?(Array)

62 a1, cur_node = replace_node(node[1], replacement, node_num, cur_node)

63 a2, cur_node = replace_node(node[2], replacement, node_num, cur_node)

64 return [[node[0], a1, a2], cur_node]

65 end

66

67 def copy_program(node)

68 return node if !node.kind_of?(Array)

69 return [node[0], copy_program(node[1]), copy_program(node[2])]

70 end

71

72 def get_node(node, node_num, current_node=0)

73 return node,(current_node+1) if current_node == node_num

74 current_node += 1

75 return nil,current_node if !node.kind_of?(Array)

76 a1, current_node = get_node(node[1], node_num, current_node)

77 return a1,current_node if !a1.nil?

78 a2, current_node = get_node(node[2], node_num, current_node)

79 return a2,current_node if !a2.nil?

80 return nil,current_node

81 end

82

83 def prune(node, max_depth, terms, depth=0)

84 if depth == max_depth-1

85 t = terms[rand(terms.size)]

86 return ((t=='R') ? rand_in_bounds(-5.0, +5.0) : t)

87 end

88 depth += 1

89 return node if !node.kind_of?(Array)

90 a1 = prune(node[1], max_depth, terms, depth)

91 a2 = prune(node[2], max_depth, terms, depth)

92 return [node[0], a1, a2]

93 end

94

95 def crossover(parent1, parent2, max_depth, terms)

96 pt1, pt2 = rand(count_nodes(parent1)-2)+1, rand(count_nodes(parent2)-2)+1

97 tree1, c1 = get_node(parent1, pt1)

98 tree2, c2 = get_node(parent2, pt2)

99 child1, c1 = replace_node(parent1, copy_program(tree2), pt1)

100 child1 = prune(child1, max_depth, terms)

101 child2, c2 = replace_node(parent2, copy_program(tree1), pt2)

102 child2 = prune(child2, max_depth, terms)

103 return [child1, child2]

104 end

105

106 def mutation(parent, max_depth, functs, terms)

107 random_tree = generate_random_program(max_depth/2, functs, terms)

108 point = rand(count_nodes(parent))

109 child, count = replace_node(parent, random_tree, point)
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110 child = prune(child, max_depth, terms)

111 return child

112 end

113

114 def search(max_gens, pop_size, max_depth, bouts, p_repro, p_cross, p_mut,

functs, terms)

115 population = Array.new(pop_size) do |i|

116 {:prog=>generate_random_program(max_depth, functs, terms)}

117 end

118 population.each{|c| c[:fitness] = fitness(c[:prog])}

119 best = population.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

120 max_gens.times do |gen|

121 children = []

122 while children.size < pop_size

123 operation = rand()

124 p1 = tournament_selection(population, bouts)

125 c1 = {}

126 if operation < p_repro

127 c1[:prog] = copy_program(p1[:prog])

128 elsif operation < p_repro+p_cross

129 p2 = tournament_selection(population, bouts)

130 c2 = {}

131 c1[:prog],c2[:prog] = crossover(p1[:prog], p2[:prog], max_depth,

terms)

132 children << c2

133 elsif operation < p_repro+p_cross+p_mut

134 c1[:prog] = mutation(p1[:prog], max_depth, functs, terms)

135 end

136 children << c1 if children.size < pop_size

137 end

138 children.each{|c| c[:fitness] = fitness(c[:prog])}

139 population = children

140 population.sort!{|x,y| x[:fitness] <=> y[:fitness]}

141 best = population.first if population.first[:fitness] <= best[:fitness]

142 puts " > gen #{gen}, fitness=#{best[:fitness]}"

143 break if best[:fitness] == 0

144 end

145 return best

146 end

147

148 if __FILE__ == $0

149 # problem configuration

150 terms = ['X', 'R']

151 functs = [:+, :-, :*, :/]

152 # algorithm configuration

153 max_gens = 100

154 max_depth = 7

155 pop_size = 100

156 bouts = 5

157 p_repro = 0.08

158 p_cross = 0.90

159 p_mut = 0.02

160 # execute the algorithm

161 best = search(max_gens, pop_size, max_depth, bouts, p_repro, p_cross,

p_mut, functs, terms)

162 puts "done! Solution: f=#{best[:fitness]}, #{print_program(best[:prog])}"
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163 end

Listing 3.2: Genetic Programming in Ruby

3.3.8 References

Primary Sources

An early work by Cramer involved the study of a Genetic Algorithm using an
expression tree structure for representing computer programs for primitive
mathematical operations [3]. Koza is credited with the development of
the field of Genetic Programming. An early paper by Koza referred to
his hierarchical genetic algorithms as an extension to the simple genetic
algorithm that use symbolic expressions (S-expressions) as a representation
and were applied to a range of induction-style problems [4]. The seminal
reference for the field is Koza’s 1992 book on Genetic Programming [5].

Learn More

The field of Genetic Programming is vast, including many books, dedicated
conferences and thousands of publications. Koza is generally credited with
the development and popularizing of the field, publishing a large number of
books and papers himself. Koza provides a practical introduction to the
field as a tutorial and provides recent overview of the broader field and
usage of the technique [9].

In addition his the seminal 1992 book, Koza has released three more
volumes in the series including volume II on Automatically Defined Functions
(ADFs) [6], volume III that considered the Genetic Programming Problem
Solver (GPPS) for automatically defining the function set and program
structure for a given problem [7], and volume IV that focuses on the human
competitive results the technique is able to achieve in a routine manner
[8]. All books are rich with targeted and practical demonstration problem
instances.

Some additional excellent books include a text by Banzhaf et al. that
provides an introduction to the field [2], Langdon and Poli’s detailed look
at the technique [10], and Poli, Langdon, and McPhee’s contemporary and
practical field guide to Genetic Programming [12].
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3.4 Evolution Strategies

Evolution Strategies, Evolution Strategy, Evolutionary Strategies, ES.

3.4.1 Taxonomy

Evolution Strategies is a global optimization algorithm and is an instance
of an Evolutionary Algorithm from the field of Evolutionary Computa-
tion. Evolution Strategies is a sibling technique to other Evolutionary
Algorithms such as Genetic Algorithms (Section 3.2), Genetic Programming
(Section 3.3), Learning Classifier Systems (Section 3.9), and Evolutionary
Programming (Section 3.6). A popular descendant of the Evolution Strate-
gies algorithm is the Covariance Matrix Adaptation Evolution Strategies
(CMA-ES).

3.4.2 Inspiration

Evolution Strategies is inspired by the theory of evolution by means of
natural selection. Specifically, the technique is inspired by macro-level
or the species-level process of evolution (phenotype, hereditary, variation)
and is not concerned with the genetic mechanisms of evolution (genome,
chromosomes, genes, alleles).

3.4.3 Strategy

The objective of the Evolution Strategies algorithm is to maximize the
suitability of collection of candidate solutions in the context of an ob-
jective function from a domain. The objective was classically achieved
through the adoption of dynamic variation, a surrogate for descent with
modification, where the amount of variation was adapted dynamically with
performance-based heuristics. Contemporary approaches co-adapt param-
eters that control the amount and bias of variation with the candidate
solutions.

3.4.4 Procedure

Instances of Evolution Strategies algorithms may be concisely described with
a custom terminology in the form (µ, λ)−ES, where µ is number of candidate
solutions in the parent generation, and λ is the number of candidate solutions
generated from the parent generation. In this configuration, the best µ are
kept if λ > µ, where λ must be great or equal to µ. In addition to the
so-called comma-selection Evolution Strategies algorithm, a plus-selection
variation may be defined (µ+λ)−ES, where the best members of the union
of the µ and λ generations compete based on objective fitness for a position
in the next generation. The simplest configuration is the (1 + 1) − ES,
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which is a type of greedy hill climbing algorithm. Algorithm 3.4.1 provides
a pseudocode listing of the (µ, λ) − ES algorithm for minimizing a cost
function. The algorithm shows the adaptation of candidate solutions that co-
adapt their own strategy parameters that influence the amount of mutation
applied to a candidate solutions descendants.

Algorithm 3.4.1: Pseudocode for (µ, λ) Evolution Strategies.

Input: µ, λ, ProblemSize

Output: Sbest

Population ← InitializePopulation(µ, ProblemSize);1

EvaluatePopulation(Population);2

Sbest ← GetBest(Population, 1);3

while ¬StopCondition() do4

Children ← ∅;5

for i = 0 to λ do6

Parenti ← GetParent(Population, i);7

Si ← ∅;8

Siproblem ← Mutate(Piproblem, Pistrategy);9

Sistrategy ← Mutate(Pistrategy);10

Children ← Si;11

end12

EvaluatePopulation(Children);13

Sbest ← GetBest(Children + Sbest, 1);14

Population ← SelectBest(Population, Children, µ);15

end16

return Sbest;17

3.4.5 Heuristics

� Evolution Strategies uses problem specific representations, such as
real values for continuous function optimization.

� The algorithm is commonly configured such that 1 ≤ µ ≤ λ.

� The ratio of µ to λ influences the amount of selection pressure (greed-
iness) exerted by the algorithm.

� A contemporary update to the algorithms notation includes a ρ as
(µ/ρ, λ)−ES that specifies the number of parents that will contribute
to each new candidate solution using a recombination operator.

� A classical rule used to govern the amount of mutation (standard
deviation used in mutation for continuous function optimization) was
the 1

5 -rule, where the ratio of successful mutations should be 1
5 of all
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mutations. If it is greater the variance is increased, otherwise if the
ratio is is less, the variance is decreased.

� The comma-selection variation of the algorithm can be good for dy-
namic problem instances given its capability for continued exploration
of the search space, whereas the plus-selection variation can be good
for refinement and convergence.

3.4.6 Code Listing

Listing 3.3 provides an example of the Evolution Strategies algorithm
implemented in the Ruby Programming Language. The demonstration
problem is an instance of a continuous function optimization that seeks
min f(x) where f =

∑n

i=1 x
2
i , −5.0 ≤ xi ≤ 5.0 and n = 2. The optimal

solution for this basin function is (v0, . . . , vn−1) = 0.0. The algorithm is a
implementation of Evolution Strategies based on simple version described
by Bäck and Schwefel [2], which was also used as the basis of a detailed
empirical study [11]. The algorithm is an (30+20)−ES that adapts both the
problem and strategy (standard deviations) variables. More contemporary
implementations may modify the strategy variables differently, and include
an additional set of adapted strategy parameters to influence the direction
of mutation (see [7] for a concise description).

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def random_gaussian(mean=0.0, stdev=1.0)

12 u1 = u2 = w = 0

13 begin

14 u1 = 2 * rand() - 1

15 u2 = 2 * rand() - 1

16 w = u1 * u1 + u2 * u2

17 end while w >= 1

18 w = Math.sqrt((-2.0 * Math.log(w)) / w)

19 return mean + (u2 * w) * stdev

20 end

21

22 def mutate_problem(vector, stdevs, search_space)

23 child = Array(vector.size)

24 vector.each_with_index do |v, i|

25 child[i] = v + stdevs[i] * random_gaussian()

26 child[i] = search_space[i][0] if child[i] < search_space[i][0]

27 child[i] = search_space[i][1] if child[i] > search_space[i][1]

28 end

29 return child
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30 end

31

32 def mutate_strategy(stdevs)

33 tau = Math.sqrt(2.0*stdevs.size.to_f)**-1.0

34 tau_p = Math.sqrt(2.0*Math.sqrt(stdevs.size.to_f))**-1.0

35 child = Array.new(stdevs.size) do |i|

36 stdevs[i] * Math.exp(tau_p*random_gaussian() + tau*random_gaussian())

37 end

38 return child

39 end

40

41 def mutate(par, minmax)

42 child = {}

43 child[:vector] = mutate_problem(par[:vector], par[:strategy], minmax)

44 child[:strategy] = mutate_strategy(par[:strategy])

45 return child

46 end

47

48 def init_population(minmax, pop_size)

49 strategy = Array.new(minmax.size) do |i|

50 [0, (minmax[i][1]-minmax[i][0]) * 0.05]

51 end

52 pop = Array.new(pop_size, {})

53 pop.each_index do |i|

54 pop[i][:vector] = random_vector(minmax)

55 pop[i][:strategy] = random_vector(strategy)

56 end

57 pop.each{|c| c[:fitness] = objective_function(c[:vector])}

58 return pop

59 end

60

61 def search(max_gens, search_space, pop_size, num_children)

62 population = init_population(search_space, pop_size)

63 best = population.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

64 max_gens.times do |gen|

65 children = Array.new(num_children) do |i|

66 mutate(population[i], search_space)

67 end

68 children.each{|c| c[:fitness] = objective_function(c[:vector])}

69 union = children+population

70 union.sort!{|x,y| x[:fitness] <=> y[:fitness]}

71 best = union.first if union.first[:fitness] < best[:fitness]

72 population = union.first(pop_size)

73 puts " > gen #{gen}, fitness=#{best[:fitness]}"

74 end

75 return best

76 end

77

78 if __FILE__ == $0

79 # problem configuration

80 problem_size = 2

81 search_space = Array.new(problem_size) {|i| [-5, +5]}

82 # algorithm configuration

83 max_gens = 100

84 pop_size = 30

85 num_children = 20
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86 # execute the algorithm

87 best = search(max_gens, search_space, pop_size, num_children)

88 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:vector].inspect}"

89 end

Listing 3.3: Evolution Strategies in Ruby

3.4.7 References

Primary Sources

Evolution Strategies was developed by three students (Bienert, Rechenberg,
Schwefel) at the Technical University in Berlin in 1964 in an effort to
robotically optimize an aerodynamics design problem. The seminal work
in Evolution Strategies was Rechenberg’s PhD thesis [5] that was later
published as a book [6], both in German. Many technical reports and
papers were published by Schwefel and Rechenberg, although the seminal
paper published in English was by Klockgether and Schwefel on the two–
phase nozzle design problem [4].

Learn More

Schwefel published his PhD dissertation [8] not long after Rechenberg, which
was also published as a book [9], both in German. Schwefel’s book was
later translated into English and represents a classical reference for the
technique [10]. Bäck et al. provide a classical introduction to the technique,
covering the history, development of the algorithm, and the steps that lead
it to where it was in 1991 [1]. Beyer and Schwefel provide a contemporary
introduction to the field that includes a detailed history of the approach,
the developments and improvements since its inception, and an overview of
the theoretical findings that have been made [3].
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3.5 Differential Evolution

Differential Evolution, DE.

3.5.1 Taxonomy

Differential Evolution is a Stochastic Direct Search and Global Optimiza-
tion algorithm, and is an instance of an Evolutionary Algorithm from the
field of Evolutionary Computation. It is related to sibling Evolutionary
Algorithms such as the Genetic Algorithm (Section 3.2), Evolutionary Pro-
gramming (Section 3.6), and Evolution Strategies (Section 3.4), and has
some similarities with Particle Swarm Optimization (Section 6.2).

3.5.2 Strategy

The Differential Evolution algorithm involves maintaining a population of
candidate solutions subjected to iterations of recombination, evaluation,
and selection. The recombination approach involves the creation of new
candidate solution components based on the weighted difference between
two randomly selected population members added to a third population
member. This perturbs population members relative to the spread of the
broader population. In conjunction with selection, the perturbation effect
self-organizes the sampling of the problem space, bounding it to known
areas of interest.

3.5.3 Procedure

Differential Evolution has a specialized nomenclature that describes the
adopted configuration. This takes the form of DE/x/y/z, where x represents
the solution to be perturbed (such a random or best). The y signifies the
number of difference vectors used in the perturbation of x, where a difference
vectors is the difference between two randomly selected although distinct
members of the population. Finally, z signifies the recombination operator
performed such as bin for binomial and exp for exponential.

Algorithm 3.5.1 provides a pseudocode listing of the Differential Evo-
lution algorithm for minimizing a cost function, specifically a DE/rand/-
1/bin configuration. Algorithm 3.5.2 provides a pseudocode listing of the
NewSample function from the Differential Evolution algorithm.

3.5.4 Heuristics

� Differential evolution was designed for nonlinear, non-differentiable
continuous function optimization.

� The weighting factor F ∈ [0, 2] controls the amplification of differential
variation, a value of 0.8 is suggested.
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Algorithm 3.5.1: Pseudocode for Differential Evolution.

Input: Populationsize, Problemsize, Weightingfactor,
Crossoverrate

Output: Sbest

Population ← InitializePopulation(Populationsize,1

Problemsize);
EvaluatePopulation(Population);2

Sbest ← GetBestSolution(Population);3

while ¬ StopCondition() do4

NewPopulation ← ∅;5

foreach Pi ∈ Population do6

Si ← NewSample(Pi, Population, Problemsize,7

Weightingfactor, Crossoverrate);
if Cost(Si) ≤ Cost(Pi) then8

NewPopulation ← Si;9

else10

NewPopulation ← Pi;11

end12

end13

Population ← NewPopulation;14

EvaluatePopulation(Population);15

Sbest ← GetBestSolution(Population);16

end17

return Sbest;18

� the crossover weight CR ∈ [0, 1] probabilistically controls the amount
of recombination, a value of 0.9 is suggested.

� The initial population of candidate solutions should be randomly
generated from within the space of valid solutions.

� The popular configurations are DE/rand/1/* and DE/best/2/*.

3.5.5 Code Listing

Listing 3.4 provides an example of the Differential Evolution algorithm
implemented in the Ruby Programming Language. The demonstration
problem is an instance of a continuous function optimization that seeks
min f(x) where f =

∑n

i=1 x
2
i , −5.0 ≤ xi ≤ 5.0 and n = 3. The optimal

solution for this basin function is (v0, . . . , vn−1) = 0.0. The algorithm is an
implementation of Differential Evolution with the DE/rand/1/bin configu-
ration proposed by Storn and Price [9].
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Algorithm 3.5.2: Pseudocode for the NewSample function.

Input: P0, Population, NP, F, CR
Output: S
repeat1

P1 ← RandomMember(Population);2

until P1 6= P0 ;3

repeat4

P2 ← RandomMember(Population);5

until P2 6= P0 ∨ P2 6= P1 ;6

repeat7

P3 ← RandomMember(Population);8

until P3 6= P0 ∨ P3 6= P1 ∨ P3 6= P2 ;9

CutPoint ← RandomPosition(NP);10

S ← 0;11

for i to NP do12

if i ≡ CutPoint ∧ Rand() < CR then13

Si ← P3i + F × (P1i - P2i);14

else15

Si ← P0i ;16

end17

end18

return S;19

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def de_rand_1_bin(p0, p1, p2, p3, f, cr, search_space)

12 sample = {:vector=>Array.new(p0[:vector].size)}

13 cut = rand(sample[:vector].size-1) + 1

14 sample[:vector].each_index do |i|

15 sample[:vector][i] = p0[:vector][i]

16 if (i==cut or rand() < cr)

17 v = p3[:vector][i] + f * (p1[:vector][i] - p2[:vector][i])

18 v = search_space[i][0] if v < search_space[i][0]

19 v = search_space[i][1] if v > search_space[i][1]

20 sample[:vector][i] = v

21 end

22 end

23 return sample

24 end
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25

26 def select_parents(pop, current)

27 p1, p2, p3 = rand(pop.size), rand(pop.size), rand(pop.size)

28 p1 = rand(pop.size) until p1 != current

29 p2 = rand(pop.size) until p2 != current and p2 != p1

30 p3 = rand(pop.size) until p3 != current and p3 != p1 and p3 != p2

31 return [p1,p2,p3]

32 end

33

34 def create_children(pop, minmax, f, cr)

35 children = []

36 pop.each_with_index do |p0, i|

37 p1, p2, p3 = select_parents(pop, i)

38 children << de_rand_1_bin(p0, pop[p1], pop[p2], pop[p3], f, cr, minmax)

39 end

40 return children

41 end

42

43 def select_population(parents, children)

44 return Array.new(parents.size) do |i|

45 (children[i][:cost]<=parents[i][:cost]) ? children[i] : parents[i]

46 end

47 end

48

49 def search(max_gens, search_space, pop_size, f, cr)

50 pop = Array.new(pop_size) {|i| {:vector=>random_vector(search_space)}}

51 pop.each{|c| c[:cost] = objective_function(c[:vector])}

52 best = pop.sort{|x,y| x[:cost] <=> y[:cost]}.first

53 max_gens.times do |gen|

54 children = create_children(pop, search_space, f, cr)

55 children.each{|c| c[:cost] = objective_function(c[:vector])}

56 pop = select_population(pop, children)

57 pop.sort!{|x,y| x[:cost] <=> y[:cost]}

58 best = pop.first if pop.first[:cost] < best[:cost]

59 puts " > gen #{gen+1}, fitness=#{best[:cost]}"

60 end

61 return best

62 end

63

64 if __FILE__ == $0

65 # problem configuration

66 problem_size = 3

67 search_space = Array.new(problem_size) {|i| [-5, +5]}

68 # algorithm configuration

69 max_gens = 200

70 pop_size = 10*problem_size

71 weightf = 0.8

72 crossf = 0.9

73 # execute the algorithm

74 best = search(max_gens, search_space, pop_size, weightf, crossf)

75 puts "done! Solution: f=#{best[:cost]}, s=#{best[:vector].inspect}"

76 end

Listing 3.4: Differential Evolution in Ruby
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3.5.6 References

Primary Sources

The Differential Evolution algorithm was presented by Storn and Price in
a technical report that considered DE1 and DE2 variants of the approach
applied to a suite of continuous function optimization problems [7]. An early
paper by Storn applied the approach to the optimization of an IIR-filter
(Infinite Impulse Response) [5]. A second early paper applied the approach to
a second suite of benchmark problem instances, adopting the contemporary
nomenclature for describing the approach, including the DE/rand/1/* and
DE/best/2/* variations [8]. The early work including technical reports and
conference papers by Storn and Price culminated in a seminal journal article
[9].

Learn More

A classical overview of Differential Evolution was presented by Price and
Storn [2], and terse introduction to the approach for function optimization
is presented by Storn [6]. A seminal extended description of the algorithm
with sample applications was presented by Storn and Price as a book chapter
[3]. Price, Storn, and Lampinen released a contemporary book dedicated
to Differential Evolution including theory, benchmarks, sample code, and
numerous application demonstrations [4]. Chakraborty also released a book
considering extensions to address complexities such as rotation invariance
and stopping criteria [1].
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3.6 Evolutionary Programming

Evolutionary Programming, EP.

3.6.1 Taxonomy

Evolutionary Programming is a Global Optimization algorithm and is
an instance of an Evolutionary Algorithm from the field of Evolutionary
Computation. The approach is a sibling of other Evolutionary Algorithms
such as the Genetic Algorithm (Section 3.2), and Learning Classifier Systems
(Section 3.9). It is sometimes confused with Genetic Programming given
the similarity in name (Section 3.3), and more recently it shows a strong
functional similarity to Evolution Strategies (Section 3.4).

3.6.2 Inspiration

Evolutionary Programming is inspired by the theory of evolution by means
of natural selection. Specifically, the technique is inspired by macro-level
or the species-level process of evolution (phenotype, hereditary, variation)
and is not concerned with the genetic mechanisms of evolution (genome,
chromosomes, genes, alleles).

3.6.3 Metaphor

A population of a species reproduce, creating progeny with small pheno-
typical variation. The progeny and the parents compete based on their
suitability to the environment, where the generally more fit members con-
stitute the subsequent generation and are provided with the opportunity
to reproduce themselves. This process repeats, improving the adaptive fit
between the species and the environment.

3.6.4 Strategy

The objective of the Evolutionary Programming algorithm is to maximize the
suitability of a collection of candidate solutions in the context of an objective
function from the domain. This objective is pursued by using an adaptive
model with surrogates for the processes of evolution, specifically hereditary
(reproduction with variation) under competition. The representation used
for candidate solutions is directly assessable by a cost or objective function
from the domain.

3.6.5 Procedure

Algorithm 3.6.1 provides a pseudocode listing of the Evolutionary Program-
ming algorithm for minimizing a cost function.
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Algorithm 3.6.1: Pseudocode for Evolutionary Programming.

Input: Populationsize, ProblemSize, BoutSize
Output: Sbest

Population ← InitializePopulation(Populationsize, ProblemSize);1

EvaluatePopulation(Population);2

Sbest ← GetBestSolution(Population);3

while ¬StopCondition() do4

Children ← ∅;5

foreach Parenti ∈ Population do6

Childi ← Mutate(Parenti);7

Children ← Childi;8

end9

EvaluatePopulation(Children);10

Sbest ← GetBestSolution(Children, Sbest);11

Union ← Population + Children;12

foreach Si ∈ Union do13

for 1 to BoutSize do14

Sj ← RandomSelection(Union);15

if Cost(Si) < Cost(Sj) then16

Siwins ← Siwins + 1;17

end18

end19

end20

Population ← SelectBestByWins(Union, Populationsize);21

end22

return Sbest;23

3.6.6 Heuristics

� The representation for candidate solutions should be domain specific,
such as real numbers for continuous function optimization.

� The sample size (bout size) for tournament selection during competi-
tion is commonly between 5% and 10% of the population size.

� Evolutionary Programming traditionally only uses the mutation opera-
tor to create new candidate solutions from existing candidate solutions.
The crossover operator that is used in some other Evolutionary Algo-
rithms is not employed in Evolutionary Programming.

� Evolutionary Programming is concerned with the linkage between par-
ent and child candidate solutions and is not concerned with surrogates
for genetic mechanisms.



122 Chapter 3. Evolutionary Algorithms

� Continuous function optimization is a popular application for the
approach, where real-valued representations are used with a Gaussian-
based mutation operator.

� The mutation-specific parameters used in the application of the algo-
rithm to continuous function optimization can be adapted in concert
with the candidate solutions [4].

3.6.7 Code Listing

Listing 3.5 provides an example of the Evolutionary Programming algorithm
implemented in the Ruby Programming Language. The demonstration
problem is an instance of a continuous function optimization that seeks
min f(x) where f =

∑n

i=1 x
2
i , −5.0 ≤ xi ≤ 5.0 and n = 2. The optimal

solution for this basin function is (v0, . . . , vn−1) = 0.0. The algorithm is
an implementation of Evolutionary Programming based on the classical
implementation for continuous function optimization by Fogel et al. [4] with
per-variable adaptive variance based on Fogel’s description for a self-adaptive
variation on page 160 of his 1995 book [3].

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def random_gaussian(mean=0.0, stdev=1.0)

12 u1 = u2 = w = 0

13 begin

14 u1 = 2 * rand() - 1

15 u2 = 2 * rand() - 1

16 w = u1 * u1 + u2 * u2

17 end while w >= 1

18 w = Math.sqrt((-2.0 * Math.log(w)) / w)

19 return mean + (u2 * w) * stdev

20 end

21

22 def mutate(candidate, search_space)

23 child = {:vector=>[], :strategy=>[]}

24 candidate[:vector].each_with_index do |v_old, i|

25 s_old = candidate[:strategy][i]

26 v = v_old + s_old * random_gaussian()

27 v = search_space[i][0] if v < search_space[i][0]

28 v = search_space[i][1] if v > search_space[i][1]

29 child[:vector] << v

30 child[:strategy] << s_old + random_gaussian() * s_old.abs**0.5

31 end

32 return child
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33 end

34

35 def tournament(candidate, population, bout_size)

36 candidate[:wins] = 0

37 bout_size.times do |i|

38 other = population[rand(population.size)]

39 candidate[:wins] += 1 if candidate[:fitness] < other[:fitness]

40 end

41 end

42

43 def init_population(minmax, pop_size)

44 strategy = Array.new(minmax.size) do |i|

45 [0, (minmax[i][1]-minmax[i][0]) * 0.05]

46 end

47 pop = Array.new(pop_size, {})

48 pop.each_index do |i|

49 pop[i][:vector] = random_vector(minmax)

50 pop[i][:strategy] = random_vector(strategy)

51 end

52 pop.each{|c| c[:fitness] = objective_function(c[:vector])}

53 return pop

54 end

55

56 def search(max_gens, search_space, pop_size, bout_size)

57 population = init_population(search_space, pop_size)

58 population.each{|c| c[:fitness] = objective_function(c[:vector])}

59 best = population.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

60 max_gens.times do |gen|

61 children = Array.new(pop_size) {|i| mutate(population[i], search_space)}

62 children.each{|c| c[:fitness] = objective_function(c[:vector])}

63 children.sort!{|x,y| x[:fitness] <=> y[:fitness]}

64 best = children.first if children.first[:fitness] < best[:fitness]

65 union = children+population

66 union.each{|c| tournament(c, union, bout_size)}

67 union.sort!{|x,y| y[:wins] <=> x[:wins]}

68 population = union.first(pop_size)

69 puts " > gen #{gen}, fitness=#{best[:fitness]}"

70 end

71 return best

72 end

73

74 if __FILE__ == $0

75 # problem configuration

76 problem_size = 2

77 search_space = Array.new(problem_size) {|i| [-5, +5]}

78 # algorithm configuration

79 max_gens = 200

80 pop_size = 100

81 bout_size = 5

82 # execute the algorithm

83 best = search(max_gens, search_space, pop_size, bout_size)

84 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:vector].inspect}"

85 end

Listing 3.5: Evolutionary Programming in Ruby
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3.6.8 References

Primary Sources

Evolutionary Programming was developed by Lawrence Fogel, outlined in
early papers (such as [5]) and later became the focus of his PhD dissertation
[6]. Fogel focused on the use of an evolutionary process for the development
of control systems using Finite State Machine (FSM) representations. Fogel’s
early work on Evolutionary Programming culminated in a book (co-authored
with Owens and Walsh) that elaborated the approach, focusing on the
evolution of state machines for the prediction of symbols in time series data
[9].

Learn More

The field of Evolutionary Programming lay relatively dormant for 30 years
until it was revived by Fogel’s son, David. Early works considered the
application of Evolutionary Programming to control systems [11], and
later function optimization (system identification) culminating in a book
on the approach [1], and David Fogel’s PhD dissertation [2]. Lawrence
Fogel collaborated in the revival of the technique, including reviews [7, 8]
and extensions on what became the focus of the approach on function
optimization [4].

Yao et al. provide a seminal study of Evolutionary Programming propos-
ing an extension and racing it against the classical approach on a large
number of test problems [12]. Finally, Porto provides an excellent contem-
porary overview of the field and the technique [10].
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3.7 Grammatical Evolution

Grammatical Evolution, GE.

3.7.1 Taxonomy

Grammatical Evolution is a Global Optimization technique and an instance
of an Evolutionary Algorithm from the field of Evolutionary Computation.
It may also be considered an algorithm for Automatic Programming. Gram-
matical Evolution is related to other Evolutionary Algorithms for evolving
programs such as Genetic Programming (Section 3.3) and Gene Expression
Programming (Section 3.8), as well as the classical Genetic Algorithm that
uses binary strings (Section 3.2).

3.7.2 Inspiration

The Grammatical Evolution algorithm is inspired by the biological process
used for generating a protein from genetic material as well as the broader
genetic evolutionary process. The genome is comprised of DNA as a string
of building blocks that are transcribed to RNA. RNA codons are in turn
translated into sequences of amino acids and used in the protein. The
resulting protein in its environment is the phenotype.

3.7.3 Metaphor

The phenotype is a computer program that is created from a binary string-
based genome. The genome is decoded into a sequence of integers that
are in turn mapped onto pre-defined rules that makeup the program. The
mapping from genotype to the phenotype is a one-to-many process that
uses a wrapping feature. This is like the biological process observed in many
bacteria, viruses, and mitochondria, where the same genetic material is used
in the expression of different genes. The mapping adds robustness to the
process both in the ability to adopt structure-agnostic genetic operators used
during the evolutionary process on the sub-symbolic representation and the
transcription of well-formed executable programs from the representation.

3.7.4 Strategy

The objective of Grammatical Evolution is to adapt an executable program
to a problem specific objective function. This is achieved through an iterative
process with surrogates of evolutionary mechanisms such as descent with
variation, genetic mutation and recombination, and genetic transcription
and gene expression. A population of programs are evolved in a sub-
symbolic form as variable length binary strings and mapped to a symbolic
and well-structured form as a context free grammar for execution.
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3.7.5 Procedure

A grammar is defined in Backus Normal Form (BNF), which is a context free
grammar expressed as a series of production rules comprised of terminals
and non-terminals. A variable-length binary string representation is used
for the optimization process. Bits are read from the a candidate solutions
genome in blocks of 8 called a codon, and decoded to an integer (in the
range between 0 and 28 − 1). If the end of the binary string is reached
when reading integers, the reading process loops back to the start of the
string, effectively creating a circular genome. The integers are mapped to
expressions from the BNF until a complete syntactically correct expression
is formed. This may not use a solutions entire genome, or use the decoded
genome more than once given it’s circular nature. Algorithm 3.7.1 provides
a pseudocode listing of the Grammatical Evolution algorithm for minimizing
a cost function.

3.7.6 Heuristics

� Grammatical Evolution was designed to optimize programs (such as
mathematical equations) to specific cost functions.

� Classical genetic operators used by the Genetic Algorithm may be
used in the Grammatical Evolution algorithm, such as point mutations
and one-point crossover.

� Codons (groups of bits mapped to an integer) are commonly fixed at
8 bits, proving a range of integers ∈ [0, 28 − 1] that is scaled to the
range of rules using a modulo function.

� Additional genetic operators may be used with variable-length rep-
resentations such as codon segments, duplication (add to the end),
number of codons selected at random, and deletion.

3.7.7 Code Listing

Listing 3.6 provides an example of the Grammatical Evolution algorithm
implemented in the Ruby Programming Language based on the version
described by O’Neill and Ryan [5]. The demonstration problem is an
instance of symbolic regression f(x) = x4 + x3 + x2 + x, where x ∈ [1, 10].
The grammar used in this problem is:

� Non-terminals: N = {expr, op, pre op}

� Terminals: T = {+,−,÷,×, x, 1.0}

� Expression (program): S =<expr>

The production rules for the grammar in BNF are:
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Algorithm 3.7.1: Pseudocode for Grammatical Evolution.

Input: Grammar, Codonnumbits, Populationsize, Pcrossover,
Pmutation, Pdelete, Pduplicate

Output: Sbest

Population ← InitializePopulation(Populationsize,1

Codonnumbits);
foreach Si ∈ Population do2

Siintegers ← Decode(Sibitstring, Codonnumbits);3

Siprogram ← Map(Siintegers, Grammar);4

Sicost ← Execute(Siprogram);5

end6

Sbest ← GetBestSolution(Population);7

while ¬StopCondition() do8

Parents ← SelectParents(Population, Populationsize);9

Children ← ∅;10

foreach Parenti, Parentj ∈ Parents do11

Si ← Crossover(Parenti, Parentj, Pcrossover);12

Sibitstring ← CodonDeletion(Sibitstring, Pdelete);13

Sibitstring ← CodonDuplication(Sibitstring, Pduplicate);14

Sibitstring ← Mutate(Sibitstring, Pmutation);15

Children ← Si;16

end17

foreach Si ∈ Children do18

Siintegers ← Decode(Sibitstring, Codonnumbits);19

Siprogram ← Map(Siintegers, Grammar);20

Sicost ← Execute(Siprogram);21

end22

Sbest ← GetBestSolution(Children);23

Population ← Replace(Population, Children);24

end25

return Sbest;26

� <expr> ::= <expr><op><expr> , (<expr><op><expr>), <pre op>(<expr>),
<var>

� <op> ::= +,−,÷,×

� <var> ::= x, 1.0

The algorithm uses point mutation and a codon-respecting one-point
crossover operator. Binary tournament selection is used to determine
the parent population’s contribution to the subsequent generation. Binary
strings are decoded to integers using an unsigned binary. Candidate solutions
are then mapped directly into executable Ruby code and executed. A given
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candidate solution is evaluated by comparing its output against the target
function and taking the sum of the absolute errors over a number of trials.
The probabilities of point mutation, codon deletion, and codon duplication
are hard coded as relative probabilities to each solution, although should
be parameters of the algorithm. In this case they are heuristically defined
as 1.0

L
, 0.5

NC
and 1.0

NC
respectively, where L is the total number of bits, and

NC is the number of codons in a given candidate solution.

Solutions are evaluated by generating a number of random samples from
the domain and calculating the mean error of the program to the expected
outcome. Programs that contain a single term or those that return an
invalid (NaN) or infinite result are penalized with an enormous error value.
The implementation uses a maximum depth in the expression tree, whereas
traditionally such deep expression trees are marked as invalid. Programs
that resolve to a single expression that returns the output are penalized.

1 def binary_tournament(pop)

2 i, j = rand(pop.size), rand(pop.size)

3 j = rand(pop.size) while j==i

4 return (pop[i][:fitness] < pop[j][:fitness]) ? pop[i] : pop[j]

5 end

6

7 def point_mutation(bitstring, rate=1.0/bitstring.size.to_f)

8 child = ""

9 bitstring.size.times do |i|

10 bit = bitstring[i].chr

11 child << ((rand()<rate) ? ((bit=='1') ? "0" : "1") : bit)

12 end

13 return child

14 end

15

16 def one_point_crossover(parent1, parent2, codon_bits, p_cross=0.30)

17 return ""+parent1[:bitstring] if rand()>=p_cross

18 cut = rand([parent1.size, parent2.size].min/codon_bits)

19 cut *= codon_bits

20 p2size = parent2[:bitstring].size

21 return parent1[:bitstring][0...cut]+parent2[:bitstring][cut...p2size]

22 end

23

24 def codon_duplication(bitstring, codon_bits, rate=1.0/codon_bits.to_f)

25 return bitstring if rand() >= rate

26 codons = bitstring.size/codon_bits

27 return bitstring + bitstring[rand(codons)*codon_bits, codon_bits]

28 end

29

30 def codon_deletion(bitstring, codon_bits, rate=0.5/codon_bits.to_f)

31 return bitstring if rand() >= rate

32 codons = bitstring.size/codon_bits

33 off = rand(codons)*codon_bits

34 return bitstring[0...off] + bitstring[off+codon_bits...bitstring.size]

35 end

36

37 def reproduce(selected, pop_size, p_cross, codon_bits)

38 children = []
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39 selected.each_with_index do |p1, i|

40 p2 = (i.modulo(2)==0) ? selected[i+1] : selected[i-1]

41 p2 = selected[0] if i == selected.size-1

42 child = {}

43 child[:bitstring] = one_point_crossover(p1, p2, codon_bits, p_cross)

44 child[:bitstring] = codon_deletion(child[:bitstring], codon_bits)

45 child[:bitstring] = codon_duplication(child[:bitstring], codon_bits)

46 child[:bitstring] = point_mutation(child[:bitstring])

47 children << child

48 break if children.size == pop_size

49 end

50 return children

51 end

52

53 def random_bitstring(num_bits)

54 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

55 end

56

57 def decode_integers(bitstring, codon_bits)

58 ints = []

59 (bitstring.size/codon_bits).times do |off|

60 codon = bitstring[off*codon_bits, codon_bits]

61 sum = 0

62 codon.size.times do |i|

63 sum += ((codon[i].chr=='1') ? 1 : 0) * (2 ** i);

64 end

65 ints << sum

66 end

67 return ints

68 end

69

70 def map(grammar, integers, max_depth)

71 done, offset, depth = false, 0, 0

72 symbolic_string = grammar["S"]

73 begin

74 done = true

75 grammar.keys.each do |key|

76 symbolic_string = symbolic_string.gsub(key) do |k|

77 done = false

78 set = (k=="EXP" && depth>=max_depth-1) ? grammar["VAR"] : grammar[k]

79 integer = integers[offset].modulo(set.size)

80 offset = (offset==integers.size-1) ? 0 : offset+1

81 set[integer]

82 end

83 end

84 depth += 1

85 end until done

86 return symbolic_string

87 end

88

89 def target_function(x)

90 return x**4.0 + x**3.0 + x**2.0 + x

91 end

92

93 def sample_from_bounds(bounds)

94 return bounds[0] + ((bounds[1] - bounds[0]) * rand())
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95 end

96

97 def cost(program, bounds, num_trials=30)

98 return 9999999 if program.strip == "INPUT"

99 sum_error = 0.0

100 num_trials.times do

101 x = sample_from_bounds(bounds)

102 expression = program.gsub("INPUT", x.to_s)

103 begin score = eval(expression) rescue score = 0.0/0.0 end

104 return 9999999 if score.nan? or score.infinite?

105 sum_error += (score - target_function(x)).abs

106 end

107 return sum_error / num_trials.to_f

108 end

109

110 def evaluate(candidate, codon_bits, grammar, max_depth, bounds)

111 candidate[:integers] = decode_integers(candidate[:bitstring], codon_bits)

112 candidate[:program] = map(grammar, candidate[:integers], max_depth)

113 candidate[:fitness] = cost(candidate[:program], bounds)

114 end

115

116 def search(max_gens, pop_size, codon_bits, num_bits, p_cross, grammar,

max_depth, bounds)

117 pop = Array.new(pop_size) {|i| {:bitstring=>random_bitstring(num_bits)}}

118 pop.each{|c| evaluate(c,codon_bits, grammar, max_depth, bounds)}

119 best = pop.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

120 max_gens.times do |gen|

121 selected = Array.new(pop_size){|i| binary_tournament(pop)}

122 children = reproduce(selected, pop_size, p_cross,codon_bits)

123 children.each{|c| evaluate(c, codon_bits, grammar, max_depth, bounds)}

124 children.sort!{|x,y| x[:fitness] <=> y[:fitness]}

125 best = children.first if children.first[:fitness] <= best[:fitness]

126 pop=(children+pop).sort{|x,y| x[:fitness]<=>y[:fitness]}.first(pop_size)

127 puts " > gen=#{gen}, f=#{best[:fitness]}, s=#{best[:bitstring]}"

128 break if best[:fitness] == 0.0

129 end

130 return best

131 end

132

133 if __FILE__ == $0

134 # problem configuration

135 grammar = {"S"=>"EXP",

136 "EXP"=>[" EXP BINARY EXP ", " (EXP BINARY EXP) ", " VAR "],

137 "BINARY"=>["+", "-", "/", "*" ],

138 "VAR"=>["INPUT", "1.0"]}

139 bounds = [1, 10]

140 # algorithm configuration

141 max_depth = 7

142 max_gens = 50

143 pop_size = 100

144 codon_bits = 4

145 num_bits = 10*codon_bits

146 p_cross = 0.30

147 # execute the algorithm

148 best = search(max_gens, pop_size, codon_bits, num_bits, p_cross, grammar,

max_depth, bounds)
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149 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:program]}"

150 end

Listing 3.6: Grammatical Evolution in Ruby

3.7.8 References

Primary Sources

Grammatical Evolution was proposed by Ryan, Collins and O’Neill in a
seminal conference paper that applied the approach to a symbolic regression
problem [7]. The approach was born out of the desire for syntax preservation
while evolving programs using the Genetic Programming algorithm. This
seminal work was followed by application papers for a symbolic integration
problem [2, 3] and solving trigonometric identities [8].

Learn More

O’Neill and Ryan provide a high-level introduction to Grammatical Evolu-
tion and early demonstration applications [4]. The same authors provide
a thorough introduction to the technique and overview of the state of the
field [5]. O’Neill and Ryan present a seminal reference for Grammatical
Evolution in their book [6]. A second more recent book considers extensions
to the approach improving its capability on dynamic problems [1].
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3.8 Gene Expression Programming

Gene Expression Programming, GEP.

3.8.1 Taxonomy

Gene Expression Programming is a Global Optimization algorithm and an
Automatic Programming technique, and it is an instance of an Evolution-
ary Algorithm from the field of Evolutionary Computation. It is a sibling
of other Evolutionary Algorithms such as a the Genetic Algorithm (Sec-
tion 3.2) as well as other Evolutionary Automatic Programming techniques
such as Genetic Programming (Section 3.3) and Grammatical Evolution
(Section 3.7).

3.8.2 Inspiration

Gene Expression Programming is inspired by the replication and expression
of the DNA molecule, specifically at the gene level. The expression of a
gene involves the transcription of its DNA to RNA which in turn forms
amino acids that make up proteins in the phenotype of an organism. The
DNA building blocks are subjected to mechanisms of variation (mutations
such as coping errors) as well as recombination during sexual reproduction.

3.8.3 Metaphor

Gene Expression Programming uses a linear genome as the basis for genetic
operators such as mutation, recombination, inversion, and transposition.
The genome is comprised of chromosomes and each chromosome is comprised
of genes that are translated into an expression tree to solve a given problem.
The robust gene definition means that genetic operators can be applied to
the sub-symbolic representation without concern for the structure of the
resultant gene expression, providing separation of genotype and phenotype.

3.8.4 Strategy

The objective of the Gene Expression Programming algorithm is to im-
prove the adaptive fit of an expressed program in the context of a problem
specific cost function. This is achieved through the use of an evolutionary
process that operates on a sub-symbolic representation of candidate solu-
tions using surrogates for the processes (descent with modification) and
mechanisms (genetic recombination, mutation, inversion, transposition, and
gene expression) of evolution.
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3.8.5 Procedure

A candidate solution is represented as a linear string of symbols called
Karva notation or a K-expression, where each symbol maps to a function or
terminal node. The linear representation is mapped to an expression tree in
a breadth-first manner. A K-expression has fixed length and is comprised
of one or more sub-expressions (genes), which are also defined with a fixed
length. A gene is comprised of two sections, a head which may contain
any function or terminal symbols, and a tail section that may only contain
terminal symbols. Each gene will always translate to a syntactically correct
expression tree, where the tail portion of the gene provides a genetic buffer
which ensures closure of the expression.

Algorithm 3.8.1 provides a pseudocode listing of the Gene Expression
Programming algorithm for minimizing a cost function.

Algorithm 3.8.1: Pseudocode for GEP.

Input: Grammar, Populationsize, Headlength, Taillength, Pcrossover,
Pmutation

Output: Sbest

Population ← InitializePopulation(Populationsize, Grammar,1

Headlength, Taillength);
foreach Si ∈ Population do2

Siprogram ← DecodeBreadthFirst(Sigenome, Grammar);3

Sicost ← Execute(Siprogram);4

end5

Sbest ← GetBestSolution(Population);6

while ¬StopCondition() do7

Parents ← SelectParents(Population, Populationsize);8

Children ← ∅;9

foreach Parent1, Parent2 ∈ Parents do10

Sigenome ← Crossover(Parent1, Parent2, Pcrossover);11

Sigenome ← Mutate(Sigenome, Pmutation);12

Children ← Si;13

end14

foreach Si ∈ Children do15

Siprogram ← DecodeBreadthFirst(Sigenome, Grammar);16

Sicost ← Execute(Siprogram);17

end18

Population ← Replace(Population, Children);19

Sbest ← GetBestSolution(Children);20

end21

return Sbest;22



136 Chapter 3. Evolutionary Algorithms

3.8.6 Heuristics

� The length of a chromosome is defined by the number of genes, where
a gene length is defined by h+ t. The h is a user defined parameter
(such as 10), and t is defined as t = h(n−1)+1, where the n represents
the maximum arity of functional nodes in the expression (such as 2 if
the arithmetic functions ×,÷,−,+ are used).

� The mutation operator substitutes expressions along the genome,
although must respect the gene rules such that function and terminal
nodes are mutated in the head of genes, whereas only terminal nodes
are substituted in the tail of genes.

� Crossover occurs between two selected parents from the population
and can occur based on a one-point cross, two point cross, or a gene-
based approach where genes are selected from the parents with uniform
probability.

� An inversion operator may be used with a low probability that reverses
a small sequence of symbols (1-3) within a section of a gene (tail or
head).

� A transposition operator may be used that has a number of different
modes, including: duplicate a small sequences (1-3) from somewhere
on a gene to the head, small sequences on a gene to the root of the
gene, and moving of entire genes in the chromosome. In the case
of intra-gene transpositions, the sequence in the head of the gene is
moved down to accommodate the copied sequence and the length of
the head is truncated to maintain consistent gene sizes.

� A ‘?’ may be included in the terminal set that represents a numeric
constant from an array that is evolved on the end of the genome. The
constants are read from the end of the genome and are substituted for
‘?’ as the expression tree is created (in breadth first order). Finally the
numeric constants are used as array indices in yet another chromosome
of numerical values which are substituted into the expression tree.

� Mutation is low (such as 1
L
), selection can be any of the classical

approaches (such as roulette wheel or tournament), and crossover
rates are typically high (0.7 of offspring)

� Use multiple sub-expressions linked together on hard problems when
one gene is not sufficient to address the problem. The sub-expressions
are linked using link expressions which are function nodes that are
either statically defined (such as a conjunction) or evolved on the
genome with the genes.
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3.8.7 Code Listing

Listing 3.7 provides an example of the Gene Expression Programming
algorithm implemented in the Ruby Programming Language based on the
seminal version proposed by Ferreira [1]. The demonstration problem is an
instance of symbolic regression f(x) = x4 + x3 + x2 + x, where x ∈ [1, 10].
The grammar used in this problem is: Functions: F = {+,−,÷,×, } and
Terminals: T = {x}.

The algorithm uses binary tournament selection, uniform crossover
and point mutations. The K-expression is decoded to an expression tree
in a breadth-first manner, which is then parsed depth first as a Ruby
expression string for display and direct evaluation. Solutions are evaluated
by generating a number of random samples from the domain and calculating
the mean error of the program to the expected outcome. Programs that
contain a single term or those that return an invalid (NaN) or infinite result
are penalized with an enormous error value.

1 def binary_tournament(pop)

2 i, j = rand(pop.size), rand(pop.size)

3 return (pop[i][:fitness] < pop[j][:fitness]) ? pop[i] : pop[j]

4 end

5

6 def point_mutation(grammar, genome, head_length, rate=1.0/genome.size.to_f)

7 child =""

8 genome.size.times do |i|

9 bit = genome[i].chr

10 if rand() < rate

11 if i < head_length

12 selection = (rand() < 0.5) ? grammar["FUNC"]: grammar["TERM"]

13 bit = selection[rand(selection.size)]

14 else

15 bit = grammar["TERM"][rand(grammar["TERM"].size)]

16 end

17 end

18 child << bit

19 end

20 return child

21 end

22

23 def crossover(parent1, parent2, rate)

24 return ""+parent1 if rand()>=rate

25 child = ""

26 parent1.size.times do |i|

27 child << ((rand()<0.5) ? parent1[i] : parent2[i])

28 end

29 return child

30 end

31

32 def reproduce(grammar, selected, pop_size, p_crossover, head_length)

33 children = []

34 selected.each_with_index do |p1, i|

35 p2 = (i.modulo(2)==0) ? selected[i+1] : selected[i-1]

36 p2 = selected[0] if i == selected.size-1
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37 child = {}

38 child[:genome] = crossover(p1[:genome], p2[:genome], p_crossover)

39 child[:genome] = point_mutation(grammar, child[:genome], head_length)

40 children << child

41 end

42 return children

43 end

44

45 def random_genome(grammar, head_length, tail_length)

46 s = ""

47 head_length.times do

48 selection = (rand() < 0.5) ? grammar["FUNC"]: grammar["TERM"]

49 s << selection[rand(selection.size)]

50 end

51 tail_length.times { s << grammar["TERM"][rand(grammar["TERM"].size)]}

52 return s

53 end

54

55 def target_function(x)

56 return x**4.0 + x**3.0 + x**2.0 + x

57 end

58

59 def sample_from_bounds(bounds)

60 return bounds[0] + ((bounds[1] - bounds[0]) * rand())

61 end

62

63 def cost(program, bounds, num_trials=30)

64 errors = 0.0

65 num_trials.times do

66 x = sample_from_bounds(bounds)

67 expression, score = program.gsub("x", x.to_s), 0.0

68 begin score = eval(expression) rescue score = 0.0/0.0 end

69 return 9999999 if score.nan? or score.infinite?

70 errors += (score - target_function(x)).abs

71 end

72 return errors / num_trials.to_f

73 end

74

75 def mapping(genome, grammar)

76 off, queue = 0, []

77 root = {}

78 root[:node] = genome[off].chr; off+=1

79 queue.push(root)

80 while !queue.empty? do

81 current = queue.shift

82 if grammar["FUNC"].include?(current[:node])

83 current[:left] = {}

84 current[:left][:node] = genome[off].chr; off+=1

85 queue.push(current[:left])

86 current[:right] = {}

87 current[:right][:node] = genome[off].chr; off+=1

88 queue.push(current[:right])

89 end

90 end

91 return root

92 end
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93

94 def tree_to_string(exp)

95 return exp[:node] if (exp[:left].nil? or exp[:right].nil?)

96 left = tree_to_string(exp[:left])

97 right = tree_to_string(exp[:right])

98 return "(#{left} #{exp[:node]} #{right})"

99 end

100

101 def evaluate(candidate, grammar, bounds)

102 candidate[:expression] = mapping(candidate[:genome], grammar)

103 candidate[:program] = tree_to_string(candidate[:expression])

104 candidate[:fitness] = cost(candidate[:program], bounds)

105 end

106

107 def search(grammar, bounds, h_length, t_length, max_gens, pop_size, p_cross)

108 pop = Array.new(pop_size) do

109 {:genome=>random_genome(grammar, h_length, t_length)}

110 end

111 pop.each{|c| evaluate(c, grammar, bounds)}

112 best = pop.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

113 max_gens.times do |gen|

114 selected = Array.new(pop){|i| binary_tournament(pop)}

115 children = reproduce(grammar, selected, pop_size, p_cross, h_length)

116 children.each{|c| evaluate(c, grammar, bounds)}

117 children.sort!{|x,y| x[:fitness] <=> y[:fitness]}

118 best = children.first if children.first[:fitness] <= best[:fitness]

119 pop = (children+pop).first(pop_size)

120 puts " > gen=#{gen}, f=#{best[:fitness]}, g=#{best[:genome]}"

121 end

122 return best

123 end

124

125 if __FILE__ == $0

126 # problem configuration

127 grammar = {"FUNC"=>["+","-","*","/"], "TERM"=>["x"]}

128 bounds = [1.0, 10.0]

129 # algorithm configuration

130 h_length = 20

131 t_length = h_length * (2-1) + 1

132 max_gens = 150

133 pop_size = 80

134 p_cross = 0.85

135 # execute the algorithm

136 best = search(grammar, bounds, h_length, t_length, max_gens, pop_size,

p_cross)

137 puts "done! Solution: f=#{best[:fitness]}, program=#{best[:program]}"

138 end

Listing 3.7: Gene Expression Programming in Ruby
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3.8.8 References

Primary Sources

The Gene Expression Programming algorithm was proposed by Ferreira in
a paper that detailed the approach, provided a careful walkthrough of the
process and operators, and demonstrated the the algorithm on a number of
benchmark problem instances including symbolic regression [1].

Learn More

Ferreira provided an early and detailed introduction and overview of the
approach as book chapter, providing a step-by-step walkthrough of the
procedure and sample applications [2]. A more contemporary and detailed
introduction is provided in a later book chapter [3]. Ferreira published a
book on the approach in 2002 covering background, the algorithm, and
demonstration applications which is now in its second edition [4].
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3.9 Learning Classifier System

Learning Classifier System, LCS.

3.9.1 Taxonomy

The Learning Classifier System algorithm is both an instance of an Evo-
lutionary Algorithm from the field of Evolutionary Computation and an
instance of a Reinforcement Learning algorithm from Machine Learning.
Internally, Learning Classifier Systems make use of a Genetic Algorithm
(Section 3.2). The Learning Classifier System is a theoretical system with a
number of implementations. The two main approaches to implementing and
investigating the system empirically are the Pittsburgh-style that seeks to
optimize the whole classifier, and the Michigan-style that optimize respon-
sive rulesets. The Michigan-style Learning Classifier is the most common
and is comprised of two versions: the ZCS (zeroth-level classifier system)
and the XCS (accuracy-based classifier system).

3.9.2 Strategy

The objective of the Learning Classifier System algorithm is to optimize
payoff based on exposure to stimuli from a problem-specific environment.
This is achieved by managing credit assignment for those rules that prove
useful and searching for new rules and new variations on existing rules using
an evolutionary process.

3.9.3 Procedure

The actors of the system include detectors, messages, effectors, feedback,
and classifiers. Detectors are used by the system to perceive the state of the
environment. Messages are the discrete information packets passed from the
detectors into the system. The system performs information processing on
messages, and messages may directly result in actions in the environment.
Effectors control the actions of the system on and within the environment.
In addition to the system actively perceiving via its detections, it may
also receive directed feedback from the environment (payoff). Classifiers
are condition-action rules that provide a filter for messages. If a message
satisfies the conditional part of the classifier, the action of the classifier
triggers. Rules act as message processors. Message a fixed length bitstring.
A classifier is defined as a ternary string with an alphabet ∈ {1, 0,#}, where
the # represents do not care (matching either 1 or 0).

The processing loop for the Learning Classifier system is as follows:

1. Messages from the environment are placed on the message list.
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2. The conditions of each classifier are checked to see if they are satisfied
by at least one message in the message list.

3. All classifiers that are satisfied participate in a competition, those
that win post their action to the message list.

4. All messages directed to the effectors are executed (causing actions in
the environment).

5. All messages on the message list from the previous cycle are deleted
(messages persist for a single cycle).

The algorithm may be described in terms of the main processing loop and
two sub-algorithms: a reinforcement learning algorithm such as the bucket
brigade algorithm or Q-learning, and a genetic algorithm for optimization of
the system. Algorithm 3.9.1 provides a pseudocode listing of the high-level
processing loop of the Learning Classifier System, specifically the XCS as
described by Butz and Wilson [3].

3.9.4 Heuristics

The majority of the heuristics in this section are specific to the XCS Learning
Classifier System as described by Butz and Wilson [3].

� Learning Classifier Systems are suited for problems with the following
characteristics: perpetually novel events with significant noise, contin-
ual real-time requirements for action, implicitly or inexactly defined
goals, and sparse payoff or reinforcement obtainable only through long
sequences of tasks.

� The learning rate β for a classifier’s expected payoff, error, and fitness
are typically in the range [0.1, 0.2].

� The frequency of running the genetic algorithm θGA should be in the
range [25, 50].

� The discount factor used in multi-step programs γ are typically in the
around 0.71.

� The minimum error whereby classifiers are considered to have equal
accuracy ǫ0 is typically 10% of the maximum reward.

� The probability of crossover in the genetic algorithm χ is typically in
the range [0.5, 1.0].

� The probability of mutating a single position in a classifier in the
genetic algorithm µ is typically in the range [0.01, 0.05].
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Algorithm 3.9.1: Pseudocode for the LCS.

Input: EnvironmentDetails

Output: Population
env ← InitializeEnvironment(EnvironmentDetails);1

Population ← InitializePopulation();2

ActionSett−1 ← ∅;3

Inputt−1 ← ∅;4

Rewardt−1 ← ∅;5

while ¬StopCondition() do6

Inputt ← env;7

Matchset ← GenerateMatchSet(Population, Inputt);8

Prediction ← GeneratePrediction(Matchset);9

Action ← SelectionAction(Prediction);10

ActionSett ← GenerateActionSet(Action, Matchset);11

Rewardt ← ExecuteAction(Action, env);12

if ActionSett−1 6= ∅ then13

Payofft ← CalculatePayoff(Rewardt−1, Prediction);14

PerformLearning(ActionSett−1, Payofft, Population);15

RunGeneticAlgorithm(ActionSett−1, Inputt−1, Population);16

end17

if LastStepOfTask(env, Action) then18

Payofft ← Rewardt;19

PerformLearning(ActionSett, Payofft, Population);20

RunGeneticAlgorithm(ActionSett, Inputt, Population);21

ActionSett−1 ← ∅;22

else23

ActionSett−1 ← ActionSett;24

Inputt−1 ← Inputt;25

Rewardt−1 ← Rewardt;26

end27

end28

� The experience threshold during classifier deletion θdel is typically
about 20.

� The experience threshold for a classifier during subsumption θsub is
typically around 20.

� The initial values for a classifier’s expected payoff p1, error ǫ1, and
fitness f1 are typically small and close to zero.

� The probability of selecting a random action for the purposes of
exploration pexp is typically close to 0.5.
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� The minimum number of different actions that must be specified in a
match set θmna is usually the total number of possible actions in the
environment for the input.

� Subsumption should be used on problem domains that are known
contain well defined rules for mapping inputs to outputs.

3.9.5 Code Listing

Listing 3.8 provides an example of the Learning Classifier System algorithm
implemented in the Ruby Programming Language. The problem is an
instance of a Boolean multiplexer called the 6-multiplexer. It can be
described as a classification problem, where each of the 26 patterns of bits
is associated with a boolean class ∈ {1, 0}. For this problem instance, the
first two bits may be decoded as an address into the remaining four bits
that specify the class (for example in 100011, ‘10’ decode to the index of
‘2’ in the remaining 4 bits making the class ‘1’). In propositional logic this
problem instance may be described as F = (¬x0)(¬x1)x2 + (¬x0)x1x3 +
x0(¬x1)x4 + x0x1x5. The algorithm is an instance of XCS based on the
description provided by Butz and Wilson [3] with the parameters based
on the application of XCS to Boolean multiplexer problems by Wilson
[14, 15]. The population is grown as needed, and subsumption which would
be appropriate for the Boolean multiplexer problem was not used for brevity.
The multiplexer problem is a single step problem, so the complexities of
delayed payoff are not required. A number of parameters were hard coded to
recommended values, specifically: α = 0.1, v = −0.5, δ = 0.1 and P# = 1

3 .

1 def neg(bit)

2 return (bit==1) ? 0 : 1

3 end

4

5 def target_function(s)

6 ints = Array.new(6){|i| s[i].chr.to_i}

7 x0,x1,x2,x3,x4,x5 = ints

8 return neg(x0)*neg(x1)*x2 + neg(x0)*x1*x3 + x0*neg(x1)*x4 + x0*x1*x5

9 end

10

11 def new_classifier(condition, action, gen, p1=10.0, e1=0.0, f1=10.0)

12 other = {}

13 other[:condition],other[:action],other[:lasttime] = condition, action, gen

14 other[:pred], other[:error], other[:fitness] = p1, e1, f1

15 other[:exp], other[:setsize], other[:num] = 0.0, 1.0, 1.0

16 return other

17 end

18

19 def copy_classifier(parent)

20 copy = {}

21 parent.keys.each do |k|

22 copy[k] = (parent[k].kind_of? String) ? ""+parent[k] : parent[k]

23 end
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24 copy[:num],copy[:exp] = 1.0, 0.0

25 return copy

26 end

27

28 def random_bitstring(size=6)

29 return (0...size).inject(""){|s,i| s+((rand<0.5) ? "1" : "0")}

30 end

31

32 def calculate_deletion_vote(classifier, pop, del_thresh, f_thresh=0.1)

33 vote = classifier[:setsize] * classifier[:num]

34 total = pop.inject(0.0){|s,c| s+c[:num]}

35 avg_fitness = pop.inject(0.0){|s,c| s + (c[:fitness]/total)}

36 derated = classifier[:fitness] / classifier[:num].to_f

37 if classifier[:exp]>del_thresh and derated<(f_thresh*avg_fitness)

38 return vote * (avg_fitness / derated)

39 end

40 return vote

41 end

42

43 def delete_from_pop(pop, pop_size, del_thresh=20.0)

44 total = pop.inject(0) {|s,c| s+c[:num]}

45 return if total <= pop_size

46 pop.each {|c| c[:dvote] = calculate_deletion_vote(c, pop, del_thresh)}

47 vote_sum = pop.inject(0.0) {|s,c| s+c[:dvote]}

48 point = rand() * vote_sum

49 vote_sum, index = 0.0, 0

50 pop.each_with_index do |c,i|

51 vote_sum += c[:dvote]

52 if vote_sum >= point

53 index = i

54 break

55 end

56 end

57 if pop[index][:num] > 1

58 pop[index][:num] -= 1

59 else

60 pop.delete_at(index)

61 end

62 end

63

64 def generate_random_classifier(input, actions, gen, rate=1.0/3.0)

65 condition = ""

66 input.size.times {|i| condition << ((rand<rate) ? '#' : input[i].chr)}

67 action = actions[rand(actions.size)]

68 return new_classifier(condition, action, gen)

69 end

70

71 def does_match?(input, condition)

72 input.size.times do |i|

73 return false if condition[i].chr!='#' and input[i].chr!=condition[i].chr

74 end

75 return true

76 end

77

78 def get_actions(pop)

79 actions = []
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80 pop.each do |c|

81 actions << c[:action] if !actions.include?(c[:action])

82 end

83 return actions

84 end

85

86 def generate_match_set(input, pop, all_actions, gen, pop_size)

87 match_set = pop.select{|c| does_match?(input, c[:condition])}

88 actions = get_actions(match_set)

89 while actions.size < all_actions.size do

90 remaining = all_actions - actions

91 classifier = generate_random_classifier(input, remaining, gen)

92 pop << classifier

93 match_set << classifier

94 delete_from_pop(pop, pop_size)

95 actions << classifier[:action]

96 end

97 return match_set

98 end

99

100 def generate_prediction(match_set)

101 pred = {}

102 match_set.each do |classifier|

103 key = classifier[:action]

104 pred[key] = {:sum=>0.0,:count=>0.0,:weight=>0.0} if pred[key].nil?

105 pred[key][:sum] += classifier[:pred]*classifier[:fitness]

106 pred[key][:count] += classifier[:fitness]

107 end

108 pred.keys.each do |key|

109 pred[key][:weight] = 0.0

110 if pred[key][:count] > 0

111 pred[key][:weight] = pred[key][:sum]/pred[key][:count]

112 end

113 end

114 return pred

115 end

116

117 def select_action(predictions, p_explore=false)

118 keys = Array.new(predictions.keys)

119 return keys[rand(keys.size)] if p_explore

120 keys.sort!{|x,y| predictions[y][:weight]<=>predictions[x][:weight]}

121 return keys.first

122 end

123

124 def update_set(action_set, reward, beta=0.2)

125 sum = action_set.inject(0.0) {|s,other| s+other[:num]}

126 action_set.each do |c|

127 c[:exp] += 1.0

128 if c[:exp] < 1.0/beta

129 c[:error] = (c[:error]*(c[:exp]-1.0)+(reward-c[:pred]).abs)/c[:exp]

130 c[:pred] = (c[:pred] * (c[:exp]-1.0) + reward) / c[:exp]

131 c[:setsize] = (c[:setsize]*(c[:exp]-1.0)+sum) / c[:exp]

132 else

133 c[:error] += beta * ((reward-c[:pred]).abs - c[:error])

134 c[:pred] += beta * (reward-c[:pred])

135 c[:setsize] += beta * (sum - c[:setsize])
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136 end

137 end

138 end

139

140 def update_fitness(action_set, min_error=10, l_rate=0.2, alpha=0.1, v=-5.0)

141 sum = 0.0

142 acc = Array.new(action_set.size)

143 action_set.each_with_index do |c,i|

144 acc[i] = (c[:error]<min_error) ? 1.0 : alpha*(c[:error]/min_error)**v

145 sum += acc[i] * c[:num].to_f

146 end

147 action_set.each_with_index do |c,i|

148 c[:fitness] += l_rate * ((acc[i] * c[:num].to_f) / sum - c[:fitness])

149 end

150 end

151

152 def can_run_genetic_algorithm(action_set, gen, ga_freq)

153 return false if action_set.size <= 2

154 total = action_set.inject(0.0) {|s,c| s+c[:lasttime]*c[:num]}

155 sum = action_set.inject(0.0) {|s,c| s+c[:num]}

156 return true if gen - (total/sum) > ga_freq

157 return false

158 end

159

160 def binary_tournament(pop)

161 i, j = rand(pop.size), rand(pop.size)

162 j = rand(pop.size) while j==i

163 return (pop[i][:fitness] > pop[j][:fitness]) ? pop[i] : pop[j]

164 end

165

166 def mutation(cl, action_set, input, rate=0.04)

167 cl[:condition].size.times do |i|

168 if rand() < rate

169 cl[:condition][i] = (cl[:condition][i].chr=='#') ? input[i] : '#'

170 end

171 end

172 if rand() < rate

173 subset = action_set - [cl[:action]]

174 cl[:action] = subset[rand(subset.size)]

175 end

176 end

177

178 def uniform_crossover(parent1, parent2)

179 child = ""

180 parent1.size.times do |i|

181 child << ((rand()<0.5) ? parent1[i].chr : parent2[i].chr)

182 end

183 return child

184 end

185

186 def insert_in_pop(cla, pop)

187 pop.each do |c|

188 if cla[:condition]==c[:condition] and cla[:action]==c[:action]

189 c[:num] += 1

190 return

191 end
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192 end

193 pop << cla

194 end

195

196 def crossover(c1, c2, p1, p2)

197 c1[:condition] = uniform_crossover(p1[:condition], p2[:condition])

198 c2[:condition] = uniform_crossover(p1[:condition], p2[:condition])

199 c2[:pred] = c1[:pred] = (p1[:pred]+p2[:pred])/2.0

200 c2[:error] = c1[:error] = 0.25*(p1[:error]+p2[:error])/2.0

201 c2[:fitness] = c1[:fitness] = 0.1*(p1[:fitness]+p2[:fitness])/2.0

202 end

203

204 def run_ga(actions, pop, action_set, input, gen, pop_size, crate=0.8)

205 p1, p2 = binary_tournament(action_set), binary_tournament(action_set)

206 c1, c2 = copy_classifier(p1), copy_classifier(p2)

207 crossover(c1, c2, p1, p2) if rand() < crate

208 [c1,c2].each do |c|

209 mutation(c, actions, input)

210 insert_in_pop(c, pop)

211 end

212 while pop.inject(0) {|s,c| s+c[:num]} > pop_size

213 delete_from_pop(pop, pop_size)

214 end

215 end

216

217 def train_model(pop_size, max_gens, actions, ga_freq)

218 pop, perf = [], []

219 max_gens.times do |gen|

220 explore = gen.modulo(2)==0

221 input = random_bitstring()

222 match_set = generate_match_set(input, pop, actions, gen, pop_size)

223 pred_array = generate_prediction(match_set)

224 action = select_action(pred_array, explore)

225 reward = (target_function(input)==action.to_i) ? 1000.0 : 0.0

226 if explore

227 action_set = match_set.select{|c| c[:action]==action}

228 update_set(action_set, reward)

229 update_fitness(action_set)

230 if can_run_genetic_algorithm(action_set, gen, ga_freq)

231 action_set.each {|c| c[:lasttime] = gen}

232 run_ga(actions, pop, action_set, input, gen, pop_size)

233 end

234 else

235 e,a = (pred_array[action][:weight]-reward).abs, ((reward==1000.0)?1:0)

236 perf << {:error=>e,:correct=>a}

237 if perf.size >= 50

238 err = (perf.inject(0){|s,x|s+x[:error]}/perf.size).round

239 acc = perf.inject(0.0){|s,x|s+x[:correct]}/perf.size

240 puts " >iter=#{gen+1} size=#{pop.size}, error=#{err}, acc=#{acc}"

241 perf = []

242 end

243 end

244 end

245 return pop

246 end

247
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248 def test_model(system, num_trials=50)

249 correct = 0

250 num_trials.times do

251 input = random_bitstring()

252 match_set = system.select{|c| does_match?(input, c[:condition])}

253 pred_array = generate_prediction(match_set)

254 action = select_action(pred_array, false)

255 correct += 1 if target_function(input) == action.to_i

256 end

257 puts "Done! classified correctly=#{correct}/#{num_trials}"

258 return correct

259 end

260

261 def execute(pop_size, max_gens, actions, ga_freq)

262 system = train_model(pop_size, max_gens, actions, ga_freq)

263 test_model(system)

264 return system

265 end

266

267 if __FILE__ == $0

268 # problem configuration

269 all_actions = ['0', '1']

270 # algorithm configuration

271 max_gens, pop_size = 5000, 200

272 ga_freq = 25

273 # execute the algorithm

274 execute(pop_size, max_gens, all_actions, ga_freq)

275 end

Listing 3.8: Learning Classifier System in Ruby

3.9.6 References

Primary Sources

Early ideas on the theory of Learning Classifier Systems were proposed
by Holland [4, 7], culminating in a standardized presentation a few years
later [5]. A number of implementations of the theoretical system were
investigated, although a taxonomy of the two main streams was proposed by
De Jong [9]: 1) Pittsburgh-style proposed by Smith [11, 12] and 2) Holland-
style or Michigan-style Learning classifiers that are further comprised of the
Zeroth-level classifier (ZCS) [13] and the accuracy-based classifier (XCS)
[14].

Learn More

Booker, Goldberg, and Holland provide a classical introduction to Learning
Classifier Systems including an overview of the state of the field and the
algorithm in detail [1]. Wilson and Goldberg also provide an introduction
and review of the approach, taking a more critical stance [16]. Holmes et al.
provide a contemporary review of the field focusing both on a description of
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the method and application areas to which the approach has been demon-
strated successfully [8]. Lanzi, Stolzmann, and Wilson provide a seminal
book in the field as a collection of papers covering the basics, advanced
topics, and demonstration applications; a particular highlight from this book
is the first section that provides a concise description of Learning Classifier
Systems by many leaders and major contributors to the field [6], providing
rare insight. Another paper from Lanzi and Riolo’s book provides a detailed
review of the development of the approach as it matured throughout the
1990s [10]. Bull and Kovacs provide a second book introductory book to the
field focusing on the theory of the approach and its practical application [2].
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3.10 Non-dominated Sorting Genetic Algorithm

Non-dominated Sorting Genetic Algorithm, Nondominated Sorting Genetic
Algorithm, Fast Elitist Non-dominated Sorting Genetic Algorithm, NSGA,
NSGA-II, NSGAII.

3.10.1 Taxonomy

The Non-dominated Sorting Genetic Algorithm is a Multiple Objective Opti-
mization (MOO) algorithm and is an instance of an Evolutionary Algorithm
from the field of Evolutionary Computation. Refer to Section 9.5.3 for more
information and references on Multiple Objective Optimization. NSGA
is an extension of the Genetic Algorithm for multiple objective function
optimization (Section 3.2). It is related to other Evolutionary Multiple
Objective Optimization Algorithms (EMOO) (or Multiple Objective Evolu-
tionary Algorithms MOEA) such as the Vector-Evaluated Genetic Algorithm
(VEGA), Strength Pareto Evolutionary Algorithm (SPEA) (Section 3.11),
and Pareto Archived Evolution Strategy (PAES). There are two versions of
the algorithm, the classical NSGA and the updated and currently canonical
form NSGA-II.

3.10.2 Strategy

The objective of the NSGA algorithm is to improve the adaptive fit of a
population of candidate solutions to a Pareto front constrained by a set
of objective functions. The algorithm uses an evolutionary process with
surrogates for evolutionary operators including selection, genetic crossover,
and genetic mutation. The population is sorted into a hierarchy of sub-
populations based on the ordering of Pareto dominance. Similarity between
members of each sub-group is evaluated on the Pareto front, and the
resulting groups and similarity measures are used to promote a diverse front
of non-dominated solutions.

3.10.3 Procedure

Algorithm 3.10.1 provides a pseudocode listing of the Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II) for minimizing a cost function. The
SortByRankAndDistance function orders the population into a hierarchy
of non-dominated Pareto fronts. The CrowdingDistanceAssignment cal-
culates the average distance between members of each front on the front
itself. Refer to Deb et al. for a clear presentation of the Pseudocode
and explanation of these functions [4]. The CrossoverAndMutation func-
tion performs the classical crossover and mutation genetic operators of
the Genetic Algorithm. Both the SelectParentsByRankAndDistance and
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SortByRankAndDistance functions discriminate members of the popula-
tion first by rank (order of dominated precedence of the front to which
the solution belongs) and then distance within the front (calculated by
CrowdingDistanceAssignment).

Algorithm 3.10.1: Pseudocode for NSGAII.

Input: Populationsize, ProblemSize, Pcrossover, Pmutation

Output: Children
Population ← InitializePopulation(Populationsize, ProblemSize);1

EvaluateAgainstObjectiveFunctions(Population);2

FastNondominatedSort(Population);3

Selected ← SelectParentsByRank(Population, Populationsize);4

Children ← CrossoverAndMutation(Selected, Pcrossover, Pmutation);5

while ¬StopCondition() do6

EvaluateAgainstObjectiveFunctions(Children);7

Union ← Merge(Population, Children);8

Fronts ← FastNondominatedSort(Union);9

Parents ← ∅;10

FrontL ← ∅;11

foreach Fronti ∈ Fronts do12

CrowdingDistanceAssignment(Fronti);13

if Size(Parents)+Size(Fronti) > Populationsize then14

FrontL ← i;15

Break();16

else17

Parents ← Merge(Parents, Fronti);18

end19

end20

if Size(Parents)<Populationsize then21

FrontL ← SortByRankAndDistance(FrontL);22

for P1 to PPopulationsize−Size(FrontL ) do23

Parents ← Pi;24

end25

end26

Selected ← SelectParentsByRankAndDistance(Parents,27

Populationsize);
Population ← Children;28

Children ← CrossoverAndMutation(Selected, Pcrossover,29

Pmutation);
end30

return Children;31
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3.10.4 Heuristics

� NSGA was designed for and is suited to continuous function multiple
objective optimization problem instances.

� A binary representation can be used in conjunction with classical
genetic operators such as one-point crossover and point mutation.

� A real-valued representation is recommended for continuous function
optimization problems, in turn requiring representation specific genetic
operators such as Simulated Binary Crossover (SBX) and polynomial
mutation [2].

3.10.5 Code Listing

Listing 3.9 provides an example of the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) implemented in the Ruby Programming Language.
The demonstration problem is an instance of continuous multiple objective
function optimization called SCH (problem one in [4]). The problem seeks
the minimum of two functions: f1 =

∑n

i=1 x
2
i and f2 =

∑n

i=1(xi − 2)2,
−10 ≤ xi ≤ 10 and n = 1. The optimal solution for this function are
x ∈ [0, 2]. The algorithm is an implementation of NSGA-II based on
the presentation by Deb et al. [4]. The algorithm uses a binary string
representation (16 bits per objective function parameter) that is decoded
and rescaled to the function domain. The implementation uses a uniform
crossover operator and point mutations with a fixed mutation rate of 1

L
,

where L is the number of bits in a solution’s binary string.

1 def objective1(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x**2.0)}

3 end

4

5 def objective2(vector)

6 return vector.inject(0.0) {|sum, x| sum + ((x-2.0)**2.0)}

7 end

8

9 def decode(bitstring, search_space, bits_per_param)

10 vector = []

11 search_space.each_with_index do |bounds, i|

12 off, sum = i*bits_per_param, 0.0

13 param = bitstring[off...(off+bits_per_param)].reverse

14 param.size.times do |j|

15 sum += ((param[j].chr=='1') ? 1.0 : 0.0) * (2.0 ** j.to_f)

16 end

17 min, max = bounds

18 vector << min + ((max-min)/((2.0**bits_per_param.to_f)-1.0)) * sum

19 end

20 return vector

21 end

22

23 def random_bitstring(num_bits)
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24 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

25 end

26

27 def point_mutation(bitstring, rate=1.0/bitstring.size)

28 child = ""

29 bitstring.size.times do |i|

30 bit = bitstring[i].chr

31 child << ((rand()<rate) ? ((bit=='1') ? "0" : "1") : bit)

32 end

33 return child

34 end

35

36 def crossover(parent1, parent2, rate)

37 return ""+parent1 if rand()>=rate

38 child = ""

39 parent1.size.times do |i|

40 child << ((rand()<0.5) ? parent1[i].chr : parent2[i].chr)

41 end

42 return child

43 end

44

45 def reproduce(selected, pop_size, p_cross)

46 children = []

47 selected.each_with_index do |p1, i|

48 p2 = (i.modulo(2)==0) ? selected[i+1] : selected[i-1]

49 p2 = selected[0] if i == selected.size-1

50 child = {}

51 child[:bitstring] = crossover(p1[:bitstring], p2[:bitstring], p_cross)

52 child[:bitstring] = point_mutation(child[:bitstring])

53 children << child

54 break if children.size >= pop_size

55 end

56 return children

57 end

58

59 def calculate_objectives(pop, search_space, bits_per_param)

60 pop.each do |p|

61 p[:vector] = decode(p[:bitstring], search_space, bits_per_param)

62 p[:objectives] = [objective1(p[:vector]), objective2(p[:vector])]

63 end

64 end

65

66 def dominates(p1, p2)

67 p1[:objectives].each_index do |i|

68 return false if p1[:objectives][i] > p2[:objectives][i]

69 end

70 return true

71 end

72

73 def fast_nondominated_sort(pop)

74 fronts = Array.new(1){[]}

75 pop.each do |p1|

76 p1[:dom_count], p1[:dom_set] = 0, []

77 pop.each do |p2|

78 if dominates(p1, p2)

79 p1[:dom_set] << p2
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80 elsif dominates(p2, p1)

81 p1[:dom_count] += 1

82 end

83 end

84 if p1[:dom_count] == 0

85 p1[:rank] = 0

86 fronts.first << p1

87 end

88 end

89 curr = 0

90 begin

91 next_front = []

92 fronts[curr].each do |p1|

93 p1[:dom_set].each do |p2|

94 p2[:dom_count] -= 1

95 if p2[:dom_count] == 0

96 p2[:rank] = (curr+1)

97 next_front << p2

98 end

99 end

100 end

101 curr += 1

102 fronts << next_front if !next_front.empty?

103 end while curr < fronts.size

104 return fronts

105 end

106

107 def calculate_crowding_distance(pop)

108 pop.each {|p| p[:dist] = 0.0}

109 num_obs = pop.first[:objectives].size

110 num_obs.times do |i|

111 min = pop.min{|x,y| x[:objectives][i]<=>y[:objectives][i]}

112 max = pop.max{|x,y| x[:objectives][i]<=>y[:objectives][i]}

113 rge = max[:objectives][i] - min[:objectives][i]

114 pop.first[:dist], pop.last[:dist] = 1.0/0.0, 1.0/0.0

115 next if rge == 0.0

116 (1...(pop.size-1)).each do |j|

117 pop[j][:dist]+=(pop[j+1][:objectives][i]-pop[j-1][:objectives][i])/rge

118 end

119 end

120 end

121

122 def crowded_comparison_operator(x,y)

123 return y[:dist]<=>x[:dist] if x[:rank] == y[:rank]

124 return x[:rank]<=>y[:rank]

125 end

126

127 def better(x,y)

128 if !x[:dist].nil? and x[:rank] == y[:rank]

129 return (x[:dist]>y[:dist]) ? x : y

130 end

131 return (x[:rank]<y[:rank]) ? x : y

132 end

133

134 def select_parents(fronts, pop_size)

135 fronts.each {|f| calculate_crowding_distance(f)}
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136 offspring, last_front = [], 0

137 fronts.each do |front|

138 break if (offspring.size+front.size) > pop_size

139 front.each {|p| offspring << p}

140 last_front += 1

141 end

142 if (remaining = pop_size-offspring.size) > 0

143 fronts[last_front].sort! {|x,y| crowded_comparison_operator(x,y)}

144 offspring += fronts[last_front][0...remaining]

145 end

146 return offspring

147 end

148

149 def weighted_sum(x)

150 return x[:objectives].inject(0.0) {|sum, x| sum+x}

151 end

152

153 def search(search_space, max_gens, pop_size, p_cross, bits_per_param=16)

154 pop = Array.new(pop_size) do |i|

155 {:bitstring=>random_bitstring(search_space.size*bits_per_param)}

156 end

157 calculate_objectives(pop, search_space, bits_per_param)

158 fast_nondominated_sort(pop)

159 selected = Array.new(pop_size) do

160 better(pop[rand(pop_size)], pop[rand(pop_size)])

161 end

162 children = reproduce(selected, pop_size, p_cross)

163 calculate_objectives(children, search_space, bits_per_param)

164 max_gens.times do |gen|

165 union = pop + children

166 fronts = fast_nondominated_sort(union)

167 parents = select_parents(fronts, pop_size)

168 selected = Array.new(pop_size) do

169 better(parents[rand(pop_size)], parents[rand(pop_size)])

170 end

171 pop = children

172 children = reproduce(selected, pop_size, p_cross)

173 calculate_objectives(children, search_space, bits_per_param)

174 best = parents.sort!{|x,y| weighted_sum(x)<=>weighted_sum(y)}.first

175 best_s = "[x=#{best[:vector]}, objs=#{best[:objectives].join(', ')}]"

176 puts " > gen=#{gen+1}, fronts=#{fronts.size}, best=#{best_s}"

177 end

178 union = pop + children

179 fronts = fast_nondominated_sort(union)

180 parents = select_parents(fronts, pop_size)

181 return parents

182 end

183

184 if __FILE__ == $0

185 # problem configuration

186 problem_size = 1

187 search_space = Array.new(problem_size) {|i| [-10, 10]}

188 # algorithm configuration

189 max_gens = 50

190 pop_size = 100

191 p_cross = 0.98
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192 # execute the algorithm

193 pop = search(search_space, max_gens, pop_size, p_cross)

194 puts "done!"

195 end

Listing 3.9: NSGA-II in Ruby

3.10.6 References

Primary Sources

Srinivas and Deb proposed the NSGA inspired by Goldberg’s notion of a
non-dominated sorting procedure [6]. Goldberg proposed a non-dominated
sorting procedure in his book in considering the biases in the Pareto optimal
solutions provided by VEGA [5]. Srinivas and Deb’s NSGA used the sorting
procedure as a ranking selection method, and a fitness sharing niching
method to maintain stable sub-populations across the Pareto front. Deb
et al. later extended NSGA to address three criticism of the approach: the
O(mN3) time complexity, the lack of elitism, and the need for a sharing
parameter for the fitness sharing niching method [3, 4].

Learn More

Deb provides in depth coverage of Evolutionary Multiple Objective Op-
timization algorithms in his book, including a detailed description of the
NSGA in Chapter 5 [1].
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3.11 Strength Pareto Evolutionary Algorithm

Strength Pareto Evolutionary Algorithm, SPEA, SPEA2.

3.11.1 Taxonomy

Strength Pareto Evolutionary Algorithm is a Multiple Objective Optimiza-
tion (MOO) algorithm and an Evolutionary Algorithm from the field of
Evolutionary Computation. It belongs to the field of Evolutionary Multiple
Objective (EMO) algorithms. Refer to Section 9.5.3 for more information
and references on Multiple Objective Optimization. Strength Pareto Evo-
lutionary Algorithm is an extension of the Genetic Algorithm for multiple
objective optimization problems (Section 3.2). It is related to sibling Evo-
lutionary Algorithms such as Non-dominated Sorting Genetic Algorithm
(NSGA) (Section 3.10), Vector-Evaluated Genetic Algorithm (VEGA), and
Pareto Archived Evolution Strategy (PAES). There are two versions of
SPEA, the original SPEA algorithm and the extension SPEA2. Additional
extensions include SPEA+ and iSPEA.

3.11.2 Strategy

The objective of the algorithm is to locate and and maintain a front of
non-dominated solutions, ideally a set of Pareto optimal solutions. This is
achieved by using an evolutionary process (with surrogate procedures for
genetic recombination and mutation) to explore the search space, and a
selection process that uses a combination of the degree to which a candi-
date solution is dominated (strength) and an estimation of density of the
Pareto front as an assigned fitness. An archive of the non-dominated set is
maintained separate from the population of candidate solutions used in the
evolutionary process, providing a form of elitism.

3.11.3 Procedure

Algorithm 3.11.1 provides a pseudocode listing of the Strength Pareto
Evolutionary Algorithm 2 (SPEA2) for minimizing a cost function. The
CalculateRawFitness function calculates the raw fitness as the sum of the
strength values of the solutions that dominate a given candidate, where
strength is the number of solutions that a give solution dominate. The
CandidateDensity function estimates the density of an area of the Pareto
front as 1.0

σk+2
where σk is the Euclidean distance of the objective values

between a given solution the kth nearest neighbor of the solution, and k is
the square root of the size of the population and archive combined. The
PopulateWithRemainingBest function iteratively fills the archive with the
remaining candidate solutions in order of fitness. The RemoveMostSimilar
function truncates the archive population removing those members with the
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smallest σk values as calculated against the archive. The SelectParents

function selects parents from a population using a Genetic Algorithm se-
lection method such as binary tournament selection. The CrossoverAnd-

Mutation function performs the crossover and mutation genetic operators
from the Genetic Algorithm.

Algorithm 3.11.1: Pseudocode for SPEA2.

Input: Populationsize, Archivesize, ProblemSize, Pcrossover,
Pmutation

Output: Archive
Population ← InitializePopulation(Populationsize, ProblemSize);1

Archive ← ∅;2

while ¬StopCondition() do3

for Si ∈ Population do4

Siobjectives ← CalculateObjectives(Si);5

end6

Union ← Population + Archive;7

for Si ∈ Union do8

Siraw ← CalculateRawFitness(Si, Union);9

Sidensity ← CalculateSolutionDensity(Si, Union);10

Sifitness ← Siraw + Sidensity;11

end12

Archive ← GetNonDominated(Union);13

if Size(Archive) < Archivesize then14

PopulateWithRemainingBest(Union, Archive, Archivesize);15

else if Size(Archive) > Archivesize then16

RemoveMostSimilar(Archive, Archivesize);17

end18

Selected ← SelectParents(Archive, Populationsize);19

Population ← CrossoverAndMutation(Selected, Pcrossover,20

Pmutation);
end21

return GetNonDominatedArchive;22

3.11.4 Heuristics

� SPEA was designed for and is suited to combinatorial and continuous
function multiple objective optimization problem instances.

� A binary representation can be used for continuous function optimiza-
tion problems in conjunction with classical genetic operators such as
one-point crossover and point mutation.
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� A k value of 1 may be used for efficiency whilst still providing useful
results.

� The size of the archive is commonly smaller than the size of the
population.

� There is a lot of room for implementation optimization in density and
Pareto dominance calculations.

3.11.5 Code Listing

Listing 3.10 provides an example of the Strength Pareto Evolutionary
Algorithm 2 (SPEA2) implemented in the Ruby Programming Language.
The demonstration problem is an instance of continuous multiple objective
function optimization called SCH (problem one in [1]). The problem seeks
the minimum of two functions: f1 =

∑n

i=1 x
2
i and f2 =

∑n

i=1(xi − 2)2,
−10 ≤ xi ≤ 10 and n = 1. The optimal solutions for this function are
x ∈ [0, 2]. The algorithm is an implementation of SPEA2 based on the
presentation by Zitzler, Laumanns, and Thiele [5]. The algorithm uses a
binary string representation (16 bits per objective function parameter) that
is decoded and rescaled to the function domain. The implementation uses a
uniform crossover operator and point mutations with a fixed mutation rate
of 1

L
, where L is the number of bits in a solution’s binary string.

1 def objective1(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x**2.0)}

3 end

4

5 def objective2(vector)

6 return vector.inject(0.0) {|sum, x| sum + ((x-2.0)**2.0)}

7 end

8

9 def decode(bitstring, search_space, bits_per_param)

10 vector = []

11 search_space.each_with_index do |bounds, i|

12 off, sum = i*bits_per_param, 0.0

13 param = bitstring[off...(off+bits_per_param)].reverse

14 param.size.times do |j|

15 sum += ((param[j].chr=='1') ? 1.0 : 0.0) * (2.0 ** j.to_f)

16 end

17 min, max = bounds

18 vector << min + ((max-min)/((2.0**bits_per_param.to_f)-1.0)) * sum

19 end

20 return vector

21 end

22

23 def point_mutation(bitstring, rate=1.0/bitstring.size)

24 child = ""

25 bitstring.size.times do |i|

26 bit = bitstring[i].chr

27 child << ((rand()<rate) ? ((bit=='1') ? "0" : "1") : bit)

28 end
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29 return child

30 end

31

32 def binary_tournament(pop)

33 i, j = rand(pop.size), rand(pop.size)

34 j = rand(pop.size) while j==i

35 return (pop[i][:fitness] < pop[j][:fitness]) ? pop[i] : pop[j]

36 end

37

38 def crossover(parent1, parent2, rate)

39 return ""+parent1 if rand()>=rate

40 child = ""

41 parent1.size.times do |i|

42 child << ((rand()<0.5) ? parent1[i].chr : parent2[i].chr)

43 end

44 return child

45 end

46

47 def reproduce(selected, pop_size, p_cross)

48 children = []

49 selected.each_with_index do |p1, i|

50 p2 = (i.modulo(2)==0) ? selected[i+1] : selected[i-1]

51 p2 = selected[0] if i == selected.size-1

52 child = {}

53 child[:bitstring] = crossover(p1[:bitstring], p2[:bitstring], p_cross)

54 child[:bitstring] = point_mutation(child[:bitstring])

55 children << child

56 break if children.size >= pop_size

57 end

58 return children

59 end

60

61 def random_bitstring(num_bits)

62 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

63 end

64

65 def calculate_objectives(pop, search_space, bits_per_param)

66 pop.each do |p|

67 p[:vector] = decode(p[:bitstring], search_space, bits_per_param)

68 p[:objectives] = []

69 p[:objectives] << objective1(p[:vector])

70 p[:objectives] << objective2(p[:vector])

71 end

72 end

73

74 def dominates?(p1, p2)

75 p1[:objectives].each_index do |i|

76 return false if p1[:objectives][i] > p2[:objectives][i]

77 end

78 return true

79 end

80

81 def weighted_sum(x)

82 return x[:objectives].inject(0.0) {|sum, x| sum+x}

83 end

84
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85 def euclidean_distance(c1, c2)

86 sum = 0.0

87 c1.each_index {|i| sum += (c1[i]-c2[i])**2.0}

88 return Math.sqrt(sum)

89 end

90

91 def calculate_dominated(pop)

92 pop.each do |p1|

93 p1[:dom_set] = pop.select {|p2| p1!=p2 and dominates?(p1, p2) }

94 end

95 end

96

97 def calculate_raw_fitness(p1, pop)

98 return pop.inject(0.0) do |sum, p2|

99 (dominates?(p2, p1)) ? sum + p2[:dom_set].size.to_f : sum

100 end

101 end

102

103 def calculate_density(p1, pop)

104 pop.each do |p2|

105 p2[:dist] = euclidean_distance(p1[:objectives], p2[:objectives])

106 end

107 list = pop.sort{|x,y| x[:dist]<=>y[:dist]}

108 k = Math.sqrt(pop.size).to_i

109 return 1.0 / (list[k][:dist] + 2.0)

110 end

111

112 def calculate_fitness(pop, archive, search_space, bits_per_param)

113 calculate_objectives(pop, search_space, bits_per_param)

114 union = archive + pop

115 calculate_dominated(union)

116 union.each do |p|

117 p[:raw_fitness] = calculate_raw_fitness(p, union)

118 p[:density] = calculate_density(p, union)

119 p[:fitness] = p[:raw_fitness] + p[:density]

120 end

121 end

122

123 def environmental_selection(pop, archive, archive_size)

124 union = archive + pop

125 environment = union.select {|p| p[:fitness]<1.0}

126 if environment.size < archive_size

127 union.sort!{|x,y| x[:fitness]<=>y[:fitness]}

128 union.each do |p|

129 environment << p if p[:fitness] >= 1.0

130 break if environment.size >= archive_size

131 end

132 elsif environment.size > archive_size

133 begin

134 k = Math.sqrt(environment.size).to_i

135 environment.each do |p1|

136 environment.each do |p2|

137 p2[:dist] = euclidean_distance(p1[:objectives], p2[:objectives])

138 end

139 list = environment.sort{|x,y| x[:dist]<=>y[:dist]}

140 p1[:density] = list[k][:dist]
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141 end

142 environment.sort!{|x,y| x[:density]<=>y[:density]}

143 environment.shift

144 end until environment.size <= archive_size

145 end

146 return environment

147 end

148

149 def search(search_space, max_gens, pop_size, archive_size, p_cross,

bits_per_param=16)

150 pop = Array.new(pop_size) do |i|

151 {:bitstring=>random_bitstring(search_space.size*bits_per_param)}

152 end

153 gen, archive = 0, []

154 begin

155 calculate_fitness(pop, archive, search_space, bits_per_param)

156 archive = environmental_selection(pop, archive, archive_size)

157 best = archive.sort{|x,y| weighted_sum(x)<=>weighted_sum(y)}.first

158 puts ">gen=#{gen}, objs=#{best[:objectives].join(', ')}"

159 break if gen >= max_gens

160 selected = Array.new(pop_size){binary_tournament(archive)}

161 pop = reproduce(selected, pop_size, p_cross)

162 gen += 1

163 end while true

164 return archive

165 end

166

167 if __FILE__ == $0

168 # problem configuration

169 problem_size = 1

170 search_space = Array.new(problem_size) {|i| [-10, 10]}

171 # algorithm configuration

172 max_gens = 50

173 pop_size = 80

174 archive_size = 40

175 p_cross = 0.90

176 # execute the algorithm

177 pop = search(search_space, max_gens, pop_size, archive_size, p_cross)

178 puts "done!"

179 end

Listing 3.10: SPEA2 in Ruby

3.11.6 References

Primary Sources

Zitzler and Thiele introduced the Strength Pareto Evolutionary Algorithm
as a technical report on a multiple objective optimization algorithm with
elitism and clustering along the Pareto front [6]. The technical report
was later published [7]. The Strength Pareto Evolutionary Algorithm was
developed as a part of Zitzler’s PhD thesis [2]. Zitzler, Laumanns, and
Thiele later extended SPEA to address some inefficiencies of the approach,
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the algorithm was called SPEA2 and was released as a technical report [4]
and later published [5]. SPEA2 provides fine-grained fitness assignment,
density estimation of the Pareto front, and an archive truncation operator.

Learn More

Zitzler, Laumanns, and Bleuler provide a tutorial on SPEA2 as a book
chapter that considers the basics of multiple objective optimization, and the
differences from SPEA and the other related Multiple Objective Evolutionary
Algorithms [3].
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Chapter 4

Physical Algorithms

4.1 Overview

This chapter describes Physical Algorithms.

4.1.1 Physical Properties

Physical algorithms are those algorithms inspired by a physical process. The
described physical algorithm generally belong to the fields of Metaheustics
and Computational Intelligence, although do not fit neatly into the existing
categories of the biological inspired techniques (such as Swarm, Immune,
Neural, and Evolution). In this vein, they could just as easily be referred to
as nature inspired algorithms.

The inspiring physical systems range from metallurgy, music, the inter-
play between culture and evolution, and complex dynamic systems such as
avalanches. They are generally stochastic optimization algorithms with a
mixtures of local (neighborhood-based) and global search techniques.

4.1.2 Extensions

There are many other algorithms and classes of algorithm that were not
described inspired by natural systems, not limited to:

� More Annealing: Extensions to the classical Simulated Annealing
algorithm, such as Adaptive Simulated Annealing (formally Very Fast
Simulated Re-annealing) [3, 4], and Quantum Annealing [1, 2].

� Stochastic tunneling: based on the physical idea of a particle
tunneling through structures [5].

167
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4.2 Simulated Annealing

Simulated Annealing, SA.

4.2.1 Taxonomy

Simulated Annealing is a global optimization algorithm that belongs to the
field of Stochastic Optimization and Metaheuristics. Simulated Annealing
is an adaptation of the Metropolis-Hastings Monte Carlo algorithm and is
used in function optimization. Like the Genetic Algorithm (Section 3.2), it
provides a basis for a large variety of extensions and specialization’s of the
general method not limited to Parallel Simulated Annealing, Fast Simulated
Annealing, and Adaptive Simulated Annealing.

4.2.2 Inspiration

Simulated Annealing is inspired by the process of annealing in metallurgy. In
this natural process a material is heated and slowly cooled under controlled
conditions to increase the size of the crystals in the material and reduce their
defects. This has the effect of improving the strength and durability of the
material. The heat increases the energy of the atoms allowing them to move
freely, and the slow cooling schedule allows a new low-energy configuration
to be discovered and exploited.

4.2.3 Metaphor

Each configuration of a solution in the search space represents a different
internal energy of the system. Heating the system results in a relaxation of
the acceptance criteria of the samples taken from the search space. As the
system is cooled, the acceptance criteria of samples is narrowed to focus on
improving movements. Once the system has cooled, the configuration will
represent a sample at or close to a global optimum.

4.2.4 Strategy

The information processing objective of the technique is to locate the
minimum cost configuration in the search space. The algorithms plan
of action is to probabilistically re-sample the problem space where the
acceptance of new samples into the currently held sample is managed by a
probabilistic function that becomes more discerning of the cost of samples it
accepts over the execution time of the algorithm. This probabilistic decision
is based on the Metropolis-Hastings algorithm for simulating samples from
a thermodynamic system.
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4.2.5 Procedure

Algorithm 4.2.1 provides a pseudocode listing of the main Simulated An-
nealing algorithm for minimizing a cost function.

Algorithm 4.2.1: Pseudocode for Simulated Annealing.

Input: ProblemSize, iterationsmax, tempmax

Output: Sbest

Scurrent ← CreateInitialSolution(ProblemSize);1

Sbest ← Scurrent;2

for i = 1 to iterationsmax do3

Si ← CreateNeighborSolution(Scurrent);4

tempcurr ← CalculateTemperature(i, tempmax);5

if Cost(Si) ≤ Cost(Scurrent) then6

Scurrent ← Si;7

if Cost(Si) ≤ Cost(Sbest) then8

Sbest ← Si;9

end10

else if Exp( Cost(Scurrent )−Cost(Si )
tempcurr

) > Rand() then11

Scurrent ← Si;12

end13

end14

return Sbest;15

4.2.6 Heuristics

� Simulated Annealing was designed for use with combinatorial optimiza-
tion problems, although it has been adapted for continuous function
optimization problems.

� The convergence proof suggests that with a long enough cooling period,
the system will always converge to the global optimum. The downside
of this theoretical finding is that the number of samples taken for
optimum convergence to occur on some problems may be more than
a complete enumeration of the search space.

� Performance improvements can be given with the selection of a can-
didate move generation scheme (neighborhood) that is less likely to
generate candidates of significantly higher cost.

� Restarting the cooling schedule using the best found solution so far
can lead to an improved outcome on some problems.

� A common acceptance method is to always accept improving solu-
tions and accept worse solutions with a probability of P (accept) ←
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exp( e−e′

T
), where T is the current temperature, e is the energy (or cost)

of the current solution and e′ is the energy of a candidate solution
being considered.

� The size of the neighborhood considered in generating candidate
solutions may also change over time or be influenced by the tempera-
ture, starting initially broad and narrowing with the execution of the
algorithm.

� A problem specific heuristic method can be used to provide the starting
point for the search.

4.2.7 Code Listing

Listing 4.1 provides an example of the Simulated Annealing algorithm
implemented in the Ruby Programming Language. The algorithm is applied
to the Berlin52 instance of the Traveling Salesman Problem (TSP), taken
from the TSPLIB. The problem seeks a permutation of the order to visit
cities (called a tour) that minimizes the total distance traveled. The optimal
tour distance for Berlin52 instance is 7542 units.

The algorithm implementation uses a two-opt procedure for the neigh-
borhood function and the classical P (accept)← exp( e−e′

T
) as the acceptance

function. A simple linear cooling regime is used with a large initial temper-
ature which is decreased each iteration.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(permutation, cities)

6 distance =0

7 permutation.each_with_index do |c1, i|

8 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def stochastic_two_opt!(perm)

24 c1, c2 = rand(perm.size), rand(perm.size)

25 exclude = [c1]

26 exclude << ((c1==0) ? perm.size-1 : c1-1)
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27 exclude << ((c1==perm.size-1) ? 0 : c1+1)

28 c2 = rand(perm.size) while exclude.include?(c2)

29 c1, c2 = c2, c1 if c2 < c1

30 perm[c1...c2] = perm[c1...c2].reverse

31 return perm

32 end

33

34 def create_neighbor(current, cities)

35 candidate = {}

36 candidate[:vector] = Array.new(current[:vector])

37 stochastic_two_opt!(candidate[:vector])

38 candidate[:cost] = cost(candidate[:vector], cities)

39 return candidate

40 end

41

42 def should_accept?(candidate, current, temp)

43 return true if candidate[:cost] <= current[:cost]

44 return Math.exp((current[:cost] - candidate[:cost]) / temp) > rand()

45 end

46

47 def search(cities, max_iter, max_temp, temp_change)

48 current = {:vector=>random_permutation(cities)}

49 current[:cost] = cost(current[:vector], cities)

50 temp, best = max_temp, current

51 max_iter.times do |iter|

52 candidate = create_neighbor(current, cities)

53 temp = temp * temp_change

54 current = candidate if should_accept?(candidate, current, temp)

55 best = candidate if candidate[:cost] < best[:cost]

56 if (iter+1).modulo(10) == 0

57 puts " > iteration #{(iter+1)}, temp=#{temp}, best=#{best[:cost]}"

58 end

59 end

60 return best

61 end

62

63 if __FILE__ == $0

64 # problem configuration

65 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

66 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

67 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

68 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

69 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

70 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

71 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

72 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

73 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

74 # algorithm configuration

75 max_iterations = 2000

76 max_temp = 100000.0

77 temp_change = 0.98

78 # execute the algorithm

79 best = search(berlin52, max_iterations, max_temp, temp_change)

80 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

81 end
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Listing 4.1: Simulated Annealing in Ruby

4.2.8 References

Primary Sources

Simulated Annealing is credited to Kirkpatrick, Gelatt, and Vecchi in 1983
[5]. Granville, Krivanek, and Rasson provided the proof for convergence
for Simulated Annealing in 1994 [2]. There were a number of early studies
and application papers such as Kirkpatrick’s investigation into the TSP
and minimum cut problems [4], and a study by Vecchi and Kirkpatrick on
Simulated Annealing applied to the global wiring problem [7].

Learn More

There are many excellent reviews of Simulated Annealing, not limited to
the review by Ingber that describes improved methods such as Adaptive
Simulated Annealing, Simulated Quenching, and hybrid methods [3]. There
are books dedicated to Simulated Annealing, applications and variations.
Two examples of good texts include “Simulated Annealing: Theory and
Applications” by Laarhoven and Aarts [6] that provides an introduction
to the technique and applications, and “Simulated Annealing: Paralleliza-
tion Techniques” by Robert Azencott [1] that focuses on the theory and
applications of parallel methods for Simulated Annealing.
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4.3 Extremal Optimization

Extremal Optimization, EO.

4.3.1 Taxonomy

Extremal Optimization is a stochastic search technique that has the prop-
erties of being a local and global search method. It is generally related
to hill-climbing algorithms and provides the basis for extensions such as
Generalized Extremal Optimization.

4.3.2 Inspiration

Extremal Optimization is inspired by the Bak-Sneppen self-organized crit-
icality model of co-evolution from the field of statistical physics. The
self-organized criticality model suggests that some dynamical systems have
a critical point as an attractor, whereby the systems exhibit periods of
slow movement or accumulation followed by short periods of avalanche or
instability. Examples of such systems include land formation, earthquakes,
and the dynamics of sand piles. The Bak-Sneppen model considers these
dynamics in co-evolutionary systems and in the punctuated equilibrium
model, which is described as long periods of status followed by short periods
of extinction and large evolutionary change.

4.3.3 Metaphor

The dynamics of the system result in the steady improvement of a candidate
solution with sudden and large crashes in the quality of the candidate
solution. These dynamics allow two main phases of activity in the system:
1) to exploit higher quality solutions in a local search like manner, and 2)
escape possible local optima with a population crash and explore the search
space for a new area of high quality solutions.

4.3.4 Strategy

The objective of the information processing strategy is to iteratively identify
the worst performing components of a given solution and replace or swap
them with other components. This is achieved through the allocation of cost
to the components of the solution based on their contribution to the overall
cost of the solution in the problem domain. Once components are assessed
they can be ranked and the weaker components replaced or switched with a
randomly selected component.
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4.3.5 Procedure

Algorithm 4.3.1 provides a pseudocode listing of the Extremal Optimization
algorithm for minimizing a cost function. The deterministic selection of the
worst component in the SelectWeakComponent function and replacement
in the SelectReplacementComponent function is classical EO. If these
decisions are probabilistic making use of τ parameter, this is referred to as
τ -Extremal Optimization.

Algorithm 4.3.1: Pseudocode for Extremal Optimization.

Input: ProblemSize, iterationsmax, τ
Output: Sbest

Scurrent ← CreateInitialSolution(ProblemSize);1

Sbest ← Scurrent;2

for i = 1 to iterationsmax do3

foreach Componenti ∈ Scurrent do4

Componentcosti ← Cost(Componenti, Scurrent);5

end6

RankedComponents ← Rank(Sicomponents)7

Componenti ← SelectWeakComponent(RankedComponents,8

Componenti, τ);
Componentj ←9

SelectReplacementComponent(RankedComponents, τ);
Scandidate ← Replace(Scurrent, Componenti, Componentj);10

if Cost(Scandidate) ≤ Cost(Sbest) then11

Sbest ← Scandidate;12

end13

end14

return Sbest;15

4.3.6 Heuristics

� Extremal Optimization was designed for combinatorial optimization
problems, although variations have been applied to continuous function
optimization.

� The selection of the worst component and the replacement component
each iteration can be deterministic or probabilistic, the latter of
which is referred to as τ -Extremal Optimization given the use of a τ
parameter.

� The selection of an appropriate scoring function of the components of
a solution is the most difficult part in the application of the technique.
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� For τ -Extremal Optimization, low τ values are used (such as τ ∈
[1.2, 1.6]) have been found to be effective for the TSP.

4.3.7 Code Listing

Listing 4.2 provides an example of the Extremal Optimization algorithm
implemented in the Ruby Programming Language. The algorithm is applied
to the Berlin52 instance of the Traveling Salesman Problem (TSP), taken
from the TSPLIB. The problem seeks a permutation of the order to visit
cities (called a tour) that minimizes the total distance traveled. The optimal
tour distance for Berlin52 instance is 7542 units.

The algorithm implementation is based on the seminal work by Boettcher
and Percus [5]. A solution is comprised of a permutation of city components.
Each city can potentially form a connection to any other city, and the
connections to other cities ordered by distance may be considered its neigh-
borhood. For a given candidate solution, the city components of a solution
are scored based on the neighborhood rank of the cities to which they are
connected: fitnessk ←

3
ri+rj

, where ri and rj are the neighborhood ranks

of cities i and j against city k. A city is selected for modification probabilis-
tically where the probability of selecting a given city is proportional to n−τ

i ,
where n is the rank of city i. The longest connection is broken, and the
city is connected with another neighboring city that is also probabilistically
selected.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(permutation, cities)

6 distance =0

7 permutation.each_with_index do |c1, i|

8 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def calculate_neighbor_rank(city_number, cities, ignore=[])

24 neighbors = []

25 cities.each_with_index do |city, i|

26 next if i==city_number or ignore.include?(i)

27 neighbor = {:number=>i}
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28 neighbor[:distance] = euc_2d(cities[city_number], city)

29 neighbors << neighbor

30 end

31 return neighbors.sort!{|x,y| x[:distance] <=> y[:distance]}

32 end

33

34 def get_edges_for_city(city_number, permutation)

35 c1, c2 = nil, nil

36 permutation.each_with_index do |c, i|

37 if c == city_number

38 c1 = (i==0) ? permutation.last : permutation[i-1]

39 c2 = (i==permutation.size-1) ? permutation.first : permutation[i+1]

40 break

41 end

42 end

43 return [c1, c2]

44 end

45

46 def calculate_city_fitness(permutation, city_number, cities)

47 c1, c2 = get_edges_for_city(city_number, permutation)

48 neighbors = calculate_neighbor_rank(city_number, cities)

49 n1, n2 = -1, -1

50 neighbors.each_with_index do |neighbor,i|

51 n1 = i+1 if neighbor[:number] == c1

52 n2 = i+1 if neighbor[:number] == c2

53 break if n1!=-1 and n2!=-1

54 end

55 return 3.0 / (n1.to_f + n2.to_f)

56 end

57

58 def calculate_city_fitnesses(cities, permutation)

59 city_fitnesses = []

60 cities.each_with_index do |city, i|

61 city_fitness = {:number=>i}

62 city_fitness[:fitness] = calculate_city_fitness(permutation, i, cities)

63 city_fitnesses << city_fitness

64 end

65 return city_fitnesses.sort!{|x,y| y[:fitness] <=> x[:fitness]}

66 end

67

68 def calculate_component_probabilities(ordered_components, tau)

69 sum = 0.0

70 ordered_components.each_with_index do |component, i|

71 component[:prob] = (i+1.0)**(-tau)

72 sum += component[:prob]

73 end

74 return sum

75 end

76

77 def make_selection(components, sum_probability)

78 selection = rand()

79 components.each_with_index do |component, i|

80 selection -= (component[:prob] / sum_probability)

81 return component[:number] if selection <= 0.0

82 end

83 return components.last[:number]
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84 end

85

86 def probabilistic_selection(ordered_components, tau, exclude=[])

87 sum = calculate_component_probabilities(ordered_components, tau)

88 selected_city = nil

89 begin

90 selected_city = make_selection(ordered_components, sum)

91 end while exclude.include?(selected_city)

92 return selected_city

93 end

94

95 def vary_permutation(permutation, selected, new, long_edge)

96 perm = Array.new(permutation)

97 c1, c2 = perm.rindex(selected), perm.rindex(new)

98 p1,p2 = (c1<c2) ? [c1,c2] : [c2,c1]

99 right = (c1==perm.size-1) ? 0 : c1+1

100 if perm[right] == long_edge

101 perm[p1+1..p2] = perm[p1+1..p2].reverse

102 else

103 perm[p1...p2] = perm[p1...p2].reverse

104 end

105 return perm

106 end

107

108 def get_long_edge(edges, neighbor_distances)

109 n1 = neighbor_distances.find {|x| x[:number]==edges[0]}

110 n2 = neighbor_distances.find {|x| x[:number]==edges[1]}

111 return (n1[:distance] > n2[:distance]) ? n1[:number] : n2[:number]

112 end

113

114 def create_new_perm(cities, tau, perm)

115 city_fitnesses = calculate_city_fitnesses(cities, perm)

116 selected_city = probabilistic_selection(city_fitnesses.reverse, tau)

117 edges = get_edges_for_city(selected_city, perm)

118 neighbors = calculate_neighbor_rank(selected_city, cities)

119 new_neighbor = probabilistic_selection(neighbors, tau, edges)

120 long_edge = get_long_edge(edges, neighbors)

121 return vary_permutation(perm, selected_city, new_neighbor, long_edge)

122 end

123

124 def search(cities, max_iterations, tau)

125 current = {:vector=>random_permutation(cities)}

126 current[:cost] = cost(current[:vector], cities)

127 best = current

128 max_iterations.times do |iter|

129 candidate = {}

130 candidate[:vector] = create_new_perm(cities, tau, current[:vector])

131 candidate[:cost] = cost(candidate[:vector], cities)

132 current = candidate

133 best = candidate if candidate[:cost] < best[:cost]

134 puts " > iter #{(iter+1)}, curr=#{current[:cost]}, best=#{best[:cost]}"

135 end

136 return best

137 end

138

139 if __FILE__ == $0
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140 # problem configuration

141 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

142 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

143 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

144 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

145 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

146 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

147 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

148 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

149 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

150 # algorithm configuration

151 max_iterations = 250

152 tau = 1.8

153 # execute the algorithm

154 best = search(berlin52, max_iterations, tau)

155 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

156 end

Listing 4.2: Extremal Optimization in Ruby

4.3.8 References

Primary Sources

Extremal Optimization was proposed as an optimization heuristic by Boettcher
and Percus applied to graph partitioning and the Traveling Salesman Prob-
lem [5]. The approach was inspired by the Bak-Sneppen self-organized
criticality model of co-evolution [1, 2].

Learn More

A number of detailed reviews of Extremal Optimization have been presented,
including a review and studies by Boettcher and Percus [4], an accessible
review by Boettcher [3], and a focused study on the Spin Glass problem by
Boettcher and Percus [6].
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4.4 Harmony Search

Harmony Search, HS.

4.4.1 Taxonomy

Harmony Search belongs to the fields of Computational Intelligence and
Metaheuristics.

4.4.2 Inspiration

Harmony Search was inspired by the improvisation of Jazz musicians. Specif-
ically, the process by which the musicians (who may have never played
together before) rapidly refine their individual improvisation through varia-
tion resulting in an aesthetic harmony.

4.4.3 Metaphor

Each musician corresponds to an attribute in a candidate solution from a
problem domain, and each instrument’s pitch and range corresponds to the
bounds and constraints on the decision variable. The harmony between the
musicians is taken as a complete candidate solution at a given time, and
the audiences aesthetic appreciation of the harmony represent the problem
specific cost function. The musicians seek harmony over time through small
variations and improvisations, which results in an improvement against the
cost function.

4.4.4 Strategy

The information processing objective of the technique is to use good candi-
date solutions already discovered to influence the creation of new candidate
solutions toward locating the problems optima. This is achieved by stochas-
tically creating candidate solutions in a step-wise manner, where each
component is either drawn randomly from a memory of high-quality so-
lutions, adjusted from the memory of high-quality solutions, or assigned
randomly within the bounds of the problem. The memory of candidate
solutions is initially random, and a greedy acceptance criteria is used to
admit new candidate solutions only if they have an improved objective value,
replacing an existing member.

4.4.5 Procedure

Algorithm 4.4.1 provides a pseudocode listing of the Harmony Search algo-
rithm for minimizing a cost function. The adjustment of a pitch selected
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from the harmony memory is typically linear, for example for continuous
function optimization:

x′ ← x+ range× ǫ (4.1)

where range is a the user parameter (pitch bandwidth) to control the size
of the changes, and ǫ is a uniformly random number ∈ [−1, 1].

Algorithm 4.4.1: Pseudocode for Harmony Search.

Input: Pitchnum, Pitchbounds, Memorysize, Consolidationrate,
PitchAdjustrate, Improvisationmax

Output: Harmonybest
Harmonies ← InitializeHarmonyMemory(Pitchnum, Pitchbounds,1

Memorysize);
EvaluateHarmonies(Harmonies);2

for i to Improvisationmax do3

Harmony ← ∅;4

foreach Pitchi ∈ Pitchnum do5

if Rand() ≤ Consolidationrate then6

RandomHarmonyipitch ←7

SelectRandomHarmonyPitch(Harmonies, Pitchi);
if Rand() ≤ PitchAdjustrate then8

Harmonyipitch ←9

AdjustPitch(RandomHarmonyipitch);

else10

Harmonyipitch ← RandomHarmonyipitch;11

end12

else13

Harmonyipitch ← RandomPitch(Pitchbounds);14

end15

end16

EvaluateHarmonies(Harmony);17

if Cost(Harmony) ≤ Cost(Worst(Harmonies)) then18

Worst(Harmonies) ← Harmony;19

end20

end21

return Harmonybest;22

4.4.6 Heuristics

� Harmony Search was designed as a generalized optimization method
for continuous, discrete, and constrained optimization and has been
applied to numerous types of optimization problems.
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� The harmony memory considering rate (HMCR) ∈ [0, 1] controls the
use of information from the harmony memory or the generation of
a random pitch. As such, it controls the rate of convergence of the
algorithm and is typically configured ∈ [0.7, 0.95].

� The pitch adjustment rate (PAR) ∈ [0, 1] controls the frequency of
adjustment of pitches selected from harmony memory, typically config-
ured ∈ [0.1, 0.5]. High values can result in the premature convergence
of the search.

� The pitch adjustment rate and the adjustment method (amount of
adjustment or fret width) are typically fixed, having a linear effect
through time. Non-linear methods have been considered, for example
refer to Geem [4].

� When creating a new harmony, aggregations of pitches can be taken
from across musicians in the harmony memory.

� The harmony memory update is typically a greedy process, although
other considerations such as diversity may be used where the most
similar harmony is replaced.

4.4.7 Code Listing

Listing 4.3 provides an example of the Harmony Search algorithm imple-
mented in the Ruby Programming Language. The demonstration problem is
an instance of a continuous function optimization that seeks minf(x) where
f =

∑n

i=1 x
2
i , −5.0 ≤ xi ≤ 5.0 and n = 3. The optimal solution for this

basin function is (v0, . . . , vn−1) = 0.0. The algorithm implementation and
parameterization are based on the description by Yang [7], with refinement
from Geem [4].

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def rand_in_bounds(min, max)

6 return min + ((max-min) * rand())

7 end

8

9 def random_vector(search_space)

10 return Array.new(search_space.size) do |i|

11 rand_in_bounds(search_space[i][0], search_space[i][1])

12 end

13 end

14

15 def create_random_harmony(search_space)

16 harmony = {}

17 harmony[:vector] = random_vector(search_space)

18 harmony[:fitness] = objective_function(harmony[:vector])
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19 return harmony

20 end

21

22 def initialize_harmony_memory(search_space, mem_size, factor=3)

23 memory = Array.new(mem_size*factor){create_random_harmony(search_space)}

24 memory.sort!{|x,y| x[:fitness]<=>y[:fitness]}

25 return memory.first(mem_size)

26 end

27

28 def create_harmony(search_space, memory, consid_rate, adjust_rate, range)

29 vector = Array.new(search_space.size)

30 search_space.size.times do |i|

31 if rand() < consid_rate

32 value = memory[rand(memory.size)][:vector][i]

33 value = value + range*rand_in_bounds(-1.0, 1.0) if rand()<adjust_rate

34 value = search_space[i][0] if value < search_space[i][0]

35 value = search_space[i][1] if value > search_space[i][1]

36 vector[i] = value

37 else

38 vector[i] = rand_in_bounds(search_space[i][0], search_space[i][1])

39 end

40 end

41 return {:vector=>vector}

42 end

43

44 def search(bounds, max_iter, mem_size, consid_rate, adjust_rate, range)

45 memory = initialize_harmony_memory(bounds, mem_size)

46 best = memory.first

47 max_iter.times do |iter|

48 harm = create_harmony(bounds, memory, consid_rate, adjust_rate, range)

49 harm[:fitness] = objective_function(harm[:vector])

50 best = harm if harm[:fitness] < best[:fitness]

51 memory << harm

52 memory.sort!{|x,y| x[:fitness]<=>y[:fitness]}

53 memory.delete_at(memory.size-1)

54 puts " > iteration=#{iter}, fitness=#{best[:fitness]}"

55 end

56 return best

57 end

58

59 if __FILE__ == $0

60 # problem configuration

61 problem_size = 3

62 bounds = Array.new(problem_size) {|i| [-5, 5]}

63 # algorithm configuration

64 mem_size = 20

65 consid_rate = 0.95

66 adjust_rate = 0.7

67 range = 0.05

68 max_iter = 500

69 # execute the algorithm

70 best = search(bounds, max_iter, mem_size, consid_rate, adjust_rate, range)

71 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:vector].inspect}"

72 end

Listing 4.3: Harmony Search in Ruby
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4.4.8 References

Primary Sources

Geem et al. proposed the Harmony Search algorithm in 2001, which was
applied to a range of optimization problems including a constraint optimiza-
tion, the Traveling Salesman problem, and the design of a water supply
network [6].

Learn More

A book on Harmony Search, edited by Geem provides a collection of papers
on the technique and its applications [2], chapter 1 provides a useful summary
of the method heuristics for its configuration [7]. Similarly a second edited
volume by Geem focuses on studies that provide more advanced applications
of the approach [5], and chapter 1 provides a detailed walkthrough of the
technique itself [4]. Geem also provides a treatment of Harmony Search
applied to the optimal design of water distribution networks [3] and edits
yet a third volume on papers related to the application of the technique to
structural design optimization problems [1].
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4.5 Cultural Algorithm

Cultural Algorithm, CA.

4.5.1 Taxonomy

The Cultural Algorithm is an extension to the field of Evolutionary Computa-
tion and may be considered a Meta-Evolutionary Algorithm. It more broadly
belongs to the field of Computational Intelligence and Metaheuristics. It is
related to other high-order extensions of Evolutionary Computation such as
the Memetic Algorithm (Section 4.6).

4.5.2 Inspiration

The Cultural Algorithm is inspired by the principle of cultural evolution.
Culture includes the habits, knowledge, beliefs, customs, and morals of a
member of society. Culture does not exist independent of the environment,
and can interact with the environment via positive or negative feedback
cycles. The study of the interaction of culture in the environment is referred
to as Cultural Ecology.

4.5.3 Metaphor

The Cultural Algorithm may be explained in the context of the inspiring
system. As the evolutionary process unfolds, individuals accumulate infor-
mation about the world which is communicated to other individuals in the
population. Collectively this corpus of information is a knowledge base that
members of the population may tap-into and exploit. Positive feedback
mechanisms can occur where cultural knowledge indicates useful areas of
the environment, information which is passed down between generations,
exploited, refined, and adapted as situations change. Additionally, areas of
potential hazard may also be communicated through the cultural knowledge
base.

4.5.4 Strategy

The information processing objective of the algorithm is to improve the
learning or convergence of an embedded search technique (typically an
evolutionary algorithm) using a higher-order cultural evolution. The algo-
rithm operates at two levels: a population level and a cultural level. The
population level is like an evolutionary search, where individuals repre-
sent candidate solutions, are mostly distinct and their characteristics are
translated into an objective or cost function in the problem domain. The
second level is the knowledge or believe space where information acquired
by generations is stored, and which is accessible to the current generation.
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A communication protocol is used to allow the two spaces to interact and
the types of information that can be exchanged.

4.5.5 Procedure

The focus of the algorithm is the KnowledgeBase data structure that records
different knowledge types based on the nature of the problem. For example,
the structure may be used to record the best candidate solution found as well
as generalized information about areas of the search space that are expected
to payoff (result in good candidate solutions). This cultural knowledge is
discovered by the population-based evolutionary search, and is in turn used
to influence subsequent generations. The acceptance function constrain the
communication of knowledge from the population to the knowledge base.

Algorithm 4.5.1 provides a pseudocode listing of the Cultural Algorithm.
The algorithm is abstract, providing flexibility in the interpretation of
the processes such as the acceptance of information, the structure of the
knowledge base, and the specific embedded evolutionary algorithm.

Algorithm 4.5.1: Pseudocode for the Cultural Algorithm.

Input: Problemsize, Populationnum

Output: KnowledgeBase
Population ← InitializePopulation(Problemsize,1

Populationnum);
KnowledgeBase ← InitializeKnowledgebase(Problemsize,2

Populationnum);
while ¬StopCondition() do3

Evaluate(Population);4

SituationalKnowledgecandidate ←5

AcceptSituationalKnowledge(Population);
UpdateSituationalKnowledge(KnowledgeBase,6

SituationalKnowledgecandidate);
Children ← ReproduceWithInfluence(Population,7

KnowledgeBase);
Population ← Select(Children, Population);8

NormativeKnowledgecandidate ←9

AcceptNormativeKnowledge(Population);
UpdateNormativeKnowledge(KnowledgeBase,10

NormativeKnowledgecandidate);
end11

return KnowledgeBase;12
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4.5.6 Heuristics

� The Cultural Algorithm was initially used as a simulation tool to
investigate Cultural Ecology. It has been adapted for use as an
optimization algorithm for a wide variety of domains not-limited to
constraint optimization, combinatorial optimization, and continuous
function optimization.

� The knowledge base structure provides a mechanism for incorporating
problem-specific information into the execution of an evolutionary
search.

� The acceptance functions that control the flow of information into
the knowledge base are typically greedy, only including the best
information from the current generation, and not replacing existing
knowledge unless it is an improvement.

� Acceptance functions are traditionally deterministic, although proba-
bilistic and fuzzy acceptance functions have been investigated.

4.5.7 Code Listing

Listing 4.4 provides an example of the Cultural Algorithm implemented
in the Ruby Programming Language. The demonstration problem is an
instance of a continuous function optimization that seeks min f(x) where
f =

∑n

i=1 x
2
i , −5.0 ≤ xi ≤ 5.0 and n = 2. The optimal solution for this

basin function is (v0, . . . , vn−1) = 0.0.
The Cultural Algorithm was implemented based on the description of the

Cultural Algorithm Evolutionary Program (CAEP) presented by Reynolds
[4]. A real-valued Genetic Algorithm was used as the embedded evolutionary
algorithm. The overall best solution is taken as the ‘situational’ cultural
knowledge, whereas the bounds of the top 20% of the best solutions each
generation are taken as the ‘normative’ cultural knowledge. The situational
knowledge is returned as the result of the search, whereas the normative
knowledge is used to influence the evolutionary process. Specifically, vector
bounds in the normative knowledge are used to define a subspace from which
new candidate solutions are uniformly sampled during the reproduction
step of the evolutionary algorithm’s variation mechanism. A real-valued
representation and a binary tournament selection strategy are used by the
evolutionary algorithm.

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def rand_in_bounds(min, max)

6 return min + ((max-min) * rand())

7 end
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8

9 def random_vector(minmax)

10 return Array.new(minmax.size) do |i|

11 rand_in_bounds(minmax[i][0], minmax[i][1])

12 end

13 end

14

15 def mutate_with_inf(candidate, beliefs, minmax)

16 v = Array.new(candidate[:vector].size)

17 candidate[:vector].each_with_index do |c,i|

18 v[i]=rand_in_bounds(beliefs[:normative][i][0],beliefs[:normative][i][1])

19 v[i] = minmax[i][0] if v[i] < minmax[i][0]

20 v[i] = minmax[i][1] if v[i] > minmax[i][1]

21 end

22 return {:vector=>v}

23 end

24

25 def binary_tournament(pop)

26 i, j = rand(pop.size), rand(pop.size)

27 j = rand(pop.size) while j==i

28 return (pop[i][:fitness] < pop[j][:fitness]) ? pop[i] : pop[j]

29 end

30

31 def initialize_beliefspace(search_space)

32 belief_space = {}

33 belief_space[:situational] = nil

34 belief_space[:normative] = Array.new(search_space.size) do |i|

35 Array.new(search_space[i])

36 end

37 return belief_space

38 end

39

40 def update_beliefspace_situational!(belief_space, best)

41 curr_best = belief_space[:situational]

42 if curr_best.nil? or best[:fitness] < curr_best[:fitness]

43 belief_space[:situational] = best

44 end

45 end

46

47 def update_beliefspace_normative!(belief_space, acc)

48 belief_space[:normative].each_with_index do |bounds,i|

49 bounds[0] = acc.min{|x,y| x[:vector][i]<=>y[:vector][i]}[:vector][i]

50 bounds[1] = acc.max{|x,y| x[:vector][i]<=>y[:vector][i]}[:vector][i]

51 end

52 end

53

54 def search(max_gens, search_space, pop_size, num_accepted)

55 # initialize

56 pop = Array.new(pop_size) { {:vector=>random_vector(search_space)} }

57 belief_space = initialize_beliefspace(search_space)

58 # evaluate

59 pop.each{|c| c[:fitness] = objective_function(c[:vector])}

60 best = pop.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

61 # update situational knowledge

62 update_beliefspace_situational!(belief_space, best)

63 max_gens.times do |gen|
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64 # create next generation

65 children = Array.new(pop_size) do |i|

66 mutate_with_inf(pop[i], belief_space, search_space)

67 end

68 # evaluate

69 children.each{|c| c[:fitness] = objective_function(c[:vector])}

70 best = children.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

71 # update situational knowledge

72 update_beliefspace_situational!(belief_space, best)

73 # select next generation

74 pop = Array.new(pop_size) { binary_tournament(children + pop) }

75 # update normative knowledge

76 pop.sort!{|x,y| x[:fitness] <=> y[:fitness]}

77 acccepted = pop[0...num_accepted]

78 update_beliefspace_normative!(belief_space, acccepted)

79 # user feedback

80 puts " > generation=#{gen}, f=#{belief_space[:situational][:fitness]}"

81 end

82 return belief_space[:situational]

83 end

84

85 if __FILE__ == $0

86 # problem configuration

87 problem_size = 2

88 search_space = Array.new(problem_size) {|i| [-5, +5]}

89 # algorithm configuration

90 max_gens = 200

91 pop_size = 100

92 num_accepted = (pop_size*0.20).round

93 # execute the algorithm

94 best = search(max_gens, search_space, pop_size, num_accepted)

95 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:vector].inspect}"

96 end

Listing 4.4: Cultural Algorithm in Ruby

4.5.8 References

Primary Sources

The Cultural Algorithm was proposed by Reynolds in 1994 that combined
the method with the Version Space Algorithm (a binary string based Genetic
Algorithm), where generalizations of individual solutions were communicated
as cultural knowledge in the form of schema patterns (strings of 1’s, 0’s and
#’s, where ‘#’ represents a wildcard) [3].

Learn More

Chung and Reynolds provide a study of the Cultural Algorithm on a
testbed of constraint satisfaction problems [1]. Reynolds provides a detailed
overview of the history of the technique as a book chapter that presents
the state of the art and summaries of application areas including concept
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learning and continuous function optimization [4]. Coello Coello and Becerra
proposed a variation of the Cultural Algorithm that uses Evolutionary
Programming as the embedded weak search method, for use with Multi-
Objective Optimization problems [2].
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4.6 Memetic Algorithm

Memetic Algorithm, MA.

4.6.1 Taxonomy

Memetic Algorithms have elements of Metaheuristics and Computational
Intelligence. Although they have principles of Evolutionary Algorithms, they
may not strictly be considered an Evolutionary Technique. Memetic Algo-
rithms have functional similarities to Baldwinian Evolutionary Algorithms,
Lamarckian Evolutionary Algorithms, Hybrid Evolutionary Algorithms, and
Cultural Algorithms (Section 4.5). Using ideas of memes and Memetic
Algorithms in optimization may be referred to as Memetic Computing.

4.6.2 Inspiration

Memetic Algorithms are inspired by the interplay of genetic evolution and
memetic evolution. Universal Darwinism is the generalization of genes
beyond biological-based systems to any system where discrete units of
information can be inherited and be subjected to evolutionary forces of
selection and variation. The term ‘meme’ is used to refer to a piece of
discrete cultural information, suggesting at the interplay of genetic and
cultural evolution.

4.6.3 Metaphor

The genotype is evolved based on the interaction the phenotype has with
the environment. This interaction is metered by cultural phenomena that
influence the selection mechanisms, and even the pairing and recombination
mechanisms. Cultural information is shared between individuals, spreading
through the population as memes relative to their fitness or fitness the memes
impart to the individuals. Collectively, the interplay of the geneotype and
the memeotype strengthen the fitness of population in the environment.

4.6.4 Strategy

The objective of the information processing strategy is to exploit a popu-
lation based global search technique to broadly locate good areas of the
search space, combined with the repeated usage of a local search heuristic
by individual solutions to locate local optimum. Ideally, memetic algo-
rithms embrace the duality of genetic and cultural evolution, allowing the
transmission, selection, inheritance, and variation of memes as well as genes.
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4.6.5 Procedure

Algorithm 4.6.1 provides a pseudocode listing of the Memetic Algorithm for
minimizing a cost function. The procedure describes a simple or first order
Memetic Algorithm that shows the improvement of individual solutions
separate from a global search, although does not show the independent
evolution of memes.

Algorithm 4.6.1: Pseudocode for the Memetic Algorithm.

Input: ProblemSize, Popsize, MemePopsize
Output: Sbest

Population ← InitializePopulation(ProblemSize, Popsize);1

while ¬StopCondition() do2

foreach Si ∈ Population do3

Sicost ← Cost(Si);4

end5

Sbest ← GetBestSolution(Population);6

Population ← StochasticGlobalSearch(Population);7

MemeticPopulation ← SelectMemeticPopulation(Population,8

MemePopsize);
foreach Si ∈ MemeticPopulation do9

Si ← LocalSearch(Si);10

end11

end12

return Sbest;13

4.6.6 Heuristics

� The global search provides the broad exploration mechanism, whereas
the individual solution improvement via local search provides an
exploitation mechanism.

� Balance is needed between the local and global mechanisms to ensure
the system does not prematurely converge to a local optimum and
does not consume unnecessary computational resources.

� The local search should be problem and representation specific, where
as the global search may be generic and non-specific (black-box).

� Memetic Algorithms have been applied to a range of constraint, com-
binatorial, and continuous function optimization problem domains.
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4.6.7 Code Listing

Listing 4.5 provides an example of the Memetic Algorithm implemented
in the Ruby Programming Language. The demonstration problem is an
instance of a continuous function optimization that seeks min f(x) where
f =

∑n

i=1 x
2
i , −5.0 ≤ xi ≤ 5.0 and n = 3. The optimal solution for this

basin function is (v0, . . . , vn−1) = 0.0. The Memetic Algorithm uses a
canonical Genetic Algorithm as the global search technique that operates
on binary strings, uses tournament selection, point mutations, uniform
crossover and a binary coded decimal decoding of bits to real values. A
bit climber local search is used that performs probabilistic bit flips (point
mutations) and only accepts solutions with the same or improving fitness.

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_bitstring(num_bits)

6 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

7 end

8

9 def decode(bitstring, search_space, bits_per_param)

10 vector = []

11 search_space.each_with_index do |bounds, i|

12 off, sum = i*bits_per_param, 0.0

13 param = bitstring[off...(off+bits_per_param)].reverse

14 param.size.times do |j|

15 sum += ((param[j].chr=='1') ? 1.0 : 0.0) * (2.0 ** j.to_f)

16 end

17 min, max = bounds

18 vector << min + ((max-min)/((2.0**bits_per_param.to_f)-1.0)) * sum

19 end

20 return vector

21 end

22

23 def fitness(candidate, search_space, param_bits)

24 candidate[:vector]=decode(candidate[:bitstring], search_space, param_bits)

25 candidate[:fitness] = objective_function(candidate[:vector])

26 end

27

28 def binary_tournament(pop)

29 i, j = rand(pop.size), rand(pop.size)

30 j = rand(pop.size) while j==i

31 return (pop[i][:fitness] < pop[j][:fitness]) ? pop[i] : pop[j]

32 end

33

34 def point_mutation(bitstring, rate=1.0/bitstring.size)

35 child = ""

36 bitstring.size.times do |i|

37 bit = bitstring[i].chr

38 child << ((rand()<rate) ? ((bit=='1') ? "0" : "1") : bit)

39 end

40 return child

41 end
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42

43 def crossover(parent1, parent2, rate)

44 return ""+parent1 if rand()>=rate

45 child = ""

46 parent1.size.times do |i|

47 child << ((rand()<0.5) ? parent1[i].chr : parent2[i].chr)

48 end

49 return child

50 end

51

52 def reproduce(selected, pop_size, p_cross, p_mut)

53 children = []

54 selected.each_with_index do |p1, i|

55 p2 = (i.modulo(2)==0) ? selected[i+1] : selected[i-1]

56 p2 = selected[0] if i == selected.size-1

57 child = {}

58 child[:bitstring] = crossover(p1[:bitstring], p2[:bitstring], p_cross)

59 child[:bitstring] = point_mutation(child[:bitstring], p_mut)

60 children << child

61 break if children.size >= pop_size

62 end

63 return children

64 end

65

66 def bitclimber(child, search_space, p_mut, max_local_gens, bits_per_param)

67 current = child

68 max_local_gens.times do

69 candidate = {}

70 candidate[:bitstring] = point_mutation(current[:bitstring], p_mut)

71 fitness(candidate, search_space, bits_per_param)

72 current = candidate if candidate[:fitness] <= current[:fitness]

73 end

74 return current

75 end

76

77 def search(max_gens, search_space, pop_size, p_cross, p_mut,

max_local_gens, p_local, bits_per_param=16)

78 pop = Array.new(pop_size) do |i|

79 {:bitstring=>random_bitstring(search_space.size*bits_per_param)}

80 end

81 pop.each{|candidate| fitness(candidate, search_space, bits_per_param) }

82 gen, best = 0, pop.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

83 max_gens.times do |gen|

84 selected = Array.new(pop_size){|i| binary_tournament(pop)}

85 children = reproduce(selected, pop_size, p_cross, p_mut)

86 children.each{|cand| fitness(cand, search_space, bits_per_param)}

87 pop = []

88 children.each do |child|

89 if rand() < p_local

90 child = bitclimber(child, search_space, p_mut, max_local_gens,

bits_per_param)

91 end

92 pop << child

93 end

94 pop.sort!{|x,y| x[:fitness] <=> y[:fitness]}

95 best = pop.first if pop.first[:fitness] <= best[:fitness]
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96 puts ">gen=#{gen}, f=#{best[:fitness]}, b=#{best[:bitstring]}"

97 end

98 return best

99 end

100

101 if __FILE__ == $0

102 # problem configuration

103 problem_size = 3

104 search_space = Array.new(problem_size) {|i| [-5, +5]}

105 # algorithm configuration

106 max_gens = 100

107 pop_size = 100

108 p_cross = 0.98

109 p_mut = 1.0/(problem_size*16).to_f

110 max_local_gens = 20

111 p_local = 0.5

112 # execute the algorithm

113 best = search(max_gens, search_space, pop_size, p_cross, p_mut,

max_local_gens, p_local)

114 puts "done! Solution: f=#{best[:fitness]}, b=#{best[:bitstring]},

v=#{best[:vector].inspect}"

115 end

Listing 4.5: Memetic Algorithm in Ruby

4.6.8 References

Primary Sources

The concept of a Memetic Algorithm is credited to Moscato [5], who was
inspired by the description of meme’s in Dawkins’ “The Selfish Gene” [1].
Moscato proposed Memetic Algorithms as the marriage between population
based global search and heuristic local search made by each individual with-
out the constraints of a genetic representation and investigated variations
on the Traveling Salesman Problem.

Learn More

Moscato and Cotta provide a gentle introduction to the field of Memetic
Algorithms as a book chapter that covers formal descriptions of the approach,
a summary of the fields of application, and the state of the art [6]. An
overview and classification of the types of Memetic Algorithms is presented
by Ong et al. who describe a class of adaptive Memetic Algorithms [7].
Krasnogor and Smith also provide a taxonomy of Memetic Algorithms,
focusing on the properties needed to design ‘competent’ implementations
of the approach with examples on a number of combinatorial optimization
problems [4]. Work by Krasnogor and Gustafson investigate what they refer
to as ‘self-generating’ Memetic Algorithms that use the memetic principle to
co-evolve the local search applied by individual solutions [3]. For a broader
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overview of the field, see the 2005 book “Recent Advances in Memetic
Algorithms” that provides an overview and a number of studies [2].
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Probabilistic Algorithms

5.1 Overview

This chapter describes Probabilistic Algorithms

5.1.1 Probabilistic Models

Probabilistic Algorithms are those algorithms that model a problem or
search a problem space using an probabilistic model of candidate solutions.
Many Metaheuristics and Computational Intelligence algorithms may be
considered probabilistic, although the difference with algorithms is the
explicit (rather than implicit) use of the tools of probability in problem
solving. The majority of the algorithms described in this Chapter are
referred to as Estimation of Distribution Algorithms.

5.1.2 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDA) also called Probabilistic
Model-Building Genetic Algorithms (PMBGA) are an extension of the
field of Evolutionary Computation that model a population of candidate
solutions as a probabilistic model. They generally involve iterations that
alternate between creating candidate solutions in the problem space from
a probabilistic model, and reducing a collection of generated candidate
solutions into a probabilistic model.

The model at the heart of an EDA typically provides the probabilistic
expectation of a component or component configuration comprising part
of an optimal solution. This estimation is typically based on the observed
frequency of use of the component in better than average candidate solutions.
The probabilistic model is used to generate candidate solutions in the
problem space, typically in a component-wise or step-wise manner using a
domain specific construction method to ensure validity.

199
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Pelikan et al. provide a comprehensive summary of the field of prob-
abilistic optimization algorithms, summarizing the core approaches and
their differences [10]. The edited volume by Pelikan, Sastry, and Cantu-Paz
provides a collection of studies on the popular Estimation of Distribution
algorithms as well as methodology for designing algorithms and applica-
tion demonstration studies [13]. An edited volume on studies of EDAs by
Larranaga and Lozano [4] and the follow-up volume by Lozano et al. [5]
provide an applied foundation for the field.

5.1.3 Extensions

There are many other algorithms and classes of algorithm that were not
described from the field of Estimation of Distribution Algorithm, not limited
to:

� Extensions to UMDA: Extensions to the Univariate Marginal Dis-
tribution Algorithm such as the Bivariate Marginal Distribution Al-
gorithm (BMDA) [11, 12] and the Factorized Distribution Algorithm
(FDA) [7].

� Extensions to cGA: Extensions to the Compact Genetic Algorithm
such as the Extended Compact Genetic Algorithm (ECGA) [2, 3].

� Extensions to BOA: Extensions to the Bayesian Optimization Al-
gorithm such as the Hierarchal Bayesian Optimization Algorithm
(hBOA) [8, 9] and the Incremental Bayesian Optimization Algorithm
(iBOA) [14].

� Bayesian Network Algorithms: Other Bayesian network algo-
rithms such as The Estimation of Bayesian Network Algorithm [1],
and the Learning Factorized Distribution Algorithm (LFDA) [6].

� PIPE: The Probabilistic Incremental Program Evolution that uses
EDA methods for constructing programs [16].

� SHCLVND: The Stochastic Hill-Climbing with Learning by Vectors
of Normal Distributions algorithm [15].
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5.2 Population-Based Incremental Learning

Population-Based Incremental Learning, PBIL.

5.2.1 Taxonomy

Population-Based Incremental Learning is an Estimation of Distribution
Algorithm (EDA), also referred to as Population Model-Building Genetic
Algorithms (PMBGA) an extension to the field of Evolutionary Computation.
PBIL is related to other EDAs such as the Compact Genetic Algorithm
(Section 5.4), the Probabilistic Incremental Programing Evolution Algorithm,
and the Bayesian Optimization Algorithm (Section 5.5). The fact the the
algorithm maintains a single prototype vector that is updated competitively
shows some relationship to the Learning Vector Quantization algorithm
(Section 8.5).

5.2.2 Inspiration

Population-Based Incremental Learning is a population-based technique
without an inspiration. It is related to the Genetic Algorithm and other Evo-
lutionary Algorithms that are inspired by the biological theory of evolution
by means of natural selection.

5.2.3 Strategy

The information processing objective of the PBIL algorithm is to reduce the
memory required by the genetic algorithm. This is done by reducing the
population of a candidate solutions to a single prototype vector of attributes
from which candidate solutions can be generated and assessed. Updates
and mutation operators are also performed to the prototype vector, rather
than the generated candidate solutions.

5.2.4 Procedure

The Population-Based Incremental Learning algorithm maintains a real-
valued prototype vector that represents the probability of each component
being expressed in a candidate solution. Algorithm 5.2.1 provides a pseu-
docode listing of the Population-Based Incremental Learning algorithm for
maximizing a cost function.

5.2.5 Heuristics

� PBIL was designed to optimize the probability of components from
low cardinality sets, such as bit’s in a binary string.
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Algorithm 5.2.1: Pseudocode for PBIL.

Input: Bitsnum, Samplesnum, Learnrate, Pmutation, Mutationfactor

Output: Sbest

V ← InitializeVector(Bitsnum);1

Sbest ← ∅;2

while ¬StopCondition() do3

Scurrent ← ∅;4

for i to Samplesnum do5

Si ← GenerateSamples(V );6

if Cost(Si) ≤ Cost(Scurrent) then7

Scurrent ← Si;8

if Cost(Si) ≤ Cost(Sbest) then9

Sbest ← Si;10

end11

end12

end13

foreach Si
bit ∈ Scurrent do14

V i
bit ← V i

bit × (1.0 − Learnrate) + Si
bit × Learnrate;15

if Rand() < Pmutation then16

V i
bit ← V i

bit × (1.0 − Mutationfactor) + Rand() ×17

Mutationfactor;
end18

end19

end20

return Sbest;21

� The algorithm has a very small memory footprint (compared to some
population-based evolutionary algorithms) given the compression of
information into a single prototype vector.

� Extensions to PBIL have been proposed that extend the representation
beyond sets to real-valued vectors.

� Variants of PBIL that were proposed in the original paper include up-
dating the prototype vector with more than one competitive candidate
solution (such as an average of top candidate solutions), and mov-
ing the prototype vector away from the least competitive candidate
solution each iteration.

� Low learning rates are preferred, such as 0.1.
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5.2.6 Code Listing

Listing 5.1 provides an example of the Population-Based Incremental Learn-
ing algorithm implemented in the Ruby Programming Language. The
demonstration problem is a maximizing binary optimization problem called
OneMax that seeks a binary string of unity (all ‘1’ bits). The objective
function only provides an indication of the number of correct bits in a
candidate string, not the positions of the correct bits. The algorithm is an
implementation of the simple PBIL algorithm that updates the prototype
vector based on the best candidate solution generated each iteration.

1 def onemax(vector)

2 return vector.inject(0){|sum, value| sum + value}

3 end

4

5 def generate_candidate(vector)

6 candidate = {}

7 candidate[:bitstring] = Array.new(vector.size)

8 vector.each_with_index do |p, i|

9 candidate[:bitstring][i] = (rand()<p) ? 1 : 0

10 end

11 return candidate

12 end

13

14 def update_vector(vector, current, lrate)

15 vector.each_with_index do |p, i|

16 vector[i] = p*(1.0-lrate) + current[:bitstring][i]*lrate

17 end

18 end

19

20 def mutate_vector(vector, current, coefficient, rate)

21 vector.each_with_index do |p, i|

22 if rand() < rate

23 vector[i] = p*(1.0-coefficient) + rand()*coefficient

24 end

25 end

26 end

27

28 def search(num_bits, max_iter, num_samples, p_mutate, mut_factor, l_rate)

29 vector = Array.new(num_bits){0.5}

30 best = nil

31 max_iter.times do |iter|

32 current = nil

33 num_samples.times do

34 candidate = generate_candidate(vector)

35 candidate[:cost] = onemax(candidate[:bitstring])

36 current = candidate if current.nil? or candidate[:cost]>current[:cost]

37 best = candidate if best.nil? or candidate[:cost]>best[:cost]

38 end

39 update_vector(vector, current, l_rate)

40 mutate_vector(vector, current, mut_factor, p_mutate)

41 puts " >iteration=#{iter}, f=#{best[:cost]}, s=#{best[:bitstring]}"

42 break if best[:cost] == num_bits

43 end

44 return best
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45 end

46

47 if __FILE__ == $0

48 # problem configuration

49 num_bits = 64

50 # algorithm configuration

51 max_iter = 100

52 num_samples = 100

53 p_mutate = 1.0/num_bits

54 mut_factor = 0.05

55 l_rate = 0.1

56 # execute the algorithm

57 best=search(num_bits, max_iter, num_samples, p_mutate, mut_factor, l_rate)

58 puts "done! Solution: f=#{best[:cost]}/#{num_bits}, s=#{best[:bitstring]}"

59 end

Listing 5.1: Population-Based Incremental Learning in Ruby

5.2.7 References

Primary Sources

The Population-Based Incremental Learning algorithm was proposed by
Baluja in a technical report that proposed the base algorithm as well as a
number of variants inspired by the Learning Vector Quantization algorithm
[1].

Learn More

Baluja and Caruana provide an excellent overview of PBIL and compare
it to the standard Genetic Algorithm, released as a technical report [3]
and later published [4]. Baluja provides a detailed comparison between
the Genetic algorithm and PBIL on a range of problems and scales in
another technical report [2]. Greene provided an excellent account on the
applicability of PBIL as a practical optimization algorithm [5]. Höhfeld and
Rudolph provide the first theoretical analysis of the technique and provide
a convergence proof [6].
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5.3 Univariate Marginal Distribution Algorithm

Univariate Marginal Distribution Algorithm, UMDA, Univariate Marginal
Distribution, UMD.

5.3.1 Taxonomy

The Univariate Marginal Distribution Algorithm belongs to the field of Es-
timation of Distribution Algorithms (EDA), also referred to as Population
Model-Building Genetic Algorithms (PMBGA), an extension to the field of
Evolutionary Computation. UMDA is closely related to the Factorized Dis-
tribution Algorithm (FDA) and an extension called the Bivariate Marginal
Distribution Algorithm (BMDA). UMDA is related to other EDAs such as
the Compact Genetic Algorithm (Section 5.4), the Population-Based Incre-
mental Learning algorithm (Section 5.2), and the Bayesian Optimization
Algorithm (Section 5.5).

5.3.2 Inspiration

Univariate Marginal Distribution Algorithm is a population technique-
based without an inspiration. It is related to the Genetic Algorithm and
other Evolutionary Algorithms that are inspired by the biological theory of
evolution by means of natural selection.

5.3.3 Strategy

The information processing strategy of the algorithm is to use the frequency
of the components in a population of candidate solutions in the construction
of new candidate solutions. This is achieved by first measuring the frequency
of each component in the population (the univariate marginal probabil-
ity) and using the probabilities to influence the probabilistic selection of
components in the component-wise construction of new candidate solutions.

5.3.4 Procedure

Algorithm 5.3.1 provides a pseudocode listing of the Univariate Marginal
Distribution Algorithm for minimizing a cost function.

5.3.5 Heuristics

� UMDA was designed for problems where the components of a solution
are independent (linearly separable).

� A selection method is needed to identify the subset of good solutions
from which to calculate the univariate marginal probabilities. Many



5.3. Univariate Marginal Distribution Algorithm 209

Algorithm 5.3.1: Pseudocode for the UMDA.

Input: Bitsnum, Populationsize, Selectionsize

Output: Sbest

Population ← InitializePopulation(Bitsnum, Populationsize);1

EvaluatePopulation(Population);2

Sbest ← GetBestSolution(Population);3

while ¬StopCondition() do4

Selected ← SelectFitSolutions(Population, Selectionsize);5

V ← CalculateFrequencyOfComponents(Selected);6

Offspring ← ∅;7

for i to Populationsize do8

Offspring ← ProbabilisticallyConstructSolution(V );9

end10

EvaluatePopulation(Offspring);11

Sbest ← GetBestSolution(Offspring);12

Population ← Offspring;13

end14

return Sbest;15

selection methods from the field of Evolutionary Computation may
be used.

5.3.6 Code Listing

Listing 5.2 provides an example of the Univariate Marginal Distribution Algo-
rithm implemented in the Ruby Programming Language. The demonstration
problem is a maximizing binary optimization problem called OneMax that
seeks a binary string of unity (all ‘1’ bits). The objective function provides
only an indication of the number of correct bits in a candidate string, not
the positions of the correct bits.

The algorithm is an implementation of UMDA that uses the integers
1 and 0 to represent bits in a binary string representation. A binary
tournament selection strategy is used and the whole population is replaced
each iteration. The mechanisms from Evolutionary Computation such as
elitism and more elaborate selection methods may be implemented as an
extension.

1 def onemax(vector)

2 return vector.inject(0){|sum, value| sum + value}

3 end

4

5 def random_bitstring(size)

6 return Array.new(size){ ((rand()<0.5) ? 1 : 0) }

7 end

8
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9 def binary_tournament(pop)

10 i, j = rand(pop.size), rand(pop.size)

11 j = rand(pop.size) while j==i

12 return (pop[i][:fitness] > pop[j][:fitness]) ? pop[i] : pop[j]

13 end

14

15 def calculate_bit_probabilities(pop)

16 vector = Array.new(pop.first[:bitstring].length, 0.0)

17 pop.each do |member|

18 member[:bitstring].each_with_index {|v, i| vector[i] += v}

19 end

20 vector.each_with_index {|f, i| vector[i] = (f.to_f/pop.size.to_f)}

21 return vector

22 end

23

24 def generate_candidate(vector)

25 candidate = {}

26 candidate[:bitstring] = Array.new(vector.size)

27 vector.each_with_index do |p, i|

28 candidate[:bitstring][i] = (rand()<p) ? 1 : 0

29 end

30 return candidate

31 end

32

33 def search(num_bits, max_iter, pop_size, select_size)

34 pop = Array.new(pop_size) do

35 {:bitstring=>random_bitstring(num_bits)}

36 end

37 pop.each{|c| c[:fitness] = onemax(c[:bitstring])}

38 best = pop.sort{|x,y| y[:fitness] <=> x[:fitness]}.first

39 max_iter.times do |iter|

40 selected = Array.new(select_size) { binary_tournament(pop) }

41 vector = calculate_bit_probabilities(selected)

42 samples = Array.new(pop_size) { generate_candidate(vector) }

43 samples.each{|c| c[:fitness] = onemax(c[:bitstring])}

44 samples.sort!{|x,y| y[:fitness] <=> x[:fitness]}

45 best = samples.first if samples.first[:fitness] > best[:fitness]

46 pop = samples

47 puts " >iteration=#{iter}, f=#{best[:fitness]}, s=#{best[:bitstring]}"

48 end

49 return best

50 end

51

52 if __FILE__ == $0

53 # problem configuration

54 num_bits = 64

55 # algorithm configuration

56 max_iter = 100

57 pop_size = 50

58 select_size = 30

59 # execute the algorithm

60 best = search(num_bits, max_iter, pop_size, select_size)

61 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:bitstring]}"

62 end

Listing 5.2: Univariate Marginal Distribution Algorithm in Ruby
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5.3.7 References

Primary Sources

The Univariate Marginal Distribution Algorithm was described by Mühlenbein
in 1997 in which a theoretical foundation is provided (for the field of in-
vestigation in general and the algorithm specifically) [2]. Mühlenbein also
describes an incremental version of UMDA (IUMDA) that is described as
being equivalent to Baluja’s Population-Based Incremental Learning (PBIL)
algorithm [1].

Learn More

Pelikan and Mühlenbein extended the approach to cover problems that
have dependencies between the components (specifically pair-dependencies),
referring to the technique as the Bivariate Marginal Distribution Algorithm
(BMDA) [3, 4].
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5.4 Compact Genetic Algorithm

Compact Genetic Algorithm, CGA, cGA.

5.4.1 Taxonomy

The Compact Genetic Algorithm is an Estimation of Distribution Algorithm
(EDA), also referred to as Population Model-Building Genetic Algorithms
(PMBGA), an extension to the field of Evolutionary Computation. The
Compact Genetic Algorithm is the basis for extensions such as the Extended
Compact Genetic Algorithm (ECGA). It is related to other EDAs such as the
Univariate Marginal Probability Algorithm (Section 5.3), the Population-
Based Incremental Learning algorithm (Section 5.2), and the Bayesian
Optimization Algorithm (Section 5.5).

5.4.2 Inspiration

The Compact Genetic Algorithm is a probabilistic technique without an
inspiration. It is related to the Genetic Algorithm and other Evolutionary
Algorithms that are inspired by the biological theory of evolution by means
of natural selection.

5.4.3 Strategy

The information processing objective of the algorithm is to simulate the
behavior of a Genetic Algorithm with a much smaller memory footprint
(without requiring a population to be maintained). This is achieved by
maintaining a vector that specifies the probability of including each com-
ponent in a solution in new candidate solutions. Candidate solutions are
probabilistically generated from the vector and the components in the better
solution are used to make small changes to the probabilities in the vector.

5.4.4 Procedure

The Compact Genetic Algorithm maintains a real-valued prototype vector
that represents the probability of each component being expressed in a
candidate solution. Algorithm 5.4.1 provides a pseudocode listing of the
Compact Genetic Algorithm for maximizing a cost function. The parameter
n indicates the amount to update probabilities for conflicting bits in each
algorithm iteration.

5.4.5 Heuristics

� The vector update parameter (n) influences the amount that the
probabilities are updated each algorithm iteration.
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Algorithm 5.4.1: Pseudocode for the cGA.

Input: Bitsnum, n
Output: Sbest

V ← InitializeVector(Bitsnum, 0.5);1

Sbest ← ∅;2

while ¬StopCondition() do3

S1 ← GenerateSamples(V );4

S2 ← GenerateSamples(V );5

Swinner, Sloser ← SelectWinnerAndLoser(S1, S2);6

if Cost(Swinner) ≤ Cost(Sbest) then7

Sbest ← Swinner;8

end9

for i to Bitsnum do10

if Si
winner 6= Si

loser then11

if Si
winner ≡ 1 then12

V i
i ← V i

i + 1
n
;13

else14

V i
i ← V i

i −
1
n
;15

end16

end17

end18

end19

return Sbest;20

� The vector update parameter (n) may be considered to be comparable
to the population size parameter in the Genetic Algorithm.

� Early results demonstrate that the cGA may be comparable to a
standard Genetic Algorithm on classical binary string optimization
problems (such as OneMax).

� The algorithm may be considered to have converged if the vector
probabilities are all either 0 or 1.

5.4.6 Code Listing

Listing 5.3 provides an example of the Compact Genetic Algorithm imple-
mented in the Ruby Programming Language. The demonstration problem
is a maximizing binary optimization problem called OneMax that seeks a
binary string of unity (all ‘1’ bits). The objective function only provides an
indication of the number of correct bits in a candidate string, not the posi-
tions of the correct bits. The algorithm is an implementation of Compact
Genetic Algorithm that uses integer values to represent 1 and 0 bits in a
binary string representation.
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1 def onemax(vector)

2 return vector.inject(0){|sum, value| sum + value}

3 end

4

5 def generate_candidate(vector)

6 candidate = {}

7 candidate[:bitstring] = Array.new(vector.size)

8 vector.each_with_index do |p, i|

9 candidate[:bitstring][i] = (rand()<p) ? 1 : 0

10 end

11 candidate[:cost] = onemax(candidate[:bitstring])

12 return candidate

13 end

14

15 def update_vector(vector, winner, loser, pop_size)

16 vector.size.times do |i|

17 if winner[:bitstring][i] != loser[:bitstring][i]

18 if winner[:bitstring][i] == 1

19 vector[i] += 1.0/pop_size.to_f

20 else

21 vector[i] -= 1.0/pop_size.to_f

22 end

23 end

24 end

25 end

26

27 def search(num_bits, max_iterations, pop_size)

28 vector = Array.new(num_bits){0.5}

29 best = nil

30 max_iterations.times do |iter|

31 c1 = generate_candidate(vector)

32 c2 = generate_candidate(vector)

33 winner, loser = (c1[:cost] > c2[:cost] ? [c1,c2] : [c2,c1])

34 best = winner if best.nil? or winner[:cost]>best[:cost]

35 update_vector(vector, winner, loser, pop_size)

36 puts " >iteration=#{iter}, f=#{best[:cost]}, s=#{best[:bitstring]}"

37 break if best[:cost] == num_bits

38 end

39 return best

40 end

41

42 if __FILE__ == $0

43 # problem configuration

44 num_bits = 32

45 # algorithm configuration

46 max_iterations = 200

47 pop_size = 20

48 # execute the algorithm

49 best = search(num_bits, max_iterations, pop_size)

50 puts "done! Solution: f=#{best[:cost]}/#{num_bits}, s=#{best[:bitstring]}"

51 end

Listing 5.3: Compact Genetic Algorithm in Ruby
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5.4.7 References

Primary Sources

The Compact Genetic Algorithm was proposed by Harik, Lobo, and Gold-
berg in 1999 [3], based on a random walk model previously introduced by
Harik et al. [2]. In the introductory paper, the cGA is demonstrated to be
comparable to the Genetic Algorithm on standard binary string optimization
problems.

Learn More

Harik et al. extended the Compact Genetic Algorithm (called the Extended
Compact Genetic Algorithm) to generate populations of candidate solu-
tions and perform selection (much like the Univariate Marginal Probabilist
Algorithm), although it used Marginal Product Models [1, 4]. Sastry and
Goldberg performed further analysis into the Extended Compact Genetic
Algorithm applying the method to a complex optimization problem [5].
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5.5 Bayesian Optimization Algorithm

Bayesian Optimization Algorithm, BOA.

5.5.1 Taxonomy

The Bayesian Optimization Algorithm belongs to the field of Estimation
of Distribution Algorithms, also referred to as Population Model-Building
Genetic Algorithms (PMBGA) an extension to the field of Evolutionary
Computation. More broadly, BOA belongs to the field of Computational
Intelligence. The Bayesian Optimization Algorithm is related to other
Estimation of Distribution Algorithms such as the Population Incremental
Learning Algorithm (Section 5.2), and the Univariate Marginal Distribution
Algorithm (Section 5.3). It is also the basis for extensions such as the
Hierarchal Bayesian Optimization Algorithm (hBOA) and the Incremental
Bayesian Optimization Algorithm (iBOA).

5.5.2 Inspiration

Bayesian Optimization Algorithm is a technique without an inspiration.
It is related to the Genetic Algorithm and other Evolutionary Algorithms
that are inspired by the biological theory of evolution by means of natural
selection.

5.5.3 Strategy

The information processing objective of the technique is to construct a
probabilistic model that describes the relationships between the components
of fit solutions in the problem space. This is achieved by repeating the
process of creating and sampling from a Bayesian network that contains
the conditional dependancies, independencies, and conditional probabilities
between the components of a solution. The network is constructed from
the relative frequencies of the components within a population of high
fitness candidate solutions. Once the network is constructed, the candidate
solutions are discarded and a new population of candidate solutions are
generated from the model. The process is repeated until the model converges
on a fit prototype solution.

5.5.4 Procedure

Algorithm 5.5.1 provides a pseudocode listing of the Bayesian Optimization
Algorithm for minimizing a cost function. The Bayesian network is con-
structed each iteration using a greedy algorithm. The network is assessed
based on its fit of the information in the population of candidate solutions
using either a Bayesian Dirichlet Metric (BD) [9], or a Bayesian Information
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Criterion (BIC). Refer to Chapter 3 of Pelikan’s book for a more detailed
presentation of the pseudocode for BOA [5].

Algorithm 5.5.1: Pseudocode for BOA.

Input: Bitsnum, Populationsize, Selectionsize

Output: Sbest

Population ← InitializePopulation(Bitsnum, Populationsize);1

EvaluatePopulation(Population);2

Sbest ← GetBestSolution(Population);3

while ¬StopCondition() do4

Selected ← SelectFitSolutions(Population, Selectionsize);5

Model ← ConstructBayesianNetwork(Selected);6

Offspring ← ∅;7

for i to Populationsize do8

Offspring ← ProbabilisticallyConstructSolution(Model);9

end10

EvaluatePopulation(Offspring);11

Sbest ← GetBestSolution(Offspring);12

Population ← Combine(Population, Offspring);13

end14

return Sbest;15

5.5.5 Heuristics

� The Bayesian Optimization Algorithm was designed and investigated
on binary string-base problems, most commonly representing binary
function optimization problems.

� Bayesian networks are typically constructed (grown) from scratch each
iteration using an iterative process of adding, removing, and reversing
links. Additionally, past networks may be used as the basis for the
subsequent generation.

� A greedy hill-climbing algorithm is used each algorithm iteration to
optimize a Bayesian network to represent a population of candidate
solutions.

� The fitness of constructed Bayesian networks may be assessed using
the Bayesian Dirichlet Metric (BD) or a Minimum Description length
method called the Bayesian Information Criterion (BIC).

5.5.6 Code Listing

Listing 5.4 provides an example of the Bayesian Optimization Algorithm
implemented in the Ruby Programming Language. The demonstration
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problem is a maximizing binary optimization problem called OneMax that
seeks a binary string of unity (all ‘1’ bits). The objective function provides
only an indication of the number of correct bits in a candidate string, not
the positions of the correct bits.

The Bayesian Optimization Algorithm can be tricky to implement given
the use of of a Bayesian Network at the core of the technique. The implemen-
tation of BOA provided is based on the the C++ implementation provided
by Pelikan, version 1.0 [3]. Specifically, the implementation uses the K2
metric to construct a Bayesian network from a population of candidate
solutions [1]. Essentially, this metric is a greedy algorithm that starts with
an empty graph and adds the arc with the most gain each iteration until
a maximum number of edges have been added or no further edges can be
added. The result is a directed acyclic graph. The process that constructs
the graph imposes limits, such as the maximum number of edges and the
maximum number of in-bound connections per node.

New solutions are sampled from the graph by first topologically ordering
the graph (so that bits can be generated based on their dependencies), then
probabilistically sampling the bits based on the conditional probabilities
encoded in the graph. The algorithm used for sampling the conditional
probabilities from the network is Probabilistic Logic Sampling [2]. The
stopping condition is either the best solution for the problem is found or
the system converges to a single bit pattern.

Given that the implementation was written for clarity, it is slow to execute
and provides an great opportunity for improvements and efficiencies.

1 def onemax(vector)

2 return vector.inject(0){|sum, value| sum + value}

3 end

4

5 def random_bitstring(size)

6 return Array.new(size){ ((rand()<0.5) ? 1 : 0) }

7 end

8

9 def path_exists?(i, j, graph)

10 visited, stack = [], [i]

11 while !stack.empty?

12 return true if stack.include?(j)

13 k = stack.shift

14 next if visited.include?(k)

15 visited << k

16 graph[k][:out].each {|m| stack.unshift(m) if !visited.include?(m)}

17 end

18 return false

19 end

20

21 def can_add_edge?(i, j, graph)

22 return !graph[i][:out].include?(j) && !path_exists?(j, i, graph)

23 end

24

25 def get_viable_parents(node, graph)
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26 viable = []

27 graph.size.times do |i|

28 if node!=i and can_add_edge?(node, i, graph)

29 viable << i

30 end

31 end

32 return viable

33 end

34

35 def compute_count_for_edges(pop, indexes)

36 counts = Array.new(2**(indexes.size)){0}

37 pop.each do |p|

38 index = 0

39 indexes.reverse.each_with_index do |v,i|

40 index += ((p[:bitstring][v] == 1) ? 1 : 0) * (2**i)

41 end

42 counts[index] += 1

43 end

44 return counts

45 end

46

47 def fact(v)

48 return v <= 1 ? 1 : v*fact(v-1)

49 end

50

51 def k2equation(node, candidates, pop)

52 counts = compute_count_for_edges(pop, [node]+candidates)

53 total = nil

54 (counts.size/2).times do |i|

55 a1, a2 = counts[i*2], counts[(i*2)+1]

56 rs = (1.0/fact((a1+a2)+1).to_f) * fact(a1).to_f * fact(a2).to_f

57 total = (total.nil? ? rs : total*rs)

58 end

59 return total

60 end

61

62 def compute_gains(node, graph, pop, max=2)

63 viable = get_viable_parents(node[:num], graph)

64 gains = Array.new(graph.size) {-1.0}

65 gains.each_index do |i|

66 if graph[i][:in].size < max and viable.include?(i)

67 gains[i] = k2equation(node[:num], node[:in]+[i], pop)

68 end

69 end

70 return gains

71 end

72

73 def construct_network(pop, prob_size, max_edges=3*pop.size)

74 graph = Array.new(prob_size) {|i| {:out=>[], :in=>[], :num=>i} }

75 gains = Array.new(prob_size)

76 max_edges.times do

77 max, from, to = -1, nil, nil

78 graph.each_with_index do |node, i|

79 gains[i] = compute_gains(node, graph, pop)

80 gains[i].each_with_index {|v,j| from,to,max = i,j,v if v>max}

81 end
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82 break if max <= 0.0

83 graph[from][:out] << to

84 graph[to][:in] << from

85 end

86 return graph

87 end

88

89 def topological_ordering(graph)

90 graph.each {|n| n[:count] = n[:in].size}

91 ordered,stack = [], graph.select {|n| n[:count]==0}

92 while ordered.size < graph.size

93 current = stack.shift

94 current[:out].each do |edge|

95 node = graph.find {|n| n[:num]==edge}

96 node[:count] -= 1

97 stack << node if node[:count] <= 0

98 end

99 ordered << current

100 end

101 return ordered

102 end

103

104 def marginal_probability(i, pop)

105 return pop.inject(0.0){|s,x| s + x[:bitstring][i]} / pop.size.to_f

106 end

107

108 def calculate_probability(node, bitstring, graph, pop)

109 return marginal_probability(node[:num], pop) if node[:in].empty?

110 counts = compute_count_for_edges(pop, [node[:num]]+node[:in])

111 index = 0

112 node[:in].reverse.each_with_index do |v,i|

113 index += ((bitstring[v] == 1) ? 1 : 0) * (2**i)

114 end

115 i1 = index + (1*2**(node[:in].size))

116 i2 = index + (0*2**(node[:in].size))

117 a1, a2 = counts[i1].to_f, counts[i2].to_f

118 return a1/(a1+a2)

119 end

120

121 def probabilistic_logic_sample(graph, pop)

122 bitstring = Array.new(graph.size)

123 graph.each do |node|

124 prob = calculate_probability(node, bitstring, graph, pop)

125 bitstring[node[:num]] = ((rand() < prob) ? 1 : 0)

126 end

127 return {:bitstring=>bitstring}

128 end

129

130 def sample_from_network(pop, graph, num_samples)

131 ordered = topological_ordering(graph)

132 samples = Array.new(num_samples) do

133 probabilistic_logic_sample(ordered, pop)

134 end

135 return samples

136 end

137
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138 def search(num_bits, max_iter, pop_size, select_size, num_children)

139 pop = Array.new(pop_size) { {:bitstring=>random_bitstring(num_bits)} }

140 pop.each{|c| c[:cost] = onemax(c[:bitstring])}

141 best = pop.sort!{|x,y| y[:cost] <=> x[:cost]}.first

142 max_iter.times do |it|

143 selected = pop.first(select_size)

144 network = construct_network(selected, num_bits)

145 arcs = network.inject(0){|s,x| s+x[:out].size}

146 children = sample_from_network(selected, network, num_children)

147 children.each{|c| c[:cost] = onemax(c[:bitstring])}

148 children.each {|c| puts " >>sample, f=#{c[:cost]} #{c[:bitstring]}"}

149 pop = pop[0...(pop_size-select_size)] + children

150 pop.sort! {|x,y| y[:cost] <=> x[:cost]}

151 best = pop.first if pop.first[:cost] >= best[:cost]

152 puts " >it=#{it}, arcs=#{arcs}, f=#{best[:cost]}, [#{best[:bitstring]}]"

153 converged = pop.select {|x| x[:bitstring]!=pop.first[:bitstring]}.empty?

154 break if converged or best[:cost]==num_bits

155 end

156 return best

157 end

158

159 if __FILE__ == $0

160 # problem configuration

161 num_bits = 20

162 # algorithm configuration

163 max_iter = 100

164 pop_size = 50

165 select_size = 15

166 num_children = 25

167 # execute the algorithm

168 best = search(num_bits, max_iter, pop_size, select_size, num_children)

169 puts "done! Solution: f=#{best[:cost]}/#{num_bits}, s=#{best[:bitstring]}"

170 end

Listing 5.4: Bayesian Optimization Algorithm in Ruby

5.5.7 References

Primary Sources

The Bayesian Optimization Algorithm was proposed by Pelikan, Goldberg,
and Cantú-Paz in the technical report [8], that was later published [10].
The technique was proposed as an extension to the state of Estimation
of Distribution algorithms (such as the Univariate Marginal Distribution
Algorithm and the Bivariate Marginal Distribution Algorithm) that used a
Bayesian Network to model the relationships and conditional probabilities
for the components expressed in a population of fit candidate solutions.
Pelikan, Goldberg, and Cantú-Paz also described the approach applied to
deceptive binary optimization problems (trap functions) in a paper that
was published before the seminal journal article [9].
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Learn More

Pelikan and Goldberg described an extension to the approach called the Hi-
erarchical Bayesian Optimization Algorithm (hBOA) [6, 7]. The differences
in the hBOA algorithm are that it replaces the decision tables (used to store
the probabilities) with decision graphs and used a niching method called
Restricted Tournament Replacement to maintain diversity in the selected
set of candidate solutions used to construct the network models. Pelikan’s
work on BOA culminated in his PhD thesis that provides a detailed treat-
ment of the approach, its configuration and application [4]. Pelikan, Sastry,
and Goldberg proposed the Incremental Bayesian Optimization Algorithm
(iBOA) extension of the approach that removes the population and adds
incremental updates to the Bayesian network [11].

Pelikan published a book that focused on the technique, walking through
the development of probabilistic algorithms inspired by evolutionary compu-
tation, a detailed look at the Bayesian Optimization Algorithm (Chapter 3),
the hierarchic extension to Hierarchical Bayesian Optimization Algorithm
and demonstration studies of the approach on test problems [5].
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5.6 Cross-Entropy Method

Cross-Entropy Method, Cross Entropy Method, CEM.

5.6.1 Taxonomy

The Cross-Entropy Method is a probabilistic optimization belonging to
the field of Stochastic Optimization. It is similar to other Stochastic
Optimization and algorithms such as Simulated Annealing (Section 4.2),
and to Estimation of Distribution Algorithms such as the Probabilistic
Incremental Learning Algorithm (Section 5.2).

5.6.2 Inspiration

The Cross-Entropy Method does not have an inspiration. It was developed
as an efficient estimation technique for rare-event probabilities in discrete
event simulation systems and was adapted for use in optimization. The name
of the technique comes from the Kullback-Leibler cross-entropy method for
measuring the amount of information (bits) needed to identify an event
from a set of probabilities.

5.6.3 Strategy

The information processing strategy of the algorithm is to sample the
problem space and approximate the distribution of good solutions. This is
achieved by assuming a distribution of the problem space (such as Gaussian),
sampling the problem domain by generating candidate solutions using the
distribution, and updating the distribution based on the better candidate
solutions discovered. Samples are constructed step-wise (one component at
a time) based on the summarized distribution of good solutions. As the
algorithm progresses, the distribution becomes more refined until it focuses
on the area or scope of optimal solutions in the domain.

5.6.4 Procedure

Algorithm 5.6.1 provides a pseudocode listing of the Cross-Entropy Method
algorithm for minimizing a cost function.

5.6.5 Heuristics

� The Cross-Entropy Method was adapted for combinatorial optimiza-
tion problems, although has been applied to continuous function
optimization as well as noisy simulation problems.

� A alpha (α) parameter or learning rate ∈ [0.1] is typically set high,
such as 0.7.
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Algorithm 5.6.1: Pseudocode for the Cross-Entropy Method.

Input: Problemsize, Samplesnum, UpdateSamplesnum, Learnrate,
V ariancemin

Output: Sbest

Means ← InitializeMeans();1

Variances ← InitializeVariances();2

Sbest ← ∅;3

while Max(Variances) ≤ V ariancemin do4

Samples ← 0;5

for i = 0 to Samplesnum do6

Samples ← GenerateSample(Means, Variances);7

end8

EvaluateSamples(Samples);9

SortSamplesByQuality(Samples);10

if Cost(Samples0) ≤ Cost(Sbest) then11

Sbest ← Samples0;12

end13

Samplesselected ←SelectBestSamples(Samples,14

UpdateSamplesnum);
for i = 0 to Problemsize do15

Meansi ← Meansi + Learnrate × Mean(Samplesselected, i);16

V ariancesi ← V ariancesi + Learnrate ×17

Variance(Samplesselected, i);
end18

end19

return Sbest;20

� A smoothing function can be used to further control the updates the
summaries of the distribution(s) of samples from the problem space.
For example, in continuous function optimization a β parameter may
replace α for updating the standard deviation, calculated at time t as
βt = β − β × (1− 1

t
)q, where β is initially set high ∈ [0.8, 0.99] and q

is a small integer ∈ [5, 10].

5.6.6 Code Listing

Listing 5.5 provides an example of the Cross-Entropy Method algorithm
implemented in the Ruby Programming Language. The demonstration
problem is an instance of a continuous function optimization problem that
seeks min f(x) where f =

∑n

i=1 x
2
i , −5.0 ≤ xi ≤ 5.0 and n = 3. The

optimal solution for this basin function is (v0, . . . , vn−1) = 0.0.
The algorithm was implemented based on a description of the Cross-

Entropy Method algorithm for continuous function optimization by Ru-
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binstein and Kroese in Chapter 5 and Appendix A of their book on the
method [5]. The algorithm maintains means and standard deviations of the
distribution of samples for convenience. The means and standard deviations
are initialized based on random positions in the problem space and the
bounds of the whole problem space respectively. A smoothing parameter is
not used on the standard deviations.

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_variable(minmax)

6 min, max = minmax

7 return min + ((max - min) * rand())

8 end

9

10 def random_gaussian(mean=0.0, stdev=1.0)

11 u1 = u2 = w = 0

12 begin

13 u1 = 2 * rand() - 1

14 u2 = 2 * rand() - 1

15 w = u1 * u1 + u2 * u2

16 end while w >= 1

17 w = Math.sqrt((-2.0 * Math.log(w)) / w)

18 return mean + (u2 * w) * stdev

19 end

20

21 def generate_sample(search_space, means, stdevs)

22 vector = Array.new(search_space.size)

23 search_space.size.times do |i|

24 vector[i] = random_gaussian(means[i], stdevs[i])

25 vector[i] = search_space[i][0] if vector[i] < search_space[i][0]

26 vector[i] = search_space[i][1] if vector[i] > search_space[i][1]

27 end

28 return {:vector=>vector}

29 end

30

31 def mean_attr(samples, i)

32 sum = samples.inject(0.0) do |s,sample|

33 s + sample[:vector][i]

34 end

35 return (sum / samples.size.to_f)

36 end

37

38 def stdev_attr(samples, mean, i)

39 sum = samples.inject(0.0) do |s,sample|

40 s + (sample[:vector][i] - mean)**2.0

41 end

42 return Math.sqrt(sum / samples.size.to_f)

43 end

44

45 def update_distribution!(samples, alpha, means, stdevs)

46 means.size.times do |i|

47 means[i] = alpha*means[i] + ((1.0-alpha)*mean_attr(samples, i))

48 stdevs[i] = alpha*stdevs[i]+((1.0-alpha)*stdev_attr(samples,means[i],i))



5.6. Cross-Entropy Method 227

49 end

50 end

51

52 def search(bounds, max_iter, num_samples, num_update, learning_rate)

53 means = Array.new(bounds.size){|i| random_variable(bounds[i])}

54 stdevs = Array.new(bounds.size){|i| bounds[i][1]-bounds[i][0]}

55 best = nil

56 max_iter.times do |iter|

57 samples = Array.new(num_samples){generate_sample(bounds, means, stdevs)}

58 samples.each {|samp| samp[:cost] = objective_function(samp[:vector])}

59 samples.sort!{|x,y| x[:cost]<=>y[:cost]}

60 best = samples.first if best.nil? or samples.first[:cost] < best[:cost]

61 selected = samples.first(num_update)

62 update_distribution!(selected, learning_rate, means, stdevs)

63 puts " > iteration=#{iter}, fitness=#{best[:cost]}"

64 end

65 return best

66 end

67

68 if __FILE__ == $0

69 # problem configuration

70 problem_size = 3

71 search_space = Array.new(problem_size) {|i| [-5, 5]}

72 # algorithm configuration

73 max_iter = 100

74 num_samples = 50

75 num_update = 5

76 l_rate = 0.7

77 # execute the algorithm

78 best = search(search_space, max_iter, num_samples, num_update, l_rate)

79 puts "done! Solution: f=#{best[:cost]}, s=#{best[:vector].inspect}"

80 end

Listing 5.5: Cross-Entropy Method in Ruby

5.6.7 References

Primary Sources

The Cross-Entropy method was proposed by Rubinstein in 1997 [2] for use
in optimizing discrete event simulation systems. It was later generalized
by Rubinstein and proposed as an optimization method for combinatorial
function optimization in 1999 [3]. This work was further elaborated by
Rubinstein providing a detailed treatment on the use of the Cross-Entropy
method for combinatorial optimization [4].

Learn More

De Boer et al. provide a detailed presentation of Cross-Entropy method
including its application in rare event simulation, its adaptation to combi-
natorial optimization, and example applications to the max-cut, traveling
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salesman problem, and a clustering numeric optimization example [1]. Ru-
binstein and Kroese provide a thorough presentation of the approach in
their book, summarizing the relevant theory and the state of the art [5].
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Chapter 6

Swarm Algorithms

6.1 Overview

This chapter describes Swarm Algorithms.

6.1.1 Swarm Intelligence

Swarm intelligence is the study of computational systems inspired by the
‘collective intelligence’. Collective Intelligence emerges through the coopera-
tion of large numbers of homogeneous agents in the environment. Examples
include schools of fish, flocks of birds, and colonies of ants. Such intelligence
is decentralized, self-organizing and distributed through out an environment.
In nature such systems are commonly used to solve problems such as effec-
tive foraging for food, prey evading, or colony re-location. The information
is typically stored throughout the participating homogeneous agents, or is
stored or communicated in the environment itself such as through the use
of pheromones in ants, dancing in bees, and proximity in fish and birds.

The paradigm consists of two dominant sub-fields 1) Ant Colony Opti-
mization that investigates probabilistic algorithms inspired by the stigmergy
and foraging behavior of ants, and 2) Particle Swarm Optimization that
investigates probabilistic algorithms inspired by the flocking, schooling and
herding. Like evolutionary computation, swarm intelligence ‘algorithms’ or
‘strategies’ are considered adaptive strategies and are typically applied to
search and optimization domains.

6.1.2 References

Seminal books on the field of Swarm Intelligence include “Swarm Intelligence”
by Kennedy, Eberhart and Shi [10], and “Swarm Intelligence: From Natural
to Artificial Systems” by Bonabeau, Dorigo, and Theraulaz [3]. Another
excellent text book on the area is “Fundamentals of Computational Swarm

229
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Intelligence” by Engelbrecht [7]. The seminal book reference for the field
of Ant Colony Optimization is “Ant Colony Optimization” by Dorigo and
Stützle [6].

6.1.3 Extensions

There are many other algorithms and classes of algorithm that were not
described from the field of Swarm Intelligence, not limited to:

� Ant Algorithms: such as Max-Min Ant Systems [15] Rank-Based
Ant Systems [4], Elitist Ant Systems [5], Hyper Cube Ant Colony
Optimization [2] Approximate Nondeterministic Tree-Search (ANTS)
[12] and Multiple Ant Colony System [8].

� Bee Algorithms: such as Bee System and Bee Colony Optimiza-
tion [11], the Honey Bee Algorithm [16], and Artificial Bee Colony
Optimization [1, 9].

� Other Social Insects: algorithms inspired by other social insects
besides ants and bees, such as the Firey Algorithm [18] and the Wasp
Swarm Algorithm [14].

� Extensions to Particle Swarm: such as Repulsive Particle Swarm
Optimization [17].

� Bacteria Algorithms: such as the Bacteria Chemotaxis Algorithm
[13].
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6.2 Particle Swarm Optimization

Particle Swarm Optimization, PSO.

6.2.1 Taxonomy

Particle Swarm Optimization belongs to the field of Swarm Intelligence and
Collective Intelligence and is a sub-field of Computational Intelligence. Par-
ticle Swarm Optimization is related to other Swarm Intelligence algorithms
such as Ant Colony Optimization and it is a baseline algorithm for many
variations, too numerous to list.

6.2.2 Inspiration

Particle Swarm Optimization is inspired by the social foraging behavior of
some animals such as flocking behavior of birds and the schooling behavior
of fish.

6.2.3 Metaphor

Particles in the swarm fly through an environment following the fitter mem-
bers of the swarm and generally biasing their movement toward historically
good areas of their environment.

6.2.4 Strategy

The goal of the algorithm is to have all the particles locate the optima in
a multi-dimensional hyper-volume. This is achieved by assigning initially
random positions to all particles in the space and small initial random
velocities. The algorithm is executed like a simulation, advancing the
position of each particle in turn based on its velocity, the best known global
position in the problem space and the best position known to a particle. The
objective function is sampled after each position update. Over time, through
a combination of exploration and exploitation of known good positions in the
search space, the particles cluster or converge together around an optima,
or several optima.

6.2.5 Procedure

The Particle Swarm Optimization algorithm is comprised of a collection
of particles that move around the search space influenced by their own
best past location and the best past location of the whole swarm or a close
neighbor. Each iteration a particle’s velocity is updated using:
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vi(t+ 1) = vi(t)+
(

c1 × rand()× (pbesti − pi(t))
)

+
(

c2 × rand()× (pgbest − pi(t))
)

where vi(t + 1) is the new velocity for the ith particle, c1 and c2 are
the weighting coefficients for the personal best and global best positions
respectively, pi(t) is the ith particle’s position at time t, pbesti is the ith

particle’s best known position, and pgbest is the best position known to the
swarm. The rand() function generate a uniformly random variable ∈ [0, 1].
Variants on this update equation consider best positions within a particles
local neighborhood at time t.

A particle’s position is updated using:

pi(t+ 1) = pi(t) + vi(t) (6.1)

Algorithm 6.2.1 provides a pseudocode listing of the Particle Swarm
Optimization algorithm for minimizing a cost function.

6.2.6 Heuristics

� The number of particles should be low, around 20-40

� The speed a particle can move (maximum change in its position per
iteration) should be bounded, such as to a percentage of the size of
the domain.

� The learning factors (biases towards global and personal best positions)
should be between 0 and 4, typically 2.

� A local bias (local neighborhood) factor can be introduced where
neighbors are determined based on Euclidean distance between particle
positions.

� Particles may leave the boundary of the problem space and may be
penalized, be reflected back into the domain or biased to return back
toward a position in the problem domain. Alternatively, a wrapping
strategy may be used at the edge of the domain creating a loop, torrid
or related geometrical structures at the chosen dimensionality.

� An inertia or momentum coefficient can be introduced to limit the
change in velocity.

6.2.7 Code Listing

Listing 6.1 provides an example of the Particle Swarm Optimization algo-
rithm implemented in the Ruby Programming Language. The demonstration
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Algorithm 6.2.1: Pseudocode for PSO.

Input: ProblemSize, Populationsize

Output: Pg best

Population ← ∅;1

Pg best ← ∅;2

for i = 1 to Populationsize do3

Pvelocity ← RandomVelocity();4

Pposition ← RandomPosition(Populationsize);5

Pcost ← Cost(Pposition);6

Pp best ← Pposition;7

if Pcost ≤ Pg best then8

Pg best ← Pp best;9

end10

end11

while ¬StopCondition() do12

foreach P ∈ Population do13

Pvelocity ← UpdateVelocity(Pvelocity, Pg best, Pp best);14

Pposition ← UpdatePosition(Pposition, Pvelocity);15

Pcost ← Cost(Pposition);16

if Pcost ≤ Pp best then17

Pp best ← Pposition;18

if Pcost ≤ Pg best then19

Pg best ← Pp best;20

end21

end22

end23

end24

return Pg best;25

problem is an instance of a continuous function optimization that seeks
min f(x) where f =

∑n

i=1 x
2
i , −5.0 ≤ xi ≤ 5.0 and n = 3. The optimal

solution for this basin function is (v0, . . . , vn−1) = 0.0. The algorithm is a
conservative version of Particle Swarm Optimization based on the seminal
papers. The implementation limits the velocity at a pre-defined maximum,
and bounds particles to the search space, reflecting their movement and
velocity if the bounds of the space are exceeded. Particles are influenced by
the best position found as well as their own personal best position. Natural
extensions may consider limiting velocity with an inertia coefficient and
including a neighborhood function for the particles.

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4
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5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def create_particle(search_space, vel_space)

12 particle = {}

13 particle[:position] = random_vector(search_space)

14 particle[:cost] = objective_function(particle[:position])

15 particle[:b_position] = Array.new(particle[:position])

16 particle[:b_cost] = particle[:cost]

17 particle[:velocity] = random_vector(vel_space)

18 return particle

19 end

20

21 def get_global_best(population, current_best=nil)

22 population.sort{|x,y| x[:cost] <=> y[:cost]}

23 best = population.first

24 if current_best.nil? or best[:cost] <= current_best[:cost]

25 current_best = {}

26 current_best[:position] = Array.new(best[:position])

27 current_best[:cost] = best[:cost]

28 end

29 return current_best

30 end

31

32 def update_velocity(particle, gbest, max_v, c1, c2)

33 particle[:velocity].each_with_index do |v,i|

34 v1 = c1 * rand() * (particle[:b_position][i] - particle[:position][i])

35 v2 = c2 * rand() * (gbest[:position][i] - particle[:position][i])

36 particle[:velocity][i] = v + v1 + v2

37 particle[:velocity][i] = max_v if particle[:velocity][i] > max_v

38 particle[:velocity][i] = -max_v if particle[:velocity][i] < -max_v

39 end

40 end

41

42 def update_position(part, bounds)

43 part[:position].each_with_index do |v,i|

44 part[:position][i] = v + part[:velocity][i]

45 if part[:position][i] > bounds[i][1]

46 part[:position][i]=bounds[i][1]-(part[:position][i]-bounds[i][1]).abs

47 part[:velocity][i] *= -1.0

48 elsif part[:position][i] < bounds[i][0]

49 part[:position][i]=bounds[i][0]+(part[:position][i]-bounds[i][0]).abs

50 part[:velocity][i] *= -1.0

51 end

52 end

53 end

54

55 def update_best_position(particle)

56 return if particle[:cost] > particle[:b_cost]

57 particle[:b_cost] = particle[:cost]

58 particle[:b_position] = Array.new(particle[:position])

59 end

60
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61 def search(max_gens, search_space, vel_space, pop_size, max_vel, c1, c2)

62 pop = Array.new(pop_size) {create_particle(search_space, vel_space)}

63 gbest = get_global_best(pop)

64 max_gens.times do |gen|

65 pop.each do |particle|

66 update_velocity(particle, gbest, max_vel, c1, c2)

67 update_position(particle, search_space)

68 particle[:cost] = objective_function(particle[:position])

69 update_best_position(particle)

70 end

71 gbest = get_global_best(pop, gbest)

72 puts " > gen #{gen+1}, fitness=#{gbest[:cost]}"

73 end

74 return gbest

75 end

76

77 if __FILE__ == $0

78 # problem configuration

79 problem_size = 2

80 search_space = Array.new(problem_size) {|i| [-5, 5]}

81 # algorithm configuration

82 vel_space = Array.new(problem_size) {|i| [-1, 1]}

83 max_gens = 100

84 pop_size = 50

85 max_vel = 100.0

86 c1, c2 = 2.0, 2.0

87 # execute the algorithm

88 best = search(max_gens, search_space, vel_space, pop_size, max_vel, c1,c2)

89 puts "done! Solution: f=#{best[:cost]}, s=#{best[:position].inspect}"

90 end

Listing 6.1: Particle Swarm Optimization in Ruby

6.2.8 References

Primary Sources

Particle Swarm Optimization was described as a stochastic global optimiza-
tion method for continuous functions in 1995 by Eberhart and Kennedy
[1, 3]. This work was motivated as an optimization method loosely based
on the flocking behavioral models of Reynolds [7]. Early works included the
introduction of inertia [8] and early study of social topologies in the swarm
by Kennedy [2].

Learn More

Poli, Kennedy, and Blackwell provide a modern overview of the field of
PSO with detailed coverage of extensions to the baseline technique [6]. Poli
provides a meta-analysis of PSO publications that focus on the application
the technique, providing a systematic breakdown on application areas [5].
An excellent book on Swarm Intelligence in general with detailed coverage of
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Particle Swarm Optimization is “Swarm Intelligence” by Kennedy, Eberhart,
and Shi [4].
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6.3 Ant System

Ant System, AS, Ant Cycle.

6.3.1 Taxonomy

The Ant System algorithm is an example of an Ant Colony Optimization
method from the field of Swarm Intelligence, Metaheuristics and Computa-
tional Intelligence. Ant System was originally the term used to refer to a
range of Ant based algorithms, where the specific algorithm implementation
was referred to as Ant Cycle. The so-called Ant Cycle algorithm is now
canonically referred to as Ant System. The Ant System algorithm is the
baseline Ant Colony Optimization method for popular extensions such as
Elite Ant System, Rank-based Ant System, Max-Min Ant System, and Ant
Colony System.

6.3.2 Inspiration

The Ant system algorithm is inspired by the foraging behavior of ants, specif-
ically the pheromone communication between ants regarding a good path
between the colony and a food source in an environment. This mechanism
is called stigmergy.

6.3.3 Metaphor

Ants initially wander randomly around their environment. Once food
is located an ant will begin laying down pheromone in the environment.
Numerous trips between the food and the colony are performed and if the
same route is followed that leads to food then additional pheromone is laid
down. Pheromone decays in the environment, so that older paths are less
likely to be followed. Other ants may discover the same path to the food
and in turn may follow it and also lay down pheromone. A positive feedback
process routes more and more ants to productive paths that are in turn
further refined through use.

6.3.4 Strategy

The objective of the strategy is to exploit historic and heuristic information
to construct candidate solutions and fold the information learned from
constructing solutions into the history. Solutions are constructed one discrete
piece at a time in a probabilistic step-wise manner. The probability of
selecting a component is determined by the heuristic contribution of the
component to the overall cost of the solution and the quality of solutions
from which the component has historically known to have been included.
History is updated proportional to the quality of candidate solutions and



6.3. Ant System 239

is uniformly decreased ensuring the most recent and useful information is
retained.

6.3.5 Procedure

Algorithm 6.3.1 provides a pseudocode listing of the main Ant System
algorithm for minimizing a cost function. The pheromone update process
is described by a single equation that combines the contributions of all
candidate solutions with a decay coefficient to determine the new pheromone
value, as follows:

τi,j ← (1− ρ)× τi,j +

m
∑

k=1

∆k
i,j (6.2)

where τi,j represents the pheromone for the component (graph edge)
(i, j), ρ is the decay factor, m is the number of ants, and

∑m

k=1 ∆
k
i,j is the

sum of 1
Scost

(maximizing solution cost) for those solutions that include
component i, j. The Pseudocode listing shows this equation as an equivalent
as a two step process of decay followed by update for simplicity.

The probabilistic step-wise construction of solution makes use of both
history (pheromone) and problem-specific heuristic information to incremen-
tally construction a solution piece-by-piece. Each component can only be
selected if it has not already been chosen (for most combinatorial problems),
and for those components that can be selected from (given the current
component i), their probability for selection is defined as:

Pi,j ←
ταi,j × ηβi,j

∑c

k=1 τ
α
i,k × ηβi,k

(6.3)

where ηi,j is the maximizing contribution to the overall score of selecting
the component (such as 1.0

distancei,j
for the Traveling Salesman Problem), α

is the heuristic coefficient, τi,j is the pheromone value for the component, β
is the history coefficient, and c is the set of usable components.

6.3.6 Heuristics

� The Ant Systems algorithm was designed for use with combinatorial
problems such as the TSP, knapsack problem, quadratic assignment
problems, graph coloring problems and many others.

� The history coefficient (α) controls the amount of contribution history
plays in a components probability of selection and is commonly set to
1.0.
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Algorithm 6.3.1: Pseudocode for Ant System.

Input: ProblemSize, Populationsize, m, ρ, α, β
Output: Pbest

Pbest ← CreateHeuristicSolution(ProblemSize);1

Pbestcost ← Cost(Sh);2

Pheromone ← InitializePheromone(Pbestcost);3

while ¬StopCondition() do4

Candidates ← ∅;5

for i = 1 to m do6

Si ← ProbabilisticStepwiseConstruction(Pheromone,7

ProblemSize, α, β);
Sicost ← Cost(Si);8

if Sicost ≤ Pbestcost then9

Pbestcost ← Sicost;10

Pbest ← Si;11

end12

Candidates ← Si;13

end14

DecayPheromone(Pheromone, ρ);15

foreach Si ∈ Candidates do16

UpdatePheromone(Pheromone, Si, Sicost);17

end18

end19

return Pbest;20

� The heuristic coefficient (β) controls the amount of contribution
problem-specific heuristic information plays in a components proba-
bility of selection and is commonly between 2 and 5, such as 2.5.

� The decay factor (ρ) controls the rate at which historic information is
lost and is commonly set to 0.5.

� The total number of ants (m) is commonly set to the number of
components in the problem, such as the number of cities in the TSP.

6.3.7 Code Listing

Listing 6.2 provides an example of the Ant System algorithm implemented in
the Ruby Programming Language. The algorithm is applied to the Berlin52
instance of the Traveling Salesman Problem (TSP), taken from the TSPLIB.
The problem seeks a permutation of the order to visit cities (called a tour)
that minimized the total distance traveled. The optimal tour distance
for Berlin52 instance is 7542 units. Some extensions to the algorithm
implementation for speed improvements may consider pre-calculating a
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distance matrix for all the cities in the problem, and pre-computing a
probability matrix for choices during the probabilistic step-wise construction
of tours.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(permutation, cities)

6 distance =0

7 permutation.each_with_index do |c1, i|

8 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def initialise_pheromone_matrix(num_cities, naive_score)

24 v = num_cities.to_f / naive_score

25 return Array.new(num_cities){|i| Array.new(num_cities, v)}

26 end

27

28 def calculate_choices(cities, last_city, exclude, pheromone, c_heur, c_hist)

29 choices = []

30 cities.each_with_index do |coord, i|

31 next if exclude.include?(i)

32 prob = {:city=>i}

33 prob[:history] = pheromone[last_city][i] ** c_hist

34 prob[:distance] = euc_2d(cities[last_city], coord)

35 prob[:heuristic] = (1.0/prob[:distance]) ** c_heur

36 prob[:prob] = prob[:history] * prob[:heuristic]

37 choices << prob

38 end

39 choices

40 end

41

42 def select_next_city(choices)

43 sum = choices.inject(0.0){|sum,element| sum + element[:prob]}

44 return choices[rand(choices.size)][:city] if sum == 0.0

45 v = rand()

46 choices.each_with_index do |choice, i|

47 v -= (choice[:prob]/sum)

48 return choice[:city] if v <= 0.0

49 end

50 return choices.last[:city]

51 end

52



242 Chapter 6. Swarm Algorithms

53 def stepwise_const(cities, phero, c_heur, c_hist)

54 perm = []

55 perm << rand(cities.size)

56 begin

57 choices = calculate_choices(cities,perm.last,perm,phero,c_heur,c_hist)

58 next_city = select_next_city(choices)

59 perm << next_city

60 end until perm.size == cities.size

61 return perm

62 end

63

64 def decay_pheromone(pheromone, decay_factor)

65 pheromone.each do |array|

66 array.each_with_index do |p, i|

67 array[i] = (1.0 - decay_factor) * p

68 end

69 end

70 end

71

72 def update_pheromone(pheromone, solutions)

73 solutions.each do |other|

74 other[:vector].each_with_index do |x, i|

75 y=(i==other[:vector].size-1) ? other[:vector][0] : other[:vector][i+1]

76 pheromone[x][y] += (1.0 / other[:cost])

77 pheromone[y][x] += (1.0 / other[:cost])

78 end

79 end

80 end

81

82 def search(cities, max_it, num_ants, decay_factor, c_heur, c_hist)

83 best = {:vector=>random_permutation(cities)}

84 best[:cost] = cost(best[:vector], cities)

85 pheromone = initialise_pheromone_matrix(cities.size, best[:cost])

86 max_it.times do |iter|

87 solutions = []

88 num_ants.times do

89 candidate = {}

90 candidate[:vector] = stepwise_const(cities, pheromone, c_heur, c_hist)

91 candidate[:cost] = cost(candidate[:vector], cities)

92 best = candidate if candidate[:cost] < best[:cost]

93 end

94 decay_pheromone(pheromone, decay_factor)

95 update_pheromone(pheromone, solutions)

96 puts " > iteration #{(iter+1)}, best=#{best[:cost]}"

97 end

98 return best

99 end

100

101 if __FILE__ == $0

102 # problem configuration

103 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

104 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

105 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

106 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

107 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

108 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],
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109 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

110 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

111 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

112 # algorithm configuration

113 max_it = 50

114 num_ants = 30

115 decay_factor = 0.6

116 c_heur = 2.5

117 c_hist = 1.0

118 # execute the algorithm

119 best = search(berlin52, max_it, num_ants, decay_factor, c_heur, c_hist)

120 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

121 end

Listing 6.2: Ant System in Ruby

6.3.8 References

Primary Sources

The Ant System was described by Dorigo, Maniezzo, and Colorni in an
early technical report as a class of algorithms and was applied to a number
of standard combinatorial optimization algorithms [4]. A series of technical
reports at this time investigated the class of algorithms called Ant System
and the specific implementation called Ant Cycle. This effort contributed
to Dorigo’s PhD thesis published in Italian [2]. The seminal publication
into the investigation of Ant System (with the implementation still referred
to as Ant Cycle) was by Dorigo in 1996 [3].

Learn More

The seminal book on Ant Colony Optimization in general with a detailed
treatment of Ant system is “Ant colony optimization” by Dorigo and Stützle
[5]. An earlier book “Swarm intelligence: from natural to artificial systems”
by Bonabeau, Dorigo, and Theraulaz also provides an introduction to Swarm
Intelligence with a detailed treatment of Ant System [1].
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6.4 Ant Colony System

Ant Colony System, ACS, Ant-Q.

6.4.1 Taxonomy

The Ant Colony System algorithm is an example of an Ant Colony Opti-
mization method from the field of Swarm Intelligence, Metaheuristics and
Computational Intelligence. Ant Colony System is an extension to the Ant
System algorithm and is related to other Ant Colony Optimization methods
such as Elite Ant System, and Rank-based Ant System.

6.4.2 Inspiration

The Ant Colony System algorithm is inspired by the foraging behavior of
ants, specifically the pheromone communication between ants regarding a
good path between the colony and a food source in an environment. This
mechanism is called stigmergy.

6.4.3 Metaphor

Ants initially wander randomly around their environment. Once food
is located an ant will begin laying down pheromone in the environment.
Numerous trips between the food and the colony are performed and if the
same route is followed that leads to food then additional pheromone is laid
down. Pheromone decays in the environment, so that older paths are less
likely to be followed. Other ants may discover the same path to the food
and in turn may follow it and also lay down pheromone. A positive feedback
process routes more and more ants to productive paths that are in turn
further refined through use.

6.4.4 Strategy

The objective of the strategy is to exploit historic and heuristic information
to construct candidate solutions and fold the information learned from
constructing solutions into the history. Solutions are constructed one discrete
piece at a time in a probabilistic step-wise manner. The probability of
selecting a component is determined by the heuristic contribution of the
component to the overall cost of the solution and the quality of solutions
from which the component has historically known to have been included.
History is updated proportional to the quality of the best known solution
and is decreased proportional to the usage if discrete solution components.
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6.4.5 Procedure

Algorithm 6.4.1 provides a pseudocode listing of the main Ant Colony
System algorithm for minimizing a cost function. The probabilistic step-
wise construction of solution makes use of both history (pheromone) and
problem-specific heuristic information to incrementally construct a solution
piece-by-piece. Each component can only be selected if it has not already
been chosen (for most combinatorial problems), and for those components
that can be selected from given the current component i, their probability
for selection is defined as:

Pi,j ←
ταi,j × ηβi,j

∑c

k=1 τ
α
i,k × ηβi,k

(6.4)

where ηi,j is the maximizing contribution to the overall score of selecting
the component (such as 1.0

distancei,j
for the Traveling Salesman Problem), β

is the heuristic coefficient (commonly fixed at 1.0), τi,j is the pheromone
value for the component, α is the history coefficient, and c is the set of
usable components. A greediness factor (q0) is used to influence when to
use the above probabilistic component selection and when to greedily select
the best possible component.

A local pheromone update is performed for each solution that is con-
structed to dissuade following solutions to use the same components in the
same order, as follows:

τi,j ← (1− σ)× τi,j + σ × τ0i,j (6.5)

where τi,j represents the pheromone for the component (graph edge)
(i, j), σ is the local pheromone factor, and τ0i,j is the initial pheromone value.

At the end of each iteration, the pheromone is updated and decayed
using the best candidate solution found thus far (or the best candidate
solution found for the iteration), as follows:

τi,j ← (1− ρ)× τi,j + ρ×∆τi, j (6.6)

where τi,j represents the pheromone for the component (graph edge)
(i, j), ρ is the decay factor, and ∆τi, j is the maximizing solution cost for
the best solution found so far if the component ij is used in the globally
best known solution, otherwise it is 0.

6.4.6 Heuristics

� The Ant Colony System algorithm was designed for use with com-
binatorial problems such as the TSP, knapsack problem, quadratic
assignment problems, graph coloring problems and many others.
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Algorithm 6.4.1: Pseudocode for Ant Colony System.

Input: ProblemSize, Populationsize, m, ρ, β, σ, q0
Output: Pbest

Pbest ← CreateHeuristicSolution(ProblemSize);1

Pbestcost ← Cost(Sh);2

Pheromoneinit ←
1.0

ProblemSize×Pbestcost
;3

Pheromone ← InitializePheromone(Pheromoneinit);4

while ¬StopCondition() do5

for i = 1 to m do6

Si ← ConstructSolution(Pheromone, ProblemSize, β, q0);7

Sicost ← Cost(Si);8

if Sicost ≤ Pbestcost then9

Pbestcost ← Sicost;10

Pbest ← Si;11

end12

LocalUpdateAndDecayPheromone(Pheromone, Si, Sicost, σ);13

end14

GlobalUpdateAndDecayPheromone(Pheromone, Pbest, Pbestcost,15

ρ);
end16

return Pbest;17

� The local pheromone (history) coefficient (σ) controls the amount of
contribution history plays in a components probability of selection
and is commonly set to 0.1.

� The heuristic coefficient (β) controls the amount of contribution
problem-specific heuristic information plays in a components proba-
bility of selection and is commonly between 2 and 5, such as 2.5.

� The decay factor (ρ) controls the rate at which historic information is
lost and is commonly set to 0.1.

� The greediness factor (q0) is commonly set to 0.9.

� The total number of ants (m) is commonly set low, such as 10.

6.4.7 Code Listing

Listing 6.3 provides an example of the Ant Colony System algorithm imple-
mented in the Ruby Programming Language. The algorithm is applied to
the Berlin52 instance of the Traveling Salesman Problem (TSP), taken from
the TSPLIB. The problem seeks a permutation of the order to visit cities
(called a tour) that minimized the total distance traveled. The optimal tour
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distance for Berlin52 instance is 7542 units. Some extensions to the algo-
rithm implementation for speed improvements may consider pre-calculating
a distance matrix for all the cities in the problem, and pre-computing a
probability matrix for choices during the probabilistic step-wise construction
of tours.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(permutation, cities)

6 distance =0

7 permutation.each_with_index do |c1, i|

8 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def initialise_pheromone_matrix(num_cities, init_pher)

24 return Array.new(num_cities){|i| Array.new(num_cities, init_pher)}

25 end

26

27 def calculate_choices(cities, last_city, exclude, pheromone, c_heur, c_hist)

28 choices = []

29 cities.each_with_index do |coord, i|

30 next if exclude.include?(i)

31 prob = {:city=>i}

32 prob[:history] = pheromone[last_city][i] ** c_hist

33 prob[:distance] = euc_2d(cities[last_city], coord)

34 prob[:heuristic] = (1.0/prob[:distance]) ** c_heur

35 prob[:prob] = prob[:history] * prob[:heuristic]

36 choices << prob

37 end

38 return choices

39 end

40

41 def prob_select(choices)

42 sum = choices.inject(0.0){|sum,element| sum + element[:prob]}

43 return choices[rand(choices.size)][:city] if sum == 0.0

44 v = rand()

45 choices.each_with_index do |choice, i|

46 v -= (choice[:prob]/sum)

47 return choice[:city] if v <= 0.0

48 end

49 return choices.last[:city]
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50 end

51

52 def greedy_select(choices)

53 return choices.max{|a,b| a[:prob]<=>b[:prob]}[:city]

54 end

55

56 def stepwise_const(cities, phero, c_heur, c_greed)

57 perm = []

58 perm << rand(cities.size)

59 begin

60 choices = calculate_choices(cities, perm.last, perm, phero, c_heur, 1.0)

61 greedy = rand() <= c_greed

62 next_city = (greedy) ? greedy_select(choices) : prob_select(choices)

63 perm << next_city

64 end until perm.size == cities.size

65 return perm

66 end

67

68 def global_update_pheromone(phero, cand, decay)

69 cand[:vector].each_with_index do |x, i|

70 y = (i==cand[:vector].size-1) ? cand[:vector][0] : cand[:vector][i+1]

71 value = ((1.0-decay)*phero[x][y]) + (decay*(1.0/cand[:cost]))

72 phero[x][y] = value

73 phero[y][x] = value

74 end

75 end

76

77 def local_update_pheromone(pheromone, cand, c_local_phero, init_phero)

78 cand[:vector].each_with_index do |x, i|

79 y = (i==cand[:vector].size-1) ? cand[:vector][0] : cand[:vector][i+1]

80 value = ((1.0-c_local_phero)*pheromone[x][y])+(c_local_phero*init_phero)

81 pheromone[x][y] = value

82 pheromone[y][x] = value

83 end

84 end

85

86 def search(cities, max_it, num_ants, decay, c_heur, c_local_phero, c_greed)

87 best = {:vector=>random_permutation(cities)}

88 best[:cost] = cost(best[:vector], cities)

89 init_pheromone = 1.0 / (cities.size.to_f * best[:cost])

90 pheromone = initialise_pheromone_matrix(cities.size, init_pheromone)

91 max_it.times do |iter|

92 solutions = []

93 num_ants.times do

94 cand = {}

95 cand[:vector] = stepwise_const(cities, pheromone, c_heur, c_greed)

96 cand[:cost] = cost(cand[:vector], cities)

97 best = cand if cand[:cost] < best[:cost]

98 local_update_pheromone(pheromone, cand, c_local_phero, init_pheromone)

99 end

100 global_update_pheromone(pheromone, best, decay)

101 puts " > iteration #{(iter+1)}, best=#{best[:cost]}"

102 end

103 return best

104 end

105
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106 if __FILE__ == $0

107 # problem configuration

108 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

109 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

110 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

111 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

112 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

113 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

114 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

115 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

116 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

117 # algorithm configuration

118 max_it = 100

119 num_ants = 10

120 decay = 0.1

121 c_heur = 2.5

122 c_local_phero = 0.1

123 c_greed = 0.9

124 # execute the algorithm

125 best = search(berlin52, max_it, num_ants, decay, c_heur, c_local_phero,

c_greed)

126 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

127 end

Listing 6.3: Ant Colony System in Ruby

6.4.8 References

Primary Sources

The algorithm was initially investigated by Dorigo and Gambardella under
the name Ant-Q [2, 6]. It was renamed Ant Colony System and further
investigated first in a technical report by Dorigo and Gambardella [4], and
later published [3].

Learn More

The seminal book on Ant Colony Optimization in general with a detailed
treatment of Ant Colony System is “Ant colony optimization” by Dorigo and
Stützle [5]. An earlier book “Swarm intelligence: from natural to artificial
systems” by Bonabeau, Dorigo, and Theraulaz also provides an introduction
to Swarm Intelligence with a detailed treatment of Ant Colony System [1].
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6.5 Bees Algorithm

Bees Algorithm, BA.

6.5.1 Taxonomy

The Bees Algorithm beings to Bee Inspired Algorithms and the field of
Swarm Intelligence, and more broadly the fields of Computational Intel-
ligence and Metaheuristics. The Bees Algorithm is related to other Bee
Inspired Algorithms, such as Bee Colony Optimization, and other Swarm
Intelligence algorithms such as Ant Colony Optimization and Particle Swarm
Optimization.

6.5.2 Inspiration

The Bees Algorithm is inspired by the foraging behavior of honey bees.
Honey bees collect nectar from vast areas around their hive (more than
10 kilometers). Bee Colonies have been observed to send bees to collect
nectar from flower patches relative to the amount of food available at each
patch. Bees communicate with each other at the hive via a waggle dance
that informs other bees in the hive as to the direction, distance, and quality
rating of food sources.

6.5.3 Metaphor

Honey bees collect nectar from flower patches as a food source for the
hive. The hive sends out scout’s that locate patches of flowers, who then
return to the hive and inform other bees about the fitness and location of
a food source via a waggle dance. The scout returns to the flower patch
with follower bees. A small number of scouts continue to search for new
patches, while bees returning from flower patches continue to communicate
the quality of the patch.

6.5.4 Strategy

The information processing objective of the algorithm is to locate and
explore good sites within a problem search space. Scouts are sent out to
randomly sample the problem space and locate good sites. The good sites
are exploited via the application of a local search, where a small number of
good sites are explored more than the others. Good sites are continually
exploited, although many scouts are sent out each iteration always in search
of additional good sites.
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6.5.5 Procedure

Algorithm 6.5.1 provides a pseudocode listing of the Bees Algorithm for
minimizing a cost function.

Algorithm 6.5.1: Pseudocode for the Bees Algorithm.

Input: Problemsize, Beesnum, Sitesnum, EliteSitesnum,
PatchSizeinit, EliteBeesnum, OtherBeesnum

Output: Beebest
Population ← InitializePopulation(Beesnum, Problemsize);1

while ¬StopCondition() do2

EvaluatePopulation(Population);3

Beebest ← GetBestSolution(Population);4

NextGeneration ← ∅;5

Patchsize ← ( PatchSizeinit × PatchDecreasefactor);6

Sitesbest ← SelectBestSites(Population, Sitesnum);7

foreach Sitei ∈ Sitesbest do8

RecruitedBeesnum ← ∅;9

if i < EliteSitesnum then10

RecruitedBeesnum ← EliteBeesnum;11

else12

RecruitedBeesnum ← OtherBeesnum;13

end14

Neighborhood ← ∅;15

for j to RecruitedBeesnum do16

Neighborhood ← CreateNeighborhoodBee(Sitei,17

Patchsize);
end18

NextGeneration ← GetBestSolution(Neighborhood);19

end20

RemainingBeesnum ← (Beesnum- Sitesnum);21

for j to RemainingBeesnum do22

NextGeneration ← CreateRandomBee();23

end24

Population ← NextGeneration;25

end26

return Beebest;27

6.5.6 Heuristics

� The Bees Algorithm was developed to be used with continuous and
combinatorial function optimization problems.

� The Patchsize variable is used as the neighborhood size. For example,
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in a continuous function optimization problem, each dimension of a
site would be sampled as xi ± (rand()× Patchsize).

� The Patchsize variable is decreased each iteration, typically by a
constant amount (such as 0.95).

� The number of elite sites (EliteSitesnum) must be < the number
of sites (Sitesnum), and the number of elite bees (EliteBeesnum) is
traditionally < the number of other bees (OtherBeesnum).

6.5.7 Code Listing

Listing 6.4 provides an example of the Bees Algorithm implemented in the
Ruby Programming Language. The demonstration problem is an instance of
a continuous function optimization that seeks min f(x) where f =

∑n

i=1 x
2
i ,

−5.0 ≤ xi ≤ 5.0 and n = 3. The optimal solution for this basin function
is (v0, . . . , vn−1) = 0.0. The algorithm is an implementation of the Bees
Algorithm as described in the seminal paper [2]. A fixed patch size decrease
factor of 0.95 was applied each iteration.

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def create_random_bee(search_space)

12 return {:vector=>random_vector(search_space)}

13 end

14

15 def create_neigh_bee(site, patch_size, search_space)

16 vector = []

17 site.each_with_index do |v,i|

18 v = (rand()<0.5) ? v+rand()*patch_size : v-rand()*patch_size

19 v = search_space[i][0] if v < search_space[i][0]

20 v = search_space[i][1] if v > search_space[i][1]

21 vector << v

22 end

23 bee = {}

24 bee[:vector] = vector

25 return bee

26 end

27

28 def search_neigh(parent, neigh_size, patch_size, search_space)

29 neigh = []

30 neigh_size.times do

31 neigh << create_neigh_bee(parent[:vector], patch_size, search_space)

32 end

33 neigh.each{|bee| bee[:fitness] = objective_function(bee[:vector])}
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34 return neigh.sort{|x,y| x[:fitness]<=>y[:fitness]}.first

35 end

36

37 def create_scout_bees(search_space, num_scouts)

38 return Array.new(num_scouts) do

39 create_random_bee(search_space)

40 end

41 end

42

43 def search(max_gens, search_space, num_bees, num_sites, elite_sites,

patch_size, e_bees, o_bees)

44 best = nil

45 pop = Array.new(num_bees){ create_random_bee(search_space) }

46 max_gens.times do |gen|

47 pop.each{|bee| bee[:fitness] = objective_function(bee[:vector])}

48 pop.sort!{|x,y| x[:fitness]<=>y[:fitness]}

49 best = pop.first if best.nil? or pop.first[:fitness] < best[:fitness]

50 next_gen = []

51 pop[0...num_sites].each_with_index do |parent, i|

52 neigh_size = (i<elite_sites) ? e_bees : o_bees

53 next_gen << search_neigh(parent, neigh_size, patch_size, search_space)

54 end

55 scouts = create_scout_bees(search_space, (num_bees-num_sites))

56 pop = next_gen + scouts

57 patch_size = patch_size * 0.95

58 puts " > it=#{gen+1}, patch_size=#{patch_size}, f=#{best[:fitness]}"

59 end

60 return best

61 end

62

63 if __FILE__ == $0

64 # problem configuration

65 problem_size = 3

66 search_space = Array.new(problem_size) {|i| [-5, 5]}

67 # algorithm configuration

68 max_gens = 500

69 num_bees = 45

70 num_sites = 3

71 elite_sites = 1

72 patch_size = 3.0

73 e_bees = 7

74 o_bees = 2

75 # execute the algorithm

76 best = search(max_gens, search_space, num_bees, num_sites, elite_sites,

patch_size, e_bees, o_bees)

77 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:vector].inspect}"

78 end

Listing 6.4: Bees Algorithm in Ruby
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6.5.8 References

Primary Sources

The Bees Algorithm was proposed by Pham et al. in a technical report in
2005 [3], and later published [2]. In this work, the algorithm was applied to
standard instances of continuous function optimization problems.

Learn More

The majority of the work on the algorithm has concerned its application to
various problem domains. The following is a selection of popular application
papers: the optimization of linear antenna arrays by Guney and Onay [1],
the optimization of codebook vectors in the Learning Vector Quantization
algorithm for classification by Pham et al. [5], optimization of neural net-
works for classification by Pham et al. [6], and the optimization of clustering
methods by Pham et al. [4].
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6.6 Bacterial Foraging Optimization Algorithm

Bacterial Foraging Optimization Algorithm, BFOA, Bacterial Foraging
Optimization, BFO.

6.6.1 Taxonomy

The Bacterial Foraging Optimization Algorithm belongs to the field of Bac-
teria Optimization Algorithms and Swarm Optimization, and more broadly
to the fields of Computational Intelligence and Metaheuristics. It is related
to other Bacteria Optimization Algorithms such as the Bacteria Chemotaxis
Algorithm [3], and other Swarm Intelligence algorithms such as Ant Colony
Optimization and Particle Swarm Optimization. There have been many
extensions of the approach that attempt to hybridize the algorithm with
other Computational Intelligence algorithms and Metaheuristics such as
Particle Swarm Optimization, Genetic Algorithm, and Tabu Search.

6.6.2 Inspiration

The Bacterial Foraging Optimization Algorithm is inspired by the group
foraging behavior of bacteria such as E.coli and M.xanthus. Specifically, the
BFOA is inspired by the chemotaxis behavior of bacteria that will perceive
chemical gradients in the environment (such as nutrients) and move toward
or away from specific signals.

6.6.3 Metaphor

Bacteria perceive the direction to food based on the gradients of chemicals
in their environment. Similarly, bacteria secrete attracting and repelling
chemicals into the environment and can perceive each other in a similar
way. Using locomotion mechanisms (such as flagella) bacteria can move
around in their environment, sometimes moving chaotically (tumbling and
spinning), and other times moving in a directed manner that may be referred
to as swimming. Bacterial cells are treated like agents in an environment,
using their perception of food and other cells as motivation to move, and
stochastic tumbling and swimming like movement to re-locate. Depending
on the cell-cell interactions, cells may swarm a food source, and/or may
aggressively repel or ignore each other.

6.6.4 Strategy

The information processing strategy of the algorithm is to allow cells to
stochastically and collectively swarm toward optima. This is achieved
through a series of three processes on a population of simulated cells: 1)
‘Chemotaxis’ where the cost of cells is derated by the proximity to other
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cells and cells move along the manipulated cost surface one at a time (the
majority of the work of the algorithm), 2) ‘Reproduction’ where only those
cells that performed well over their lifetime may contribute to the next
generation, and 3) ‘Elimination-dispersal’ where cells are discarded and new
random samples are inserted with a low probability.

6.6.5 Procedure

Algorithm 6.6.1 provides a pseudocode listing of the Bacterial Foraging
Optimization Algorithm for minimizing a cost function. Algorithm 6.6.2
provides the pseudocode listing for the chemotaxis and swing behaviour
of the BFOA algorithm. A bacteria cost is derated by its interaction with
other cells. This interaction function (g()) is calculated as follows:

g(cellk) =

S
∑

i=1

[

− dattr × exp

(

− wattr ×
P
∑

m=1

(cellkm − otherim)2
)]

+

S
∑

i=1

[

hrepel × exp

(

− wrepel ×
P
∑

m=1

cellkm − otherim)2
)]

where cellk is a given cell, dattr and wattr are attraction coefficients,
hrepel and wrepel are repulsion coefficients, S is the number of cells in the
population, P is the number of dimensions on a given cells position vector.

The remaining parameters of the algorithm are as follows Cellsnum is
the number of cells maintained in the population, Ned is the number of
elimination-dispersal steps, Nre is the number of reproduction steps, Nc

is the number of chemotaxis steps, Ns is the number of swim steps for a
given cell, Stepsize is a random direction vector with the same number of
dimensions as the problem space, and each value ∈ [−1, 1], and Ped is the
probability of a cell being subjected to elimination and dispersal.

6.6.6 Heuristics

� The algorithm was designed for application to continuous function
optimization problem domains.

� Given the loops in the algorithm, it can be configured numerous ways
to elicit different search behavior. It is common to have a large number
of chemotaxis iterations, and small numbers of the other iterations.

� The default coefficients for swarming behavior (cell-cell interactions)
are as follows dattract = 0.1, wattract = 0.2, hrepellant = dattract, and
wrepellant = 10.

� The step size is commonly a small fraction of the search space, such
as 0.1.
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Algorithm 6.6.1: Pseudocode for the BFOA.

Input: Problemsize, Cellsnum, Ned, Nre, Nc, Ns, Stepsize, dattract,
wattract, hrepellant, wrepellant, Ped

Output: Cellbest
Population ← InitializePopulation(Cellsnum, Problemsize);1

for l = 0 to Ned do2

for k = 0 to Nre do3

for j = 0 to Nc do4

ChemotaxisAndSwim(Population, Problemsize, Cellsnum,5

Ns, Stepsize, dattract, wattract, hrepellant, wrepellant);
foreach Cell ∈ Population do6

if Cost(Cell) ≤ Cost(Cellbest) then7

Cellbest ← Cell;8

end9

end10

end11

SortByCellHealth(Population);12

Selected ← SelectByCellHealth(Population, Cellsnum

2 );13

Population ← Selected;14

Population ← Selected;15

end16

foreach Cell ∈ Population do17

if Rand() ≤ Ped then18

Cell ← CreateCellAtRandomLocation();19

end20

end21

end22

return Cellbest;23

� During reproduction, typically half the population with a low health
metric are discarded, and two copies of each member from the first
(high-health) half of the population are retained.

� The probability of elimination and dispersal (ped) is commonly set
quite large, such as 0.25.

6.6.7 Code Listing

Listing 6.5 provides an example of the Bacterial Foraging Optimization
Algorithm implemented in the Ruby Programming Language. The demon-
stration problem is an instance of a continuous function optimization that
seeks min f(x) where f =

∑n

i=1 x
2
i , −5.0 ≤ xi ≤ 5.0 and n = 2. The opti-

mal solution for this basin function is (v0, . . . , vn−1) = 0.0. The algorithm
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Algorithm 6.6.2: Pseudocode for the ChemotaxisAndSwim function.

Input: Population, Problemsize, Cellsnum, Ns, Stepsize, dattract,
wattract, hrepellant, wrepellant

foreach Cell ∈ Population do1

Cellfitness ← Cost(Cell) + Interaction(Cell, Population,2

dattract, wattract, hrepellant, wrepellant);
Cellhealth ← Cellfitness;3

Cell′ ← ∅;4

for i = 0 to Ns do5

RandomStepDirection ← CreateStep(Problemsize);6

Cell′ ← TakeStep(RandomStepDirection, Stepsize);7

Cell′fitness ← Cost(Cell′) + Interaction(Cell′, Population,8

dattract, wattract, hrepellant, wrepellant);
if Cell′fitness > Cellfitness then9

i← Ns;10

else11

Cell ← Cell′;12

Cellhealth ← Cellhealth + Cell′fitness;13

end14

end15

end16

is an implementation based on the description on the seminal work [4].
The parameters for cell-cell interactions (attraction and repulsion) were
taken from the paper, and the various loop parameters were taken from the
‘Swarming Effects’ example.

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def generate_random_direction(problem_size)

12 bounds = Array.new(problem_size){[-1.0,1.0]}

13 return random_vector(bounds)

14 end

15

16 def compute_cell_interaction(cell, cells, d, w)

17 sum = 0.0

18 cells.each do |other|

19 diff = 0.0

20 cell[:vector].each_index do |i|
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21 diff += (cell[:vector][i] - other[:vector][i])**2.0

22 end

23 sum += d * Math.exp(w * diff)

24 end

25 return sum

26 end

27

28 def attract_repel(cell, cells, d_attr, w_attr, h_rep, w_rep)

29 attract = compute_cell_interaction(cell, cells, -d_attr, -w_attr)

30 repel = compute_cell_interaction(cell, cells, h_rep, -w_rep)

31 return attract + repel

32 end

33

34 def evaluate(cell, cells, d_attr, w_attr, h_rep, w_rep)

35 cell[:cost] = objective_function(cell[:vector])

36 cell[:inter] = attract_repel(cell, cells, d_attr, w_attr, h_rep, w_rep)

37 cell[:fitness] = cell[:cost] + cell[:inter]

38 end

39

40 def tumble_cell(search_space, cell, step_size)

41 step = generate_random_direction(search_space.size)

42 vector = Array.new(search_space.size)

43 vector.each_index do |i|

44 vector[i] = cell[:vector][i] + step_size * step[i]

45 vector[i] = search_space[i][0] if vector[i] < search_space[i][0]

46 vector[i] = search_space[i][1] if vector[i] > search_space[i][1]

47 end

48 return {:vector=>vector}

49 end

50

51 def chemotaxis(cells, search_space, chem_steps, swim_length, step_size,

d_attr, w_attr, h_rep, w_rep)

52 best = nil

53 chem_steps.times do |j|

54 moved_cells = []

55 cells.each_with_index do |cell, i|

56 sum_nutrients = 0.0

57 evaluate(cell, cells, d_attr, w_attr, h_rep, w_rep)

58 best = cell if best.nil? or cell[:cost] < best[:cost]

59 sum_nutrients += cell[:fitness]

60 swim_length.times do |m|

61 new_cell = tumble_cell(search_space, cell, step_size)

62 evaluate(new_cell, cells, d_attr, w_attr, h_rep, w_rep)

63 best = cell if cell[:cost] < best[:cost]

64 break if new_cell[:fitness] > cell[:fitness]

65 cell = new_cell

66 sum_nutrients += cell[:fitness]

67 end

68 cell[:sum_nutrients] = sum_nutrients

69 moved_cells << cell

70 end

71 puts " >> chemo=#{j}, f=#{best[:fitness]}, cost=#{best[:cost]}"

72 cells = moved_cells

73 end

74 return [best, cells]

75 end
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76

77 def search(search_space, pop_size, elim_disp_steps, repro_steps,

chem_steps, swim_length, step_size, d_attr, w_attr, h_rep, w_rep,

p_eliminate)

78 cells = Array.new(pop_size) { {:vector=>random_vector(search_space)} }

79 best = nil

80 elim_disp_steps.times do |l|

81 repro_steps.times do |k|

82 c_best, cells = chemotaxis(cells, search_space, chem_steps,

swim_length, step_size, d_attr, w_attr, h_rep, w_rep)

83 best = c_best if best.nil? or c_best[:cost] < best[:cost]

84 puts " > best fitness=#{best[:fitness]}, cost=#{best[:cost]}"

85 cells.sort{|x,y| x[:sum_nutrients]<=>y[:sum_nutrients]}

86 cells = cells.first(pop_size/2) + cells.first(pop_size/2)

87 end

88 cells.each do |cell|

89 if rand() <= p_eliminate

90 cell[:vector] = random_vector(search_space)

91 end

92 end

93 end

94 return best

95 end

96

97 if __FILE__ == $0

98 # problem configuration

99 problem_size = 2

100 search_space = Array.new(problem_size) {|i| [-5, 5]}

101 # algorithm configuration

102 pop_size = 50

103 step_size = 0.1 # Ci

104 elim_disp_steps = 1 # Ned

105 repro_steps = 4 # Nre

106 chem_steps = 70 # Nc

107 swim_length = 4 # Ns

108 p_eliminate = 0.25 # Ped

109 d_attr = 0.1

110 w_attr = 0.2

111 h_rep = d_attr

112 w_rep = 10

113 # execute the algorithm

114 best = search(search_space, pop_size, elim_disp_steps, repro_steps,

chem_steps, swim_length, step_size, d_attr, w_attr, h_rep, w_rep,

p_eliminate)

115 puts "done! Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

116 end

Listing 6.5: Bacterial Foraging Optimization Algorithm in Ruby

6.6.8 References

Primary Sources

Early work by Liu and Passino considered models of chemotaxis as opti-
mization for both E.coli and M.xanthus which were applied to continuous
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function optimization [2]. This work was consolidated by Passino who
presented the Bacterial Foraging Optimization Algorithm that included
a detailed presentation of the algorithm, heuristics for configuration, and
demonstration applications and behavior dynamics [4].

Learn More

A detailed summary of social foraging and the BFOA is provided in the
book by Passino [5]. Passino provides a follow-up review of the background
models of chemotaxis as optimization and describes the equations of the
Bacterial Foraging Optimization Algorithm in detail in a Journal article [6].
Das et al. present the algorithm and its inspiration, and go on to provide an
in depth analysis the dynamics of chemotaxis using simplified mathematical
models [1].
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Chapter 7

Immune Algorithms

7.1 Overview

This chapter describes Immune Algorithms.

7.1.1 Immune System

Immune Algorithms belong to the Artificial Immune Systems field of study
concerned with computational methods inspired by the process and mecha-
nisms of the biological immune system.

A simplified description of the immune system is an organ system
intended to protect the host organism from the threats posed to it from
pathogens and toxic substances. Pathogens encompass a range of micro-
organisms such as bacteria, viruses, parasites and pollen. The traditional
perspective regarding the role of the immune system is divided into two
primary tasks: the detection and elimination of pathogen. This behavior
is typically referred to as the differentiation of self (molecules and cells
that belong to the host organisms) from potentially harmful non-self. More
recent perspectives on the role of the system include a maintenance system
[3], and a cognitive system [22].

The architecture of the immune system is such that a series of defensive
layers protect the host. Once a pathogen makes it inside the host, it must
contend with the innate and acquired immune system. These interrelated im-
munological sub-systems are comprised of many types of cells and molecules
produced by specialized organs and processes to address the self-nonself
problem at the lowest level using chemical bonding, where the surfaces of
cells and molecules interact with the surfaces of pathogen.

The adaptive immune system, also referred to as the acquired immune
system, is named such because it is responsible for specializing a defense
for the host organism based on the specific pathogen to which it is exposed.
Unlike the innate immune system, the acquired immune system is present

265
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only in vertebrates (animals with a spinal column). The system retains a
memory of exposures which it has encountered. This memory is recalled
on reinfection exhibiting a learned pathogen identification. This learning
process may be divided into two types of response. The first or primary
response occurs when the system encounters a novel pathogen. The system is
slow to respond, potentially taking a number of weeks to clear the infection.
On re-encountering the same pathogen again, the system exhibits a secondary
response, applying what was learned in the primary response and clearing
up the infection rapidly. The memory the system acquires in the primary
response is typically long lasting, providing pathogenic immunity for the
lifetime of the host, two common examples of which are the chickenpox and
measles. White blood cells called lymphocytes (or leukocytes) are the most
important cell in the acquired immune system. Lymphocytes are involved in
both the identification and elimination of pathogen, and recirculate within
the host organisms body in the blood and lymph (the fluid that permeates
tissue).

7.1.2 Artificial Immune Systems

Artificial Immune Systems (AIS) is a sub-field of Computational Intelli-
gence motivated by immunology (primarily mammalian immunology) that
emerged in the early 1990s (for example [1, 15]), based on the proposal in the
late 1980s to apply theoretical immunological models to machine learning
and automated problem solving (such as [9, 12]). The early works in the
field were inspired by exotic theoretical models (immune network theory)
and were applied to machine learning, control and optimization problems.
The approaches were reminiscent of paradigms such as Artificial Neural
Networks, Genetic Algorithms, Reinforcement Learning, and Learning Clas-
sifier Systems. The most formative works in giving the field an identity
were those that proposed the immune system as an analogy for information
protection systems in the field of computer security. The classical examples
include Forrest et al.’s Computer Immunity [10, 11] and Kephart’s Immune
Anti-Virus [17, 18]. These works were formative for the field because they
provided an intuitive application domain that captivated a broader audience
and assisted in differentiating the work as an independent sub-field.

Modern Artificial Immune systems are inspired by one of three sub-
fields: clonal selection, negative selection and immune network algorithms.
The techniques are commonly used for clustering, pattern recognition,
classification, optimization, and other similar machine learning problem
domains.

The seminal reference for those interested in the field is the text book by
de Castro and Timmis “Artificial Immune Systems: A New Computational
Intelligence Approach” [8]. This reference text provides an introduction
to immunology with a level of detail appropriate for a computer scientist,
followed by a summary of the state of the art, algorithms, application areas,
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and case studies.

7.1.3 Extensions

There are many other algorithms and classes of algorithm that were not
described from the field of Artificial Immune Systems, not limited to:

� Clonal Selection Algorithms: such as the B-Cell Algorithm [16],
the Multi-objective Immune System Algorithm (MSIRA) [2, 4] and the
the Optimization Immune Algorithm (opt-IA, opt-IMMALG) [5, 6]
and the Simple Immunological Algorithm [7].

� Immune Network Algorithms: such as the approach by Timmis
used for clustering called the Artificial Immune Network (AIN) [20]
(later extended and renamed the Resource Limited Artificial Immune
System [19, 21].

� Negative Selection Algorithms: such as an adaptive framework
called the ARTificial Immune System (ARTIS), with the application
to intrusion detection renamed the Lightweight Intrusion Detection
System (LISYS) [13, 14].
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7.2 Clonal Selection Algorithm

Clonal Selection Algorithm, CSA, CLONALG.

7.2.1 Taxonomy

The Clonal Selection Algorithm (CLONALG) belongs to the field of Artifi-
cial Immune Systems. It is related to other Clonal Selection Algorithms such
as the Artificial Immune Recognition System (Section 7.4), the B-Cell Algo-
rithm (BCA), and the Multi-objective Immune System Algorithm (MISA).
There are numerious extensions to CLONALG including tweaks such as the
CLONALG1 and CLONALG2 approaches, a version for classification called
CLONCLAS, and an adaptive version called Adaptive Clonal Selection
(ACS).

7.2.2 Inspiration

The Clonal Selection algorithm is inspired by the Clonal Selection theory
of acquired immunity. The clonal selection theory credited to Burnet was
proposed to account for the behavior and capabilities of antibodies in the
acquired immune system [2, 3]. Inspired itself by the principles of Darwinian
natural selection theory of evolution, the theory proposes that antigens
select-for lymphocytes (both B and T-cells). When a lymphocyte is selected
and binds to an antigenic determinant, the cell proliferates making many
thousands more copies of itself and differentiates into different cell types
(plasma and memory cells). Plasma cells have a short lifespan and produce
vast quantities of antibody molecules, whereas memory cells live for an
extended period in the host anticipating future recognition of the same
determinant. The important feature of the theory is that when a cell is
selected and proliferates, it is subjected to small copying errors (changes
to the genome called somatic hypermutation) that change the shape of the
expressed receptors and subsequent determinant recognition capabilities
of both the antibodies bound to the lymphocytes cells surface, and the
antibodies that plasma cells produce.

7.2.3 Metaphor

The theory suggests that starting with an initial repertoire of general immune
cells, the system is able to change itself (the compositions and densities of
cells and their receptors) in response to experience with the environment.
Through a blind process of selection and accumulated variation on the large
scale of many billions of cells, the acquired immune system is capable of
acquiring the necessary information to protect the host organism from the
specific pathogenic dangers of the environment. It also suggests that the
system must anticipate (guess) at the pathogen to which it will be exposed,
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and requires exposure to pathogen that may harm the host before it can
acquire the necessary information to provide a defense.

7.2.4 Strategy

The information processing principles of the clonal selection theory describe
a general learning strategy. This strategy involves a population of adaptive
information units (each representing a problem-solution or component)
subjected to a competitive processes for selection, which together with the
resultant duplication and variation ultimately improves the adaptive fit of
the information units to their environment.

7.2.5 Procedure

Algorithm 7.2.1 provides a pseudocode listing of the Clonal Selection Algo-
rithm (CLONALG) for minimizing a cost function. The general CLONALG
model involves the selection of antibodies (candidate solutions) based on
affinity either by matching against an antigen pattern or via evaluation of a
pattern by a cost function. Selected antibodies are subjected to cloning pro-
portional to affinity, and the hypermutation of clones inversely-proportional
to clone affinity. The resultant clonal-set competes with the existent an-
tibody population for membership in the next generation. In addition,
low-affinity population members are replaced by randomly generated an-
tibodies. The pattern recognition variation of the algorithm includes the
maintenance of a memory solution set which in its entirety represents a
solution to the problem. A binary-encoding scheme is employed for the
binary-pattern recognition and continuous function optimization examples,
and an integer permutation scheme is employed for the Traveling Salesman
Problem (TSP).

7.2.6 Heuristics

� The CLONALG was designed as a general machine learning approach
and has been applied to pattern recognition, function optimization,
and combinatorial optimization problem domains.

� Binary string representations are used and decoded to a representation
suitable for a specific problem domain.

� The number of clones created for each selected member is calculated
as a function of the repertoire size Nc = round(β ·N), where β is the
user parameter Clonerate.

� A rank-based affinity-proportionate function is used to determine the
number of clones created for selected members of the population for
pattern recognition problem instances.
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Algorithm 7.2.1: Pseudocode for CLONALG.

Input: Populationsize, Selectionsize, Problemsize,
RandomCellsnum, Clonerate, Mutationrate

Output: Population
Population ← CreateRandomCells(Populationsize, Problemsize);1

while ¬StopCondition() do2

foreach pi ∈ Population do3

Affinity(pi);4

end5

Populationselect ← Select(Population, Selectionsize);6

Populationclones ← ∅;7

foreach pi ∈ Populationselect do8

Populationclones ← Clone(pi, Clonerate);9

end10

foreach pi ∈ Populationclones do11

Hypermutate(pi, Mutationrate);12

Affinity(pi);13

end14

Population ← Select(Population, Populationclones,15

Populationsize);
Populationrand ← CreateRandomCells(RandomCellsnum);16

Replace(Population, Populationrand);17

end18

return Population;19

� The number of random antibodies inserted each iteration is typically
very low (1-2).

� Point mutations (bit-flips) are used in the hypermutation operation.

� The function exp(−ρ · f) is used to determine the probability of
individual component mutation for a given candidate solution, where
f is the candidates affinity (normalized maximizing cost value), and ρ
is the user parameter Mutationrate.

7.2.7 Code Listing

Listing 7.1 provides an example of the Clonal Selection Algorithm (CLON-
ALG) implemented in the Ruby Programming Language. The demonstration
problem is an instance of a continuous function optimization that seeks
min f(x) where f =

∑n

i=1 x
2
i , −5.0 ≤ xi ≤ 5.0 and n = 3. The optimal

solution for this basin function is (v0, . . . , vn−1) = 0.0. The algorithm
is implemented as described by de Castro and Von Zuben for function
optimization [8].



7.2. Clonal Selection Algorithm 273

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x**2.0)}

3 end

4

5 def decode(bitstring, search_space, bits_per_param)

6 vector = []

7 search_space.each_with_index do |bounds, i|

8 off, sum = i*bits_per_param, 0.0

9 param = bitstring[off...(off+bits_per_param)].reverse

10 param.size.times do |j|

11 sum += ((param[j].chr=='1') ? 1.0 : 0.0) * (2.0 ** j.to_f)

12 end

13 min, max = bounds

14 vector << min + ((max-min)/((2.0**bits_per_param.to_f)-1.0)) * sum

15 end

16 return vector

17 end

18

19 def evaluate(pop, search_space, bits_per_param)

20 pop.each do |p|

21 p[:vector] = decode(p[:bitstring], search_space, bits_per_param)

22 p[:cost] = objective_function(p[:vector])

23 end

24 end

25

26 def random_bitstring(num_bits)

27 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

28 end

29

30 def point_mutation(bitstring, rate)

31 child = ""

32 bitstring.size.times do |i|

33 bit = bitstring[i].chr

34 child << ((rand()<rate) ? ((bit=='1') ? "0" : "1") : bit)

35 end

36 return child

37 end

38

39 def calculate_mutation_rate(antibody, mutate_factor=-2.5)

40 return Math.exp(mutate_factor * antibody[:affinity])

41 end

42

43 def num_clones(pop_size, clone_factor)

44 return (pop_size * clone_factor).floor

45 end

46

47 def calculate_affinity(pop)

48 pop.sort!{|x,y| x[:cost]<=>y[:cost]}

49 range = pop.last[:cost] - pop.first[:cost]

50 if range == 0.0

51 pop.each {|p| p[:affinity] = 1.0}

52 else

53 pop.each {|p| p[:affinity] = 1.0-(p[:cost]/range)}

54 end

55 end
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56

57 def clone_and_hypermutate(pop, clone_factor)

58 clones = []

59 num_clones = num_clones(pop.size, clone_factor)

60 calculate_affinity(pop)

61 pop.each do |antibody|

62 m_rate = calculate_mutation_rate(antibody)

63 num_clones.times do

64 clone = {}

65 clone[:bitstring] = point_mutation(antibody[:bitstring], m_rate)

66 clones << clone

67 end

68 end

69 return clones

70 end

71

72 def random_insertion(search_space, pop, num_rand, bits_per_param)

73 return pop if num_rand == 0

74 rands = Array.new(num_rand) do |i|

75 {:bitstring=>random_bitstring(search_space.size*bits_per_param)}

76 end

77 evaluate(rands, search_space, bits_per_param)

78 return (pop+rands).sort{|x,y| x[:cost]<=>y[:cost]}.first(pop.size)

79 end

80

81 def search(search_space, max_gens, pop_size, clone_factor, num_rand,

bits_per_param=16)

82 pop = Array.new(pop_size) do |i|

83 {:bitstring=>random_bitstring(search_space.size*bits_per_param)}

84 end

85 evaluate(pop, search_space, bits_per_param)

86 best = pop.min{|x,y| x[:cost]<=>y[:cost]}

87 max_gens.times do |gen|

88 clones = clone_and_hypermutate(pop, clone_factor)

89 evaluate(clones, search_space, bits_per_param)

90 pop = (pop+clones).sort{|x,y| x[:cost]<=>y[:cost]}.first(pop_size)

91 pop = random_insertion(search_space, pop, num_rand, bits_per_param)

92 best = (pop + [best]).min{|x,y| x[:cost]<=>y[:cost]}

93 puts " > gen #{gen+1}, f=#{best[:cost]}, s=#{best[:vector].inspect}"

94 end

95 return best

96 end

97

98 if __FILE__ == $0

99 # problem configuration

100 problem_size = 2

101 search_space = Array.new(problem_size) {|i| [-5, +5]}

102 # algorithm configuration

103 max_gens = 100

104 pop_size = 100

105 clone_factor = 0.1

106 num_rand = 2

107 # execute the algorithm

108 best = search(search_space, max_gens, pop_size, clone_factor, num_rand)

109 puts "done! Solution: f=#{best[:cost]}, s=#{best[:vector].inspect}"

110 end
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Listing 7.1: CLONALG in Ruby

7.2.8 References

Primary Sources

Hidden at the back of a technical report on the applications of Artificial
Immune Systems de Castro and Von Zuben [6] proposed the Clonal Selection
Algorithm (CSA) as a computational realization of the clonal selection
principle for pattern matching and optimization. The algorithm was later
published [7], and investigated where it was renamed to CLONALG (CLONal
selection ALGorithm) [8].

Learn More

Watkins et al. proposed to exploit the inherent distributedness of the
CLONALG and proposed a parallel version of the pattern recognition
version of the algorithm [10]. White and Garret also investigated the
pattern recognition version of CLONALG and generalized the approach for
the task of binary pattern classification renaming it to Clonal Classification
(CLONCLAS) where their approach was compared to a number of simple
Hamming distance based heuristics [11]. In an attempt to address concerns
of algorithm efficiency, parameterization, and representation selection for
continuous function optimization Garrett proposed an updated version of
CLONALG called Adaptive Clonal Selection (ACS) [9]. In their book, de
Castro and Timmis provide a detailed treatment of CLONALG including
a description of the approach (starting page 79) and a step through of
the algorithm (starting page 99) [5]. Cutello and Nicosia provide a study
of the clonal selection principle and algorithms inspired by the theory [4].
Brownlee provides a review of Clonal Selection algorithms providing a
taxonomy, algorithm reviews, and a broader bibliography [1].
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7.3 Negative Selection Algorithm

Negative Selection Algorithm, NSA.

7.3.1 Taxonomy

The Negative Selection Algorithm belongs to the field of Artificial Immune
Systems. The algorithm is related to other Artificial Immune Systems such
as the Clonal Selection Algorithm (Section 7.2), and the Immune Network
Algorithm (Section 7.5).

7.3.2 Inspiration

The Negative Selection algorithm is inspired by the self-nonself discrimina-
tion behavior observed in the mammalian acquired immune system. The
clonal selection theory of acquired immunity accounts for the adaptive behav-
ior of the immune system including the ongoing selection and proliferation
of cells that select-for potentially harmful (and typically foreign) material
in the body. An interesting aspect of this process is that it is responsible
for managing a population of immune cells that do not select-for the tissues
of the body, specifically it does not create self-reactive immune cells known
as auto-immunity. This problem is known as ‘self-nonself discrimination’
and it involves the preparation and on going maintenance of a repertoire
of immune cells such that none are auto-immune. This is achieved by a
negative selection process that selects-for and removes those cells that are
self-reactive during cell creation and cell proliferation. This process has
been observed in the preparation of T-lymphocytes, näıve versions of which
are matured using both a positive and negative selection process in the
thymus.

7.3.3 Metaphor

The self-nonself discrimination principle suggests that the anticipatory
guesses made in clonal selection are filtered by regions of infeasibility (pro-
tein conformations that bind to self-tissues). Further, the self-nonself
immunological paradigm proposes the modeling of the unknown domain
(encountered pathogen) by modeling the complement of what is known. This
is unintuitive as the natural inclination is to categorize unknown information
by what is different from that which is known, rather than guessing at the
unknown information and filtering those guesses by what is known.

7.3.4 Strategy

The information processing principles of the self-nonself discrimination
process via negative selection are that of a anomaly and change detection
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systems that model the anticipation of variation from what is known. The
principle is achieved by building a model of changes, anomalies, or unknown
(non-normal or non-self) data by generating patterns that do not match
an existing corpus of available (self or normal) patterns. The prepared
non-normal model is then used to either monitor the existing normal data
or streams of new data by seeking matches to the non-normal patterns.

7.3.5 Procedure

Algorithm 7.3.1 provides a pseudocode listing of the detector generation
procedure for the Negative Selection Algorithm. Algorithm 7.3.2 provides a
pseudocode listing of the detector application procedure for the Negative
Selection Algorithm.

Algorithm 7.3.1: Pseudocode for detector generation.

Input: SelfData
Output: Repertoire
Repertoire ← ∅;1

while ¬StopCondition() do2

Detectors ← GenerateRandomDetectors();3

foreach Detectori ∈ Repertoire do4

if ¬Matches(Detectori, SelfData) then5

Repertoire ← Detectori;6

end7

end8

end9

return Repertoire;10

Algorithm 7.3.2: Pseudocode for detector application.

Input: InputSamples, Repertoire
for Inputi ∈ InputSamples do1

Inputiclass ← “non-self”;2

foreach Detectori ∈ Repertoire do3

if Matches(Inputi, Detectori) then4

Inputiclass ← “self”;5

Break;6

end7

end8

end9
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7.3.6 Heuristics

� The Negative Selection Algorithm was designed for change detection,
novelty detection, intrusion detection and similar pattern recognition
and two-class classification problem domains.

� Traditional negative selection algorithms used binary representations
and binary matching rules such as Hamming distance, and r-contiguous
bits.

� A data representation should be selected that is most suitable for
a given problem domain, and a matching rule is in turn selected or
tailored to the data representation.

� Detectors can be prepared with no prior knowledge of the problem
domain other than the known (normal or self) dataset.

� The algorithm can be configured to balance between detector conver-
gence (quality of the matches) and the space complexity (number of
detectors).

� The lack of dependence between detectors means that detector prepa-
ration and application is inherently parallel and suited for a distributed
and parallel implementation, respectively.

7.3.7 Code Listing

Listing 7.2 provides an example of the Negative Selection Algorithm imple-
mented in the Ruby Programming Language. The demonstration problem
is a two-class classification problem where samples are drawn from a two-
dimensional domain, where xi ∈ [0, 1]. Those samples in 1.0 > xi > 0.5
are classified as self and the rest of the space belongs to the non-self class.
Samples are drawn from the self class and presented to the algorithm for
the preparation of pattern detectors for classifying unobserved samples from
the non-self class. The algorithm creates a set of detectors that do not
match the self data, and are then applied to a set of randomly generated
samples from the domain. The algorithm uses a real-valued representation.
The Euclidean distance function is used during matching and a minimum
distance value is specified as a user parameter for approximate matches
between patterns. The algorithm includes the additional computationally
expensive check for duplicates in the preparation of the self dataset and the
detector set.

1 def random_vector(minmax)

2 return Array.new(minmax.length) do |i|

3 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

4 end

5 end

6
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7 def euclidean_distance(c1, c2)

8 sum = 0.0

9 c1.each_index {|i| sum += (c1[i]-c2[i])**2.0}

10 return Math.sqrt(sum)

11 end

12

13 def contains?(vector, space)

14 vector.each_with_index do |v,i|

15 return false if v<space[i][0] or v>space[i][1]

16 end

17 return true

18 end

19

20 def matches?(vector, dataset, min_dist)

21 dataset.each do |pattern|

22 dist = euclidean_distance(vector, pattern[:vector])

23 return true if dist <= min_dist

24 end

25 return false

26 end

27

28 def generate_detectors(max_detectors, search_space, self_dataset, min_dist)

29 detectors = []

30 begin

31 detector = {:vector=>random_vector(search_space)}

32 if !matches?(detector[:vector], self_dataset, min_dist)

33 detectors << detector if !matches?(detector[:vector], detectors, 0.0)

34 end

35 end while detectors.size < max_detectors

36 return detectors

37 end

38

39 def generate_self_dataset(num_records, self_space, search_space)

40 self_dataset = []

41 begin

42 pattern = {}

43 pattern[:vector] = random_vector(search_space)

44 next if matches?(pattern[:vector], self_dataset, 0.0)

45 if contains?(pattern[:vector], self_space)

46 self_dataset << pattern

47 end

48 end while self_dataset.length < num_records

49 return self_dataset

50 end

51

52 def apply_detectors(detectors, bounds, self_dataset, min_dist, trials=50)

53 correct = 0

54 trials.times do |i|

55 input = {:vector=>random_vector(bounds)}

56 actual = matches?(input[:vector], detectors, min_dist) ? "N" : "S"

57 expected = matches?(input[:vector], self_dataset, min_dist) ? "S" : "N"

58 correct += 1 if actual==expected

59 puts "#{i+1}/#{trials}: predicted=#{actual}, expected=#{expected}"

60 end

61 puts "Done. Result: #{correct}/#{trials}"

62 return correct
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63 end

64

65 def execute(bounds, self_space, max_detect, max_self, min_dist)

66 self_dataset = generate_self_dataset(max_self, self_space, bounds)

67 puts "Done: prepared #{self_dataset.size} self patterns."

68 detectors = generate_detectors(max_detect, bounds, self_dataset, min_dist)

69 puts "Done: prepared #{detectors.size} detectors."

70 apply_detectors(detectors, bounds, self_dataset, min_dist)

71 return detectors

72 end

73

74 if __FILE__ == $0

75 # problem configuration

76 problem_size = 2

77 search_space = Array.new(problem_size) {[0.0, 1.0]}

78 self_space = Array.new(problem_size) {[0.5, 1.0]}

79 max_self = 150

80 # algorithm configuration

81 max_detectors = 300

82 min_dist = 0.05

83 # execute the algorithm

84 execute(search_space, self_space, max_detectors, max_self, min_dist)

85 end

Listing 7.2: Negative Selection Algorithm in Ruby

7.3.8 References

Primary Sources

The seminal negative selection algorithm was proposed by Forrest, et al. [5]
in which a population of detectors are prepared in the presence of known
information, where those randomly generated detectors that match against
known data are discarded. The population of pattern guesses in the unknown
space then monitors the corpus of known information for changes. The
algorithm was applied to the monitoring of files for changes (corruptions and
infections by computer viruses), and later formalized as a change detection
algorithm [2, 3].

Learn More

The Negative Selection algorithm has been applied to the monitoring of
changes in the execution behavior of Unix processes [4, 8], and to monitor
changes in remote connections of a network computer (intrusion detection)
[6, 7]. The application of the algorithm has been predominantly to virus
host intrusion detection and their abstracted problems of classification
(two-class) and anomaly detection. Esponda provides some interesting work
showing some compression and privacy benefits provided by maintaining
a negative model (non-self) [1] Ji and Dasgupta provide a contemporary
and detailed review of Negative Selection Algorithms covering topics such
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as data representations, matching rules, detector generation procedures,
computational complexity, hybridization, and theoretical frameworks [9].
Recently, the validity of the application of negative selection algorithms in
high-dimensional spaces has been questioned, specifically given the scalability
of the approach in the face of the exponential increase in volume within the
problem space [10].
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7.4 Artificial Immune Recognition System

Artificial Immune Recognition System, AIRS.

7.4.1 Taxonomy

The Artificial Immune Recognition System belongs to the field of Artificial
Immune Systems, and more broadly to the field of Computational Intelli-
gence. It was extended early to the canonical version called the Artificial
Immune Recognition System 2 (AIRS2) and provides the basis for extensions
such as the Parallel Artificial Immune Recognition System [8]. It is related
to other Artificial Immune System algorithms such as the Dendritic Cell
Algorithm (Section 7.6), the Clonal Selection Algorithm (Section 7.2), and
the Negative Selection Algorithm (Section 7.3).

7.4.2 Inspiration

The Artificial Immune Recognition System is inspired by the Clonal Selection
theory of acquired immunity. The clonal selection theory credited to Burnet
was proposed to account for the behavior and capabilities of antibodies
in the acquired immune system [1, 2]. Inspired itself by the principles of
Darwinian natural selection theory of evolution, the theory proposes that
antigens select-for lymphocytes (both B and T-cells). When a lymphocyte is
selected and binds to an antigenic determinant, the cell proliferates making
many thousands more copies of itself and differentiates into different cell
types (plasma and memory cells). Plasma cells have a short lifespan and
produce vast quantities of antibody molecules, whereas memory cells live
for an extended period in the host anticipating future recognition of the
same determinant. The important feature of the theory is that when a cell
is selected and proliferates, it is subjected to small copying errors (changes
to the genome called somatic hypermutation) that change the shape of the
expressed receptors. It also affects the subsequent determinant recognition
capabilities of both the antibodies bound to the lymphocytes cells surface,
and the antibodies that plasma cells produce.

7.4.3 Metaphor

The theory suggests that starting with an initial repertoire of general immune
cells, the system is able to change itself (the compositions and densities of
cells and their receptors) in response to experience with the environment.
Through a blind process of selection and accumulated variation on the large
scale of many billions of cells, the acquired immune system is capable of
acquiring the necessary information to protect the host organism from the
specific pathogenic dangers of the environment. It also suggests that the
system must anticipate (guess) at the pathogen to which it will be exposed,
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and requires exposure to pathogen that may harm the host before it can
acquire the necessary information to provide a defense.

7.4.4 Strategy

The information processing objective of the technique is to prepare a set of
real-valued vectors to classify patterns. The Artificial Immune Recognition
System maintains a pool of memory cells that are prepared by exposing
the system to a single iteration of the training data. Candidate memory
cells are prepared when the memory cells are insufficiently stimulated for
a given input pattern. A process of cloning and mutation of cells occurs
for the most stimulated memory cell. The clones compete with each other
for entry into the memory pool based on stimulation and on the amount of
resources each cell is using. This concept of resources comes from prior work
on Artificial Immune Networks, where a single cell (an Artificial Recognition
Ball or ARB) represents a set of similar cells. Here, a cell’s resources are
a function of its stimulation to a given input pattern and the number of
clones it may create.

7.4.5 Procedure

Algorithm 8.6.1 provides a high-level pseudocode for preparing memory cell
vectors using the Artificial Immune Recognition System, specifically the
canonical AIRS2. An affinity (distance) measure between input patterns
must be defined. For real-valued vectors, this is commonly the Euclidean
distance:

dist(x, c) =
n
∑

i=1

(xi − ci)
2 (7.1)

where n is the number of attributes, x is the input vector and c is a given
cell vector. The variation of cells during cloning (somatic hypermutation)
occurs inversely proportional to the stimulation of a given cell to an input
pattern.

7.4.6 Heuristics

� The AIRS was designed as a supervised algorithm for classification
problem domains.

� The AIRS is non-parametric, meaning that it does not rely on assump-
tions about that structure of the function that is is approximating.

� Real-values in input vectors should be normalized such that x ∈ [0, 1).
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Algorithm 7.4.1: Pseudocode for AIRS2.

Input: InputPatterns, clonerate, mutaterate, stimthresh,
resourcesmax, affinitythresh

Output: Cellsmemory

Cellsmemory ← InitializeMemoryPool(InputPatterns);1

foreach InputPatterni ∈ InputPatterns do2

Stimulate(Cellsmemory, InputPatterns);3

Cellbest ← GetMostStimulated(InputPatterni, Cellsmemory);4

if Cellclassbest 6= InputPatternclass
i then5

Cellsmemory ← CreateNewMemoryCell(InputPatterni);6

else7

Clonesnum ← Cellstimbest × clonerate × mutaterate;8

Cellsclones ← Cellbest;9

for i to Clonesnum do10

Cellsclones ← CloneAndMutate(Cellbest);11

end12

while AverageStimulation(Cellsclones) ≤ stimthresh do13

foreach Celli ∈ Cellsclones do14

Cellsclones ← CloneAndMutate(Celli);15

end16

Stimulate(Cellsclones, InputPatterns);17

ReducePoolToMaximumResources(Cellsclones,18

resourcesmax);
end19

Cellc ← GetMostStimulated(InputPatterni, Cellsclones);20

if Cellstimc > Cellstimbest then21

Cellsmemory ← Cellc;22

if Affinity(Cellc, Cellbest) ≤ affinitythresh then23

DeleteCell(Cellbest, Cellsmemory);24

end25

end26

end27

end28

return Cellsmemory;29

� Euclidean distance is commonly used to measure the distance between
real-valued vectors (affinity calculation), although other distance mea-
sures may be used (such as dot product), and data specific distance
measures may be required for non-scalar attributes.

� Cells may be initialized with small random values or more commonly
with values from instances in the training set.

� A cell’s affinity is typically minimizing, where as a cells stimulation is
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maximizing and typically ∈ [0, 1].

7.4.7 Code Listing

Listing 7.3 provides an example of the Artificial Immune Recognition System
implemented in the Ruby Programming Language. The problem is a
contrived classification problem in a 2-dimensional domain x ∈ [0, 1], y ∈
[0, 1] with two classes: ‘A’ (x ∈ [0, 0.4999999], y ∈ [0, 0.4999999]) and ‘B’
(x ∈ [0.5, 1], y ∈ [0.5, 1]).

The algorithm is an implementation of the AIRS2 algorithm [7]. An
initial pool of memory cells is created, one cell for each class. Euclidean
distance divided by the maximum possible distance in the domain is taken as
the affinity and stimulation is taken as 1.0− affinity. The meta-dynamics
for memory cells (competition for input patterns) is not performed and may
be added into the implementation as an extension.

1 def random_vector(minmax)

2 return Array.new(minmax.size) do |i|

3 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

4 end

5 end

6

7 def generate_random_pattern(domain)

8 class_label = domain.keys[rand(domain.keys.size)]

9 pattern = {:label=>class_label}

10 pattern[:vector] = random_vector(domain[class_label])

11 return pattern

12 end

13

14 def create_cell(vector, class_label)

15 return {:label=>class_label, :vector=>vector}

16 end

17

18 def initialize_cells(domain)

19 mem_cells = []

20 domain.keys.each do |key|

21 mem_cells << create_cell(random_vector([[0,1],[0,1]]), key)

22 end

23 return mem_cells

24 end

25

26 def distance(c1, c2)

27 sum = 0.0

28 c1.each_index {|i| sum += (c1[i]-c2[i])**2.0}

29 return Math.sqrt(sum)

30 end

31

32 def stimulate(cells, pattern)

33 max_dist = distance([0.0,0.0], [1.0,1.0])

34 cells.each do |cell|

35 cell[:affinity] = distance(cell[:vector], pattern[:vector]) / max_dist

36 cell[:stimulation] = 1.0 - cell[:affinity]

37 end
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38 end

39

40 def get_most_stimulated_cell(mem_cells, pattern)

41 stimulate(mem_cells, pattern)

42 return mem_cells.sort{|x,y| y[:stimulation] <=> x[:stimulation]}.first

43 end

44

45 def mutate_cell(cell, best_match)

46 range = 1.0 - best_match[:stimulation]

47 cell[:vector].each_with_index do |v,i|

48 min = [(v-(range/2.0)), 0.0].max

49 max = [(v+(range/2.0)), 1.0].min

50 cell[:vector][i] = min + (rand() * (max-min))

51 end

52 return cell

53 end

54

55 def create_arb_pool(pattern, best_match, clone_rate, mutate_rate)

56 pool = []

57 pool << create_cell(best_match[:vector], best_match[:label])

58 num_clones = (best_match[:stimulation] * clone_rate * mutate_rate).round

59 num_clones.times do

60 cell = create_cell(best_match[:vector], best_match[:label])

61 pool << mutate_cell(cell, best_match)

62 end

63 return pool

64 end

65

66 def competition_for_resournces(pool, clone_rate, max_res)

67 pool.each {|cell| cell[:resources] = cell[:stimulation] * clone_rate}

68 pool.sort!{|x,y| x[:resources] <=> y[:resources]}

69 total_resources = pool.inject(0.0){|sum,cell| sum + cell[:resources]}

70 while total_resources > max_res

71 cell = pool.delete_at(pool.size-1)

72 total_resources -= cell[:resources]

73 end

74 end

75

76 def refine_arb_pool(pool, pattern, stim_thresh, clone_rate, max_res)

77 mean_stim, candidate = 0.0, nil

78 begin

79 stimulate(pool, pattern)

80 candidate = pool.sort{|x,y| y[:stimulation] <=> x[:stimulation]}.first

81 mean_stim = pool.inject(0.0){|s,c| s + c[:stimulation]} / pool.size

82 if mean_stim < stim_thresh

83 candidate = competition_for_resournces(pool, clone_rate, max_res)

84 pool.size.times do |i|

85 cell = create_cell(pool[i][:vector], pool[i][:label])

86 mutate_cell(cell, pool[i])

87 pool << cell

88 end

89 end

90 end until mean_stim >= stim_thresh

91 return candidate

92 end

93
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94 def add_candidate_to_memory_pool(candidate, best_match, mem_cells)

95 if candidate[:stimulation] > best_match[:stimulation]

96 mem_cells << candidate

97 end

98 end

99

100 def classify_pattern(mem_cells, pattern)

101 stimulate(mem_cells, pattern)

102 return mem_cells.sort{|x,y| y[:stimulation] <=> x[:stimulation]}.first

103 end

104

105 def train_system(mem_cells, domain, num_patterns, clone_rate, mutate_rate,

stim_thresh, max_res)

106 num_patterns.times do |i|

107 pattern = generate_random_pattern(domain)

108 best_match = get_most_stimulated_cell(mem_cells, pattern)

109 if best_match[:label] != pattern[:label]

110 mem_cells << create_cell(pattern[:vector], pattern[:label])

111 elsif best_match[:stimulation] < 1.0

112 pool = create_arb_pool(pattern, best_match, clone_rate, mutate_rate)

113 cand = refine_arb_pool(pool,pattern, stim_thresh, clone_rate, max_res)

114 add_candidate_to_memory_pool(cand, best_match, mem_cells)

115 end

116 puts " > iter=#{i+1}, mem_cells=#{mem_cells.size}"

117 end

118 end

119

120 def test_system(mem_cells, domain, num_trials=50)

121 correct = 0

122 num_trials.times do

123 pattern = generate_random_pattern(domain)

124 best = classify_pattern(mem_cells, pattern)

125 correct += 1 if best[:label] == pattern[:label]

126 end

127 puts "Finished test with a score of #{correct}/#{num_trials}"

128 return correct

129 end

130

131 def execute(domain, num_patterns, clone_rate, mutate_rate, stim_thresh,

max_res)

132 mem_cells = initialize_cells(domain)

133 train_system(mem_cells, domain, num_patterns, clone_rate, mutate_rate,

stim_thresh, max_res)

134 test_system(mem_cells, domain)

135 return mem_cells

136 end

137

138 if __FILE__ == $0

139 # problem configuration

140 domain = {"A"=>[[0,0.4999999],[0,0.4999999]],"B"=>[[0.5,1],[0.5,1]]}

141 num_patterns = 50

142 # algorithm configuration

143 clone_rate = 10

144 mutate_rate = 2.0

145 stim_thresh = 0.9

146 max_res = 150
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147 # execute the algorithm

148 execute(domain, num_patterns, clone_rate, mutate_rate, stim_thresh,

max_res)

149 end

Listing 7.3: AIRS in Ruby

7.4.8 References

Primary Sources

The Artificial Immune Recognition System was proposed in the Masters
work by Watkins [10], and later published [11]. Early works included the
application of the AIRS by Watkins and Boggess to a suite of benchmark
classification problems [6], and a similar study by Goodman and Boggess
comparing to a conceptually similar approach called Learning Vector Quan-
tization [3].

Learn More

Marwah and Boggess investigated the algorithm seeking issues that affect
the algorithms performance [5]. They compared various variations of the
algorithm with modified resource allocation schemes, tie-handling within
the ARB pool, and ARB pool organization. Watkins and Timmis proposed
a new version of the algorithm called AIRS2 which became the replacement
for AIRS1 [7]. The updates reduced the complexity of the approach while
maintaining the accuracy of the results. An investigation by Goodman et al.
into the so called ‘source of power ’ in AIRS indicated that perhaps the
memory cell maintenance procedures played an important role [4]. Watkins
et al. provide a detailed review of the technique and its application [9].
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7.5 Immune Network Algorithm

Artificial Immune Network, aiNet, Optimization Artificial Immune Network,
opt-aiNet.

7.5.1 Taxonomy

The Artificial Immune Network algorithm (aiNet) is a Immune Network
Algorithm from the field of Artificial Immune Systems. It is related to
other Artificial Immune System algorithms such as the Clonal Selection
Algorithm (Section 7.2), the Negative Selection Algorithm (Section 7.3), and
the Dendritic Cell Algorithm (Section 7.6). The Artificial Immune Network
algorithm includes the base version and the extension for optimization
problems called the Optimization Artificial Immune Network algorithm
(opt-aiNet).

7.5.2 Inspiration

The Artificial Immune Network algorithm is inspired by the Immune Network
theory of the acquired immune system. The clonal selection theory of
acquired immunity accounts for the adaptive behavior of the immune system
including the ongoing selection and proliferation of cells that select-for
potentially harmful (and typically foreign) material in the body. A concern
of the clonal selection theory is that it presumes that the repertoire of
reactive cells remains idle when there are no pathogen to which to respond.
Jerne proposed an Immune Network Theory (Idiotypic Networks) where
immune cells are not at rest in the absence of pathogen, instead antibody
and immune cells recognize and respond to each other [6–8].

The Immune Network theory proposes that antibody (both free floating
and surface bound) possess idiotopes (surface features) to which the receptors
of other antibody can bind. As a result of receptor interactions, the repertoire
becomes dynamic, where receptors continually both inhibit and excite each
other in complex regulatory networks (chains of receptors). The theory
suggests that the clonal selection process may be triggered by the idiotopes
of other immune cells and molecules in addition to the surface characteristics
of pathogen, and that the maturation process applies both to the receptors
themselves and the idiotopes which they expose.

7.5.3 Metaphor

The immune network theory has interesting resource maintenance and
signaling information processing properties. The classical clonal selection
and negative selection paradigms integrate the accumulative and filtered
learning of the acquired immune system, whereas the immune network
theory proposes an additional order of complexity between the cells and
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molecules under selection. In addition to cells that interact directly with
pathogen, there are cells that interact with those reactive cells and with
pathogen indirectly, in successive layers such that networks of activity for
higher-order structures such as internal images of pathogen (promotion),
and regulatory networks (so-called anti-idiotopes and anti-anti-idiotopes).

7.5.4 Strategy

The objective of the immune network process is to prepare a repertoire
of discrete pattern detectors for a given problem domain, where better
performing cells suppress low-affinity (similar) cells in the network. This
principle is achieved through an interactive process of exposing the pop-
ulation to external information to which it responds with both a clonal
selection response and internal meta-dynamics of intra-population responses
that stabilizes the responses of the population to the external stimuli.

7.5.5 Procedure

Algorithm 7.5.1 provides a pseudocode listing of the Optimization Artificial
Immune Network algorithm (opt-aiNet) for minimizing a cost function.

7.5.6 Heuristics

� aiNet is designed for unsupervised clustering, where as the opt-aiNet
extension was designed for pattern recognition and optimization, specif-
ically multi-modal function optimization.

� The amount of mutation of clones is proportionate to the affinity of
the parent cell with the cost function (better fitness, lower mutation).

� The addition of random cells each iteration adds a random-restart like
capability to the algorithms.

� Suppression based on cell similarity provides a mechanism for reducing
redundancy.

� The population size is dynamic, and if it continues to grow it may be
an indication of a problem with many local optima or that the affinity
threshold may needs to be increased.

� Affinity proportionate mutation is performed using c′ = c+α×N(1, 0)
where α = 1

β
× exp(−f), N is a Guassian random number, and f is

the fitness of the parent cell, β controls the decay of the function and
can be set to 100.

� The affinity threshold is problem and representation specific, for
example a AffinityThreshold may be set to an arbitrary value such
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Algorithm 7.5.1: Pseudocode for opt-aiNet.

Input: Populationsize, ProblemSize, Nclones, Nrandom,
AffinityThreshold

Output: Sbest

Population ← InitializePopulation(Populationsize, ProblemSize);1

while ¬StopCondition() do2

EvaluatePopulation(Population);3

Sbest ← GetBestSolution(Population);4

Progeny ← ∅;5

Costavg ← CalculateAveragePopulationCost(Population);6

while CalculateAveragePopulationCost(Population) >7

Costavg do

foreach Celli ∈ Population do8

Clones ← CreateClones(Celli, Nclones);9

foreach Clonei ∈ Clones do10

Clonei ←11

MutateRelativeToFitnessOfParent(Clonei, Celli);
end12

EvaluatePopulation(Clones);13

Progeny ← GetBestSolution(Clones);14

end15

end16

SupressLowAffinityCells(Progeny, AffinityThreshold);17

Progeny ← CreateRandomCells(Nrandom);18

Population ← Progeny;19

end20

return Sbest;21

as 0.1 on a continuous function domain, or calculated as a percentage
of the size of the problem space.

� The number of random cells inserted may be 40% of the population
size.

� The number of clones created for a cell may be small, such as 10.

7.5.7 Code Listing

Listing 7.4 provides an example of the Optimization Artificial Immune
Network (opt-aiNet) implemented in the Ruby Programming Language. The
demonstration problem is an instance of a continuous function optimization
that seeks min f(x) where f =

∑n

i=1 x
2
i , −5.0 ≤ xi ≤ 5.0 and n = 2.

The optimal solution for this basin function is (v0, . . . , vn−1) = 0.0. The
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algorithm is an implementation based on the specification by de Castro and
Von Zuben [1].

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x**2.0)}

3 end

4

5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def random_gaussian(mean=0.0, stdev=1.0)

12 u1 = u2 = w = 0

13 begin

14 u1 = 2 * rand() - 1

15 u2 = 2 * rand() - 1

16 w = u1 * u1 + u2 * u2

17 end while w >= 1

18 w = Math.sqrt((-2.0 * Math.log(w)) / w)

19 return mean + (u2 * w) * stdev

20 end

21

22 def clone(parent)

23 v = Array.new(parent[:vector].size) {|i| parent[:vector][i]}

24 return {:vector=>v}

25 end

26

27 def mutation_rate(beta, normalized_cost)

28 return (1.0/beta) * Math.exp(-normalized_cost)

29 end

30

31 def mutate(beta, child, normalized_cost)

32 child[:vector].each_with_index do |v, i|

33 alpha = mutation_rate(beta, normalized_cost)

34 child[:vector][i] = v + alpha * random_gaussian()

35 end

36 end

37

38 def clone_cell(beta, num_clones, parent)

39 clones = Array.new(num_clones) {clone(parent)}

40 clones.each {|clone| mutate(beta, clone, parent[:norm_cost])}

41 clones.each{|c| c[:cost] = objective_function(c[:vector])}

42 clones.sort!{|x,y| x[:cost] <=> y[:cost]}

43 return clones.first

44 end

45

46 def calculate_normalized_cost(pop)

47 pop.sort!{|x,y| x[:cost]<=>y[:cost]}

48 range = pop.last[:cost] - pop.first[:cost]

49 if range == 0.0

50 pop.each {|p| p[:norm_cost] = 1.0}

51 else

52 pop.each {|p| p[:norm_cost] = 1.0-(p[:cost]/range)}

53 end
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54 end

55

56 def average_cost(pop)

57 sum = pop.inject(0.0){|sum,x| sum + x[:cost]}

58 return sum / pop.size.to_f

59 end

60

61 def distance(c1, c2)

62 sum = 0.0

63 c1.each_index {|i| sum += (c1[i]-c2[i])**2.0}

64 return Math.sqrt(sum)

65 end

66

67 def get_neighborhood(cell, pop, aff_thresh)

68 neighbors = []

69 pop.each do |p|

70 neighbors << p if distance(p[:vector], cell[:vector]) < aff_thresh

71 end

72 return neighbors

73 end

74

75 def affinity_supress(population, aff_thresh)

76 pop = []

77 population.each do |cell|

78 neighbors = get_neighborhood(cell, population, aff_thresh)

79 neighbors.sort!{|x,y| x[:cost] <=> y[:cost]}

80 pop << cell if neighbors.empty? or cell.equal?(neighbors.first)

81 end

82 return pop

83 end

84

85 def search(search_space, max_gens, pop_size, num_clones, beta, num_rand,

aff_thresh)

86 pop = Array.new(pop_size) {|i| {:vector=>random_vector(search_space)} }

87 pop.each{|c| c[:cost] = objective_function(c[:vector])}

88 best = nil

89 max_gens.times do |gen|

90 pop.each{|c| c[:cost] = objective_function(c[:vector])}

91 calculate_normalized_cost(pop)

92 pop.sort!{|x,y| x[:cost] <=> y[:cost]}

93 best = pop.first if best.nil? or pop.first[:cost] < best[:cost]

94 avgCost, progeny = average_cost(pop), nil

95 begin

96 progeny=Array.new(pop.size){|i| clone_cell(beta, num_clones, pop[i])}

97 end until average_cost(progeny) < avgCost

98 pop = affinity_supress(progeny, aff_thresh)

99 num_rand.times {pop << {:vector=>random_vector(search_space)}}

100 puts " > gen #{gen+1}, popSize=#{pop.size}, fitness=#{best[:cost]}"

101 end

102 return best

103 end

104

105 if __FILE__ == $0

106 # problem configuration

107 problem_size = 2

108 search_space = Array.new(problem_size) {|i| [-5, +5]}
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109 # algorithm configuration

110 max_gens = 150

111 pop_size = 20

112 num_clones = 10

113 beta = 100

114 num_rand = 2

115 aff_thresh = (search_space[0][1]-search_space[0][0])*0.05

116 # execute the algorithm

117 best = search(search_space, max_gens, pop_size, num_clones, beta,

num_rand, aff_thresh)

118 puts "done! Solution: f=#{best[:cost]}, s=#{best[:vector].inspect}"

119 end

Listing 7.4: Optimization Artificial Immune Network in Ruby

7.5.8 References

Primary Sources

Early works, such as Farmer et al. [5] suggested at the exploitation of the
information processing properties of network theory for machine learning. A
seminal network theory based algorithm was proposed by Timmis et al. for
clustering problems called the Artificial Immune Network (AIN) [11] that was
later extended and renamed the Resource Limited Artificial Immune System
[12] and Artificial Immune Network (AINE) [9]. The Artificial Immune
Network (aiNet) algorithm was proposed by de Castro and Von Zuben that
extended the principles of the Artificial Immune Network (AIN) and the
Clonal Selection Algorithm (CLONALG) and was applied to clustering [2].
The aiNet algorithm was further extended to optimization domains and
renamed opt-aiNet [1].

Learn More

The authors de Castro and Von Zuben provide a detailed presentation of
the aiNet algorithm as a book chapter that includes immunological theory,
a description of the algorithm, and demonstration application to clustering
problem instances [3]. Timmis and Edmonds provide a careful examination
of the opt-aiNet algorithm and propose some modifications and augmenta-
tions to improve its applicability and performance for multimodal function
optimization problem domains [10]. The authors de Franca, Von Zuben,
and de Castro proposed an extension to opt-aiNet that provided a num-
ber of enhancements and adapted its capability for for dynamic function
optimization problems called dopt-aiNet [4].
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7.6 Dendritic Cell Algorithm

Dendritic Cell Algorithm, DCA.

7.6.1 Taxonomy

The Dendritic Cell Algorithm belongs to the field of Artificial Immune
Systems, and more broadly to the field of Computational Intelligence. The
Dendritic Cell Algorithm is the basis for extensions such as the Deterministic
Dendritic Cell Algorithm (dDCA) [2]. It is generally related to other
Artificial Immune System algorithms such as the Clonal Selection Algorithm
(Section 7.2), and the Immune Network Algorithm (Section 7.5).

7.6.2 Inspiration

The Dendritic Cell Algorithm is inspired by the Danger Theory of the mam-
malian immune system, and specifically the role and function of dendritic
cells. The Danger Theory was proposed by Matzinger and suggests that
the roles of the acquired immune system is to respond to signals of danger,
rather than discriminating self from non-self [7, 8]. The theory suggests
that antigen presenting cells (such as helper T-cells) activate an alarm
signal providing the necessarily co-stimulation of antigen-specific cells to
respond. Dendritic cells are a type of cell from the innate immune system
that respond to some specific forms of danger signals. There are three main
types of dendritic cells: ‘immature’ that collect parts of the antigen and the
signals, ‘semi-mature’ that are immature cells that internally decide that
the local signals represent safe and present the antigen to T-cells resulting
in tolerance, and ‘mature’ cells that internally decide that the local signals
represent danger and present the antigen to T-cells resulting in a reactive
response.

7.6.3 Strategy

The information processing objective of the algorithm is to prepare a set of
mature dendritic cells (prototypes) that provide context specific information
about how to classify normal and anomalous input patterns. This is achieved
as a system of three asynchronous processes of 1) migrating sufficiently
stimulated immature cells, 2) promoting migrated cells to semi-mature (safe)
or mature (danger) status depending on their accumulated response, and 3)
labeling observed patterns as safe or dangerous based on the composition of
the sub-population of cells that respond to each pattern.
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7.6.4 Procedure

Algorithm 7.6.1 provides pseudocode for training a pool of cells in the
Dendritic Cell Algorithm, specifically the Deterministic Dendritic Cell
Algorithm. Mature migrated cells associate their collected input patterns
with anomalies, whereas semi-mature migrated cells associate their collected
input patterns as normal. The resulting migrated cells can then be used to
classify input patterns as normal or anomalous. This can be done through
sampling the cells and using a voting mechanism, or more elaborate methods
such as a ‘mature context antigen value’ (MCAV) that uses M

Ag
(where M

is the number of mature cells with the antigen and Ag is the sum of the
exposures to the antigen by those mature cells), which gives a probability
of a pattern being an anomaly.

Algorithm 7.6.1: Pseudocode for the Dendritic Cell Algorithm.

Input: InputPatterns, iterationsmax, cellsnum,
MigrationThreshbounds

Output: MigratedCells

ImmatureCells ← InitializeCells(cellsnum,1

MigrationThreshbounds);
MigratedCells ← ∅;2

for i = 1 to iterationsmax do3

Pi ← SelectInputPattern(InputPatterns);4

ki ← (Pidanger − 2 × Pisafe);5

cmsi ← (Pidanger + Pisafe);6

foreach Celli ∈ ImmatureCells do7

UpdateCellOutputSignals(Celli, ki, cmsi);8

StoreAntigen(Celli, Piantigen);9

if Cellilifespan ≤ 0 then10

ReInitializeCell(Celli);11

else if Cellicsm ≥ Cellithresh then12

RemoveCell(ImmatureCells, Celli);13

ImmatureCells ←14

CreateNewCell(MigrationThreshbounds);
if Cellik < 0 then15

Cellitype ← Mature;16

else17

Cellitype ← Semimature;18

end19

MigratedCells ← Celli;20

end21

end22

end23

return MigratedCells;24



7.6. Dendritic Cell Algorithm 301

7.6.5 Heuristics

� The Dendritic Cell Algorithm is not specifically a classification algo-
rithm, it may be considered a data filtering method for use in anomaly
detection problems.

� The canonical algorithm is designed to operate on a single discrete,
categorical or ordinal input and two probabilistic specific signals
indicating the heuristic danger or safety of the input.

� The danger and safe signals are problem specific signals of the risk
that the input pattern is an anomaly or is normal, both typically
∈ [0, 100].

� The danger and safe signals do not have to be reciprocal, meaning
they may provide conflicting information.

� The system was designed to be used in real-time anomaly detection
problems, not just static problem.

� Each cells migration threshold is set separately, typically ∈ [5, 15]

7.6.6 Code Listing

Listing 7.5 provides an example of the Dendritic Cell Algorithm implemented
in the Ruby Programming Language, specifically the Deterministic Dendritic
Cell Algorithm (dDCA). The problem is a contrived anomaly-detection
problem with ordinal inputs x ∈ [0, 50) , where values that divide by
10 with no remainder are considered anomalies. Probabilistic safe and
danger signal functions are provided, suggesting danger signals correctly
with P (danger) = 0.70, and safe signals correctly with P (safe) = 0.95.

The algorithm is an implementation of the Deterministic Dendritic Cell
Algorithm (dDCA) as described in [2, 9], with verification from [5]. The
algorithm was designed to be executed as three asynchronous processes in
a real-time or semi-real time environment. For demonstration purposes,
the implementation separated out the three main processes and executed
the sequentially as a training and cell promotion phase followed by a test
(labeling phase).

1 def rand_in_bounds(min, max)

2 return min + ((max-min) * rand())

3 end

4

5 def random_vector(search_space)

6 return Array.new(search_space.size) do |i|

7 rand_in_bounds(search_space[i][0], search_space[i][1])

8 end

9 end

10

11 def construct_pattern(class_label, domain, p_safe, p_danger)
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12 set = domain[class_label]

13 selection = rand(set.size)

14 pattern = {}

15 pattern[:class_label] = class_label

16 pattern[:input] = set[selection]

17 pattern[:safe] = (rand() * p_safe * 100)

18 pattern[:danger] = (rand() * p_danger * 100)

19 return pattern

20 end

21

22 def generate_pattern(domain, p_anomaly, p_normal, prob_create_anom=0.5)

23 pattern = nil

24 if rand() < prob_create_anom

25 pattern = construct_pattern("Anomaly", domain, 1.0-p_normal, p_anomaly)

26 puts ">Generated Anomaly [#{pattern[:input]}]"

27 else

28 pattern = construct_pattern("Normal", domain, p_normal, 1.0-p_anomaly)

29 end

30 return pattern

31 end

32

33 def initialize_cell(thresh, cell={})

34 cell[:lifespan] = 1000.0

35 cell[:k] = 0.0

36 cell[:cms] = 0.0

37 cell[:migration_threshold] = rand_in_bounds(thresh[0], thresh[1])

38 cell[:antigen] = {}

39 return cell

40 end

41

42 def store_antigen(cell, input)

43 if cell[:antigen][input].nil?

44 cell[:antigen][input] = 1

45 else

46 cell[:antigen][input] += 1

47 end

48 end

49

50 def expose_cell(cell, cms, k, pattern, threshold)

51 cell[:cms] += cms

52 cell[:k] += k

53 cell[:lifespan] -= cms

54 store_antigen(cell, pattern[:input])

55 initialize_cell(threshold, cell) if cell[:lifespan] <= 0

56 end

57

58 def can_cell_migrate?(cell)

59 return (cell[:cms]>=cell[:migration_threshold] and !cell[:antigen].empty?)

60 end

61

62 def expose_all_cells(cells, pattern, threshold)

63 migrate = []

64 cms = (pattern[:safe] + pattern[:danger])

65 k = pattern[:danger] - (pattern[:safe] * 2.0)

66 cells.each do |cell|

67 expose_cell(cell, cms, k, pattern, threshold)
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68 if can_cell_migrate?(cell)

69 migrate << cell

70 cell[:class_label] = (cell[:k]>0) ? "Anomaly" : "Normal"

71 end

72 end

73 return migrate

74 end

75

76 def train_system(domain, max_iter, num_cells, p_anomaly, p_normal, thresh)

77 immature_cells = Array.new(num_cells){ initialize_cell(thresh) }

78 migrated = []

79 max_iter.times do |iter|

80 pattern = generate_pattern(domain, p_anomaly, p_normal)

81 migrants = expose_all_cells(immature_cells, pattern, thresh)

82 migrants.each do |cell|

83 immature_cells.delete(cell)

84 immature_cells << initialize_cell(thresh)

85 migrated << cell

86 end

87 puts "> iter=#{iter} new=#{migrants.size}, migrated=#{migrated.size}"

88 end

89 return migrated

90 end

91

92 def classify_pattern(migrated, pattern)

93 input = pattern[:input]

94 num_cells, num_antigen = 0, 0

95 migrated.each do |cell|

96 if cell[:class_label] == "Anomaly" and !cell[:antigen][input].nil?

97 num_cells += 1

98 num_antigen += cell[:antigen][input]

99 end

100 end

101 mcav = num_cells.to_f / num_antigen.to_f

102 return (mcav>0.5) ? "Anomaly" : "Normal"

103 end

104

105 def test_system(migrated, domain, p_anomaly, p_normal, num_trial=100)

106 correct_norm = 0

107 num_trial.times do

108 pattern = construct_pattern("Normal", domain, p_normal, 1.0-p_anomaly)

109 class_label = classify_pattern(migrated, pattern)

110 correct_norm += 1 if class_label == "Normal"

111 end

112 puts "Finished testing Normal inputs #{correct_norm}/#{num_trial}"

113 correct_anom = 0

114 num_trial.times do

115 pattern = construct_pattern("Anomaly", domain, 1.0-p_normal, p_anomaly)

116 class_label = classify_pattern(migrated, pattern)

117 correct_anom += 1 if class_label == "Anomaly"

118 end

119 puts "Finished testing Anomaly inputs #{correct_anom}/#{num_trial}"

120 return [correct_norm, correct_anom]

121 end

122

123 def execute(domain, max_iter, num_cells, p_anom, p_norm, thresh)
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124 migrated=train_system(domain, max_iter, num_cells, p_anom, p_norm, thresh)

125 test_system(migrated, domain, p_anom, p_norm)

126 return migrated

127 end

128

129 if __FILE__ == $0

130 # problem configuration

131 domain = {}

132 domain["Normal"] = Array.new(50){|i| i}

133 domain["Anomaly"] = Array.new(5){|i| (i+1)*10}

134 domain["Normal"] = domain["Normal"] - domain["Anomaly"]

135 p_anomaly = 0.70

136 p_normal = 0.95

137 # algorithm configuration

138 iterations = 100

139 num_cells = 10

140 thresh = [5,15]

141 # execute the algorithm

142 execute(domain, iterations, num_cells, p_anomaly, p_normal, thresh)

143 end

Listing 7.5: Deterministic Dendritic Cell Algorithm in Ruby

7.6.7 References

Primary Sources

The Dendritic Cell Algorithm was proposed by Greensmith, Aickelin and
Cayzer describing the inspiring biological system and providing experimental
results on a classification problem [4]. This work was followed shortly by
a second study into the algorithm by Greensmith, Twycross, and Aick-
elin, focusing on computer security instances of anomaly detection and
classification problems [6].

Learn More

The Dendritic Cell Algorithm was the focus of Greensmith’s thesis, which
provides a detailed discussion of the methods abstraction from the inspiring
biological system, and a review of the technique’s limitations [1]. A formal
presentation of the algorithm is provided by Greensmith et al. [5]. Green-
smith and Aickelin proposed the Deterministic Dendritic Cell Algorithm
(dDCA) that seeks to remove some of the stochastic decisions from the
method, and reduce the complexity and to make it more amenable to analysis
[2]. Stibor et al. provide a theoretical analysis of the Deterministic Dendritic
Cell Algorithm, considering the discrimination boundaries of single dendrite
cells in the system [9]. Greensmith and Aickelin provide a detailed overview
of the Dendritic Cell Algorithm focusing on the information processing
principles of the inspiring biological systems as a book chapter [3].
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Chapter 8

Neural Algorithms

8.1 Overview

This chapter describes Neural Algorithms.

8.1.1 Biological Neural Networks

A Biological Neural Network refers to the information processing elements of
the nervous system, organized as a collection of neural cells, called neurons,
that are interconnected in networks and interact with each other using
electrochemical signals. A biological neuron is generally comprised of an
axon which provides the input signals and is connected to other neurons via
synapses. The neuron reacts to input signals and may produce an output
signal on its output connection called the dendrites.

The study of biological neural networks falls within the domain of
neuroscience which is a branch of biology concerned with the nervous
system. Neuroanatomy is a subject that is concerned with the the structure
and function of groups of neural networks both with regard to parts of the
brain and the structures that lead from and to the brain from the rest of the
body. Neuropsychology is another discipline concerned with the structure
and function of the brain as they relate to abstract psychological behaviors.
For further information, refer to a good textbook on any of these general
topics.

8.1.2 Artificial Neural Networks

The field of Artificial Neural Networks (ANN) is concerned with the in-
vestigation of computational models inspired by theories and observation
of the structure and function of biological networks of neural cells in the
brain. They are generally designed as models for addressing mathemat-
ical, computational, and engineering problems. As such, there is a lot

307
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of interdisciplinary research in mathematics, neurobiology and computer
science.

An Artificial Neural Network is generally comprised of a collection
of artificial neurons that are interconnected in order to performs some
computation on input patterns and create output patterns. They are
adaptive systems capable of modifying their internal structure, typically
the weights between nodes in the network, allowing them to be used for a
variety of function approximation problems such as classification, regression,
feature extraction and content addressable memory.

Given that the focus of the field is on performing computation with
networks of discrete computing units, the field is traditionally called a
‘connectionist’ paradigm of Artificial Intelligence and ‘Neural Computation’.

There are many types of neural networks, many of which fall into one of
two categories:

� Feed-forward Networks where input is provided on one side of the
network and the signals are propagated forward (in one direction)
through the network structure to the other side where output signals
are read. These networks may be comprised of one cell, one layer
or multiple layers of neurons. Some examples include the Percep-
tron, Radial Basis Function Networks, and the multi-layer perceptron
networks.

� Recurrent Networks where cycles in the network are permitted
and the structure may be fully interconnected. Examples include the
Hopfield Network and Bidirectional Associative Memory.

Artificial Neural Network structures are made up of nodes and weights
which typically require training based on samples of patterns from a problem
domain. Some examples of learning strategies include:

� Supervised Learning where the network is exposed to the input
that has a known expected answer. The internal state of the network
is modified to better match the expected result. Examples of this
learning method include the Back-propagation algorithm and the Hebb
rule.

� Unsupervised Learning where the network is exposed to input
patterns from which it must discern meaning and extract features.
The most common type of unsupervised learning is competitive learn-
ing where neurons compete based on the input pattern to produce
an output pattern. Examples include Neural Gas, Learning Vector
Quantization, and the Self-Organizing Map.

Artificial Neural Networks are typically difficult to configure and slow
to train, but once prepared are very fast in application. They are generally
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used for function approximation-based problem domains and prized for their
capabilities of generalization and tolerance to noise. They are known to
have the limitation of being opaque, meaning there is little explanation to
the subject matter expert as to why decisions were made, only how.

There are many excellent reference texts for the field of Artificial Neural
Networks, some selected texts include: “Neural Networks for Pattern Recog-
nition” by Bishop [1], “Neural Smithing: Supervised Learning in Feedforward
Artificial Neural Networks” by Reed and Marks II [8] and “An Introduction
to Neural Networks” by Gurney [2].

8.1.3 Extensions

There are many other algorithms and classes of algorithm that were not
described from the field of Artificial Neural Networks, not limited to:

� Radial Basis Function Network: A network where activation
functions are controlled by Radial Basis Functions [4].

� Neural Gas: Another self-organizing and unsupervised competitive
learning algorithm. Unlike SOM (and more like LVQ), the nodes
are not organized into a lower-dimensional structure, instead the
competitive Hebbian-learning like rule is applied to connect, order,
and adapt nodes in feature space [5–7].

� Hierarchical Temporal Memory: A neural network system based
on models of some of the structural and algorithmic properties of the
neocortex [3].

8.1.4 Bibliography

[1] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford Univer-
sity Press, 1995.

[2] K. Gurney. An Introduction to Neural Networks. CRC Press, 1997.

[3] J. Hawkins and S. Blakeslee. On Intelligence. Henry Holt and Company,
2005.

[4] Robert J. Howlett and L. C. Jain. Radial basis function networks 1:
recent developments in theory and applications. Springer, 2001.

[5] T. Martinetz and K. Schulten. A “neural gas” network learns topologies.
In Artificial Neural Networks, pages 397–402, 1991.

[6] T. Martinetz and K. Schulten. Topology representing networks. Neural
Networks, 7:507–522, 1994.



310 Chapter 8. Neural Algorithms

[7] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. ‘neural-gas’ net-
work for vector quantization and its application to time-series prediction.
IEEE Transactions on Neural Networks, 4:558–569, 1993.

[8] R. D. Reed and R. J. Marks II. Neural Smithing: Supervised Learning
in Feedforward Artificial Neural Networks. Mit Press, 1999.



8.2. Perceptron 311

8.2 Perceptron

Perceptron.

8.2.1 Taxonomy

The Perceptron algorithm belongs to the field of Artificial Neural Networks
and more broadly Computational Intelligence. It is a single layer feedforward
neural network (single cell network) that inspired many extensions and
variants, not limited to ADALINE and the Widrow-Hoff learning rules.

8.2.2 Inspiration

The Perceptron is inspired by the information processing of a single neural
cell (called a neuron). A neuron accepts input signals via its axon, which
pass the electrical signal down to the cell body. The dendrites carry the
signal out to synapses, which are the connections of a cell’s dendrites to
other cell’s axons. In a synapse, the electrical activity is converted into
molecular activity (neurotransmitter molecules crossing the synaptic cleft
and binding with receptors). The molecular binding develops an electrical
signal which is passed onto the connected cells axon.

8.2.3 Strategy

The information processing objective of the technique is to model a given
function by modifying internal weightings of input signals to produce an
expected output signal. The system is trained using a supervised learning
method, where the error between the system’s output and a known expected
output is presented to the system and used to modify its internal state.
State is maintained in a set of weightings on the input signals. The weights
are used to represent an abstraction of the mapping of input vectors to
the output signal for the examples that the system was exposed to during
training.

8.2.4 Procedure

The Perceptron is comprised of a data structure (weights) and separate
procedures for training and applying the structure. The structure is really
just a vector of weights (one for each expected input) and a bias term.

Algorithm 8.6.1 provides a pseudocode for training the Perceptron. A
weight is initialized for each input plus an additional weight for a fixed
bias constant input that is almost always set to 1.0. The activation of the
network to a given input pattern is calculated as follows:

activation←
n
∑

k=1

(

wk × xki

)

+ wbias × 1.0 (8.1)
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where n is the number of weights and inputs, xki is the kth attribute on
the ith input pattern, and wbias is the bias weight. The weights are updated
as follows:

wi(t+ 1) = wi(t) + α× (e(t)− a(t))× xi(t) (8.2)

where wi is the ith weight at time t and t + 1, α is the learning rate,
e(t) and a(t) are the expected and actual output at time t, and xi is the ith

input. This update process is applied to each weight in turn (as well as the
bias weight with its contact input).

Algorithm 8.2.1: Pseudocode for the Perceptron.

Input: ProblemSize, InputPatterns, iterationsmax, learnrate

Output: Weights

Weights ← InitializeWeights(ProblemSize);1

for i = 1 to iterationsmax do2

Patterni ← SelectInputPattern(InputPatterns);3

Activationi ← ActivateNetwork(Patterni, Weights);4

Outputi ← TransferActivation(Activationi);5

UpdateWeights(Patterni, Outputi, learnrate);6

end7

return Weights;8

8.2.5 Heuristics

� The Perceptron can be used to approximate arbitrary linear functions
and can be used for regression or classification problems.

� The Perceptron cannot learn a non-linear mapping between the input
and output attributes. The XOR problem is a classical example of a
problem that the Perceptron cannot learn.

� Input and output values should be normalized such that x ∈ [0, 1).

� The learning rate (α ∈ [0, 1]) controls the amount of change each error
has on the system, lower learning rages are common such as 0.1.

� The weights can be updated in an online manner (after the exposure
to each input pattern) or in batch (after a fixed number of patterns
have been observed).

� Batch updates are expected to be more stable than online updates for
some complex problems.

� A bias weight is used with a constant input signal to provide stability
to the learning process.
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� A step transfer function is commonly used to transfer the activation
to a binary output value 1← activation ≥ 0, otherwise 0.

� It is good practice to expose the system to input patterns in a different
random order each enumeration through the input set.

� The initial weights are typically small random values, typically ∈
[0, 0.5].

8.2.6 Code Listing

Listing 8.1 provides an example of the Perceptron algorithm implemented in
the Ruby Programming Language. The problem is the classical OR boolean
problem, where the inputs of the boolean truth table are provided as the two
inputs and the result of the boolean OR operation is expected as output.

The algorithm was implemented using an online learning method, mean-
ing the weights are updated after each input pattern is observed. A step
transfer function is used to convert the activation into a binary output
∈ {0, 1}. Random samples are taken from the domain to train the weights,
and similarly, random samples are drawn from the domain to demonstrate
what the network has learned. A bias weight is used for stability with a
constant input of 1.0.

1 def random_vector(minmax)

2 return Array.new(minmax.size) do |i|

3 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

4 end

5 end

6

7 def initialize_weights(problem_size)

8 minmax = Array.new(problem_size + 1) {[-1.0,1.0]}

9 return random_vector(minmax)

10 end

11

12 def update_weights(num_inputs, weights, input, out_exp, out_act, l_rate)

13 num_inputs.times do |i|

14 weights[i] += l_rate * (out_exp - out_act) * input[i]

15 end

16 weights[num_inputs] += l_rate * (out_exp - out_act) * 1.0

17 end

18

19 def activate(weights, vector)

20 sum = weights[weights.size-1] * 1.0

21 vector.each_with_index do |input, i|

22 sum += weights[i] * input

23 end

24 return sum

25 end

26

27 def transfer(activation)

28 return (activation >= 0) ? 1.0 : 0.0

29 end
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30

31 def get_output(weights, vector)

32 activation = activate(weights, vector)

33 return transfer(activation)

34 end

35

36 def train_weights(weights, domain, num_inputs, iterations, lrate)

37 iterations.times do |epoch|

38 error = 0.0

39 domain.each do |pattern|

40 input = Array.new(num_inputs) {|k| pattern[k].to_f}

41 output = get_output(weights, input)

42 expected = pattern.last.to_f

43 error += (output - expected).abs

44 update_weights(num_inputs, weights, input, expected, output, lrate)

45 end

46 puts "> epoch=#{epoch}, error=#{error}"

47 end

48 end

49

50 def test_weights(weights, domain, num_inputs)

51 correct = 0

52 domain.each do |pattern|

53 input_vector = Array.new(num_inputs) {|k| pattern[k].to_f}

54 output = get_output(weights, input_vector)

55 correct += 1 if output.round == pattern.last

56 end

57 puts "Finished test with a score of #{correct}/#{domain.size}"

58 return correct

59 end

60

61 def execute(domain, num_inputs, iterations, learning_rate)

62 weights = initialize_weights(num_inputs)

63 train_weights(weights, domain, num_inputs, iterations, learning_rate)

64 test_weights(weights, domain, num_inputs)

65 return weights

66 end

67

68 if __FILE__ == $0

69 # problem configuration

70 or_problem = [[0,0,0], [0,1,1], [1,0,1], [1,1,1]]

71 inputs = 2

72 # algorithm configuration

73 iterations = 20

74 learning_rate = 0.1

75 # execute the algorithm

76 execute(or_problem, inputs, iterations, learning_rate)

77 end

Listing 8.1: Perceptron in Ruby
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8.2.7 References

Primary Sources

The Perceptron algorithm was proposed by Rosenblatt in 1958 [3]. Rosen-
blatt proposed a range of neural network structures and methods. The
‘Perceptron’ as it is known is in fact a simplification of Rosenblatt’s models
by Minsky and Papert for the purposes of analysis [1]. An early proof of
convergence was provided by Novikoff [2].

Learn More

Minsky and Papert wrote the classical text titled “Perceptrons” in 1969
that is known to have discredited the approach, suggesting it was limited
to linear discrimination, which reduced research in the area for decades
afterward [1].

8.2.8 Bibliography
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8.3 Back-propagation

Back-propagation, Backpropagation, Error Back Propagation, Backprop,
Delta-rule.

8.3.1 Taxonomy

The Back-propagation algorithm is a supervised learning method for multi-
layer feed-forward networks from the field of Artificial Neural Networks
and more broadly Computational Intelligence. The name refers to the
backward propagation of error during the training of the network. Back-
propagation is the basis for many variations and extensions for training
multi-layer feed-forward networks not limited to Vogl’s Method (Bold Drive),
Delta-Bar-Delta, Quickprop, and Rprop.

8.3.2 Inspiration

Feed-forward neural networks are inspired by the information processing of
one or more neural cells (called a neuron). A neuron accepts input signals
via its axon, which pass the electrical signal down to the cell body. The
dendrites carry the signal out to synapses, which are the connections of a
cell’s dendrites to other cell’s axons. In a synapse, the electrical activity is
converted into molecular activity (neurotransmitter molecules crossing the
synaptic cleft and binding with receptors). The molecular binding develops
an electrical signal which is passed onto the connected cells axon. The
Back-propagation algorithm is a training regime for multi-layer feed forward
neural networks and is not directly inspired by the learning processes of the
biological system.

8.3.3 Strategy

The information processing objective of the technique is to model a given
function by modifying internal weightings of input signals to produce an
expected output signal. The system is trained using a supervised learning
method, where the error between the system’s output and a known expected
output is presented to the system and used to modify its internal state. State
is maintained in a set of weightings on the input signals. The weights are used
to represent an abstraction of the mapping of input vectors to the output
signal for the examples that the system was exposed to during training. Each
layer of the network provides an abstraction of the information processing
of the previous layer, allowing the combination of sub-functions and higher
order modeling.



8.3. Back-propagation 317

8.3.4 Procedure

The Back-propagation algorithm is a method for training the weights in
a multi-layer feed-forward neural network. As such, it requires a network
structure to be defined of one or more layers where one layer is fully
connected to the next layer. A standard network structure is one input
layer, one hidden layer, and one output layer. The method is primarily
concerned with adapting the weights to the calculated error in the presence
of input patterns, and the method is applied backward from the network
output layer through to the input layer.

Algorithm 8.6.1 provides a high-level pseudocode for preparing a network
using the Back-propagation training method. A weight is initialized for
each input plus an additional weight for a fixed bias constant input that is
almost always set to 1.0. The activation of a single neuron to a given input
pattern is calculated as follows:

activation =

( n
∑

k=1

wk × xki

)

+ wbias × 1.0 (8.3)

where n is the number of weights and inputs, xki is the kth attribute
on the ith input pattern, and wbias is the bias weight. A logistic transfer
function (sigmoid) is used to calculate the output for a neuron ∈ [0, 1] and
provide nonlinearities between in the input and output signals: 1

1+exp(−a) ,

where a represents the neuron activation.
The weight updates use the delta rule, specifically a modified delta rule

where error is backwardly propagated through the network, starting at the
output layer and weighted back through the previous layers. The following
describes the back-propagation of error and weight updates for a single
pattern.

An error signal is calculated for each node and propagated back through
the network. For the output nodes this is the sum of the error between the
node outputs and the expected outputs:

esi = (ci − oi)× tdi (8.4)

where esi is the error signal for the ith node, ci is the expected output
and oi is the actual output for the ith node. The td term is the derivative
of the output of the ith node. If the sigmod transfer function is used, tdi
would be oi × (1− oi) For the hidden nodes, the error signal is the sum of
the weighted error signals from the next layer.

esi =

( n
∑

k=1

(wik × esk)

)

× tdi (8.5)

where esi is the error signal for the ith node, wik is the weight between
the ith and the kth nodes, and esk is the error signal of the kth node.
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The error derivatives for each weight are calculated by combining the
input to each node and the error signal for the node.

edi =

n
∑

k=1

esi × xk (8.6)

where edi is the error derivative for the ith node, esi is the error signal
for the ith node and xk is the input from the kth node in the previous layer.
This process include the bias input that has a constant value.

Weights are updated in a direction that reduces the error derivative edi
(error assigned to the weight), metered by a learning coefficient.

wi(t+ 1) = wi(t) + (edk × learnrate) (8.7)

where wi(t+ 1) is the updated ith weight, edk is the error derivative for
the kth node and learnrate is an update coefficient parameter.

Algorithm 8.3.1: Pseudocode for Back-propagation.

Input: ProblemSize, InputPatterns, iterationsmax, learnrate

Output: Network
Network ← ConstructNetworkLayers();1

Networkweights ← InitializeWeights(Network, ProblemSize);2

for i = 1 to iterationsmax do3

Patterni ← SelectInputPattern(InputPatterns);4

Outputi ← ForwardPropagate(Patterni, Network);5

BackwardPropagateError(Patterni, Outputi, Network);6

UpdateWeights(Patterni, Outputi, Network, learnrate);7

end8

return Network;9

8.3.5 Heuristics

� The Back-propagation algorithm can be used to train a multi-layer
network to approximate arbitrary non-linear functions and can be
used for regression or classification problems.

� Input and output values should be normalized such that x ∈ [0, 1).

� The weights can be updated in an online manner (after the exposure
to each input pattern) or in batch (after a fixed number of patterns
have been observed).

� Batch updates are expected to be more stable than online updates for
some complex problems.
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� A logistic (sigmoid) transfer function is commonly used to transfer the
activation to a binary output value, although other transfer functions
can be used such as the hyperbolic tangent (tanh), Gaussian, and
softmax.

� It is good practice to expose the system to input patterns in a different
random order each enumeration through the input set.

� The initial weights are typically small random values ∈ [0, 0.5].

� Typically a small number of layers are used such as 2-4 given that the
increase in layers result in an increase in the complexity of the system
and the time required to train the weights.

� The learning rate can be varied during training, and it is common to
introduce a momentum term to limit the rate of change.

� The weights of a given network can be initialized with a global op-
timization method before being refined using the Back-propagation
algorithm.

� One output node is common for regression problems, where as one
output node per class is common for classification problems.

8.3.6 Code Listing

Listing 8.2 provides an example of the Back-propagation algorithm imple-
mented in the Ruby Programming Language. The problem is the classical
XOR boolean problem, where the inputs of the boolean truth table are
provided as inputs and the result of the boolean XOR operation is expected
as output. This is a classical problem for Back-Propagation because it was
the problem instance referenced by Minsky and Papert in their analysis
of the Perceptron highlighting the limitations of their simplified models of
neural networks [3].

The algorithm was implemented using a batch learning method, meaning
the weights are updated after each epoch of patterns are observed. A logistic
(sigmoid) transfer function is used to convert the activation into an output
signal. Weight updates occur at the end of each epoch using the accumulated
delta’s. A momentum term is used in conjunction with the past weight
update to ensure the last update influences the current update, reducing
large changes.

A three layer network is demonstrated with 2 nodes in the input layer
(two inputs), 2 nodes in the hidden layer and 1 node in the output layer,
which is sufficient for the chosen problem. A bias weight is used on each
neuron for stability with a constant input of 1.0. The learning process is
separated into four steps: forward propagation, backward propagation of
error, calculation of error derivatives (assigning blame to the weights) and
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the weight update. This separation facilities easy extensions such as adding
a momentum term and/or weight decay to the update process.

1 def random_vector(minmax)

2 return Array.new(minmax.size) do |i|

3 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

4 end

5 end

6

7 def initialize_weights(num_weights)

8 minmax = Array.new(num_weights) {[-rand(),rand()]}

9 return random_vector(minmax)

10 end

11

12 def activate(weights, vector)

13 sum = weights[weights.size-1] * 1.0

14 vector.each_with_index do |input, i|

15 sum += weights[i] * input

16 end

17 return sum

18 end

19

20 def transfer(activation)

21 return 1.0 / (1.0 + Math.exp(-activation))

22 end

23

24 def transfer_derivative(output)

25 return output * (1.0 - output)

26 end

27

28 def forward_propagate(net, vector)

29 net.each_with_index do |layer, i|

30 input=(i==0)? vector : Array.new(net[i-1].size){|k|net[i-1][k][:output]}

31 layer.each do |neuron|

32 neuron[:activation] = activate(neuron[:weights], input)

33 neuron[:output] = transfer(neuron[:activation])

34 end

35 end

36 return net.last[0][:output]

37 end

38

39 def backward_propagate_error(network, expected_output)

40 network.size.times do |n|

41 index = network.size - 1 - n

42 if index == network.size-1

43 neuron = network[index][0] # assume one node in output layer

44 error = (expected_output - neuron[:output])

45 neuron[:delta] = error * transfer_derivative(neuron[:output])

46 else

47 network[index].each_with_index do |neuron, k|

48 sum = 0.0

49 # only sum errors weighted by connection to the current k'th neuron

50 network[index+1].each do |next_neuron|

51 sum += (next_neuron[:weights][k] * next_neuron[:delta])

52 end

53 neuron[:delta] = sum * transfer_derivative(neuron[:output])
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54 end

55 end

56 end

57 end

58

59 def calculate_error_derivatives_for_weights(net, vector)

60 net.each_with_index do |layer, i|

61 input=(i==0)? vector : Array.new(net[i-1].size){|k|net[i-1][k][:output]}

62 layer.each do |neuron|

63 input.each_with_index do |signal, j|

64 neuron[:deriv][j] += neuron[:delta] * signal

65 end

66 neuron[:deriv][-1] += neuron[:delta] * 1.0

67 end

68 end

69 end

70

71 def update_weights(network, lrate, mom=0.8)

72 network.each do |layer|

73 layer.each do |neuron|

74 neuron[:weights].each_with_index do |w, j|

75 delta = (lrate * neuron[:deriv][j]) + (neuron[:last_delta][j] * mom)

76 neuron[:weights][j] += delta

77 neuron[:last_delta][j] = delta

78 neuron[:deriv][j] = 0.0

79 end

80 end

81 end

82 end

83

84 def train_network(network, domain, num_inputs, iterations, lrate)

85 correct = 0

86 iterations.times do |epoch|

87 domain.each do |pattern|

88 vector,expected=Array.new(num_inputs){|k|pattern[k].to_f},pattern.last

89 output = forward_propagate(network, vector)

90 correct += 1 if output.round == expected

91 backward_propagate_error(network, expected)

92 calculate_error_derivatives_for_weights(network, vector)

93 end

94 update_weights(network, lrate)

95 if (epoch+1).modulo(100) == 0

96 puts "> epoch=#{epoch+1}, Correct=#{correct}/#{100*domain.size}"

97 correct = 0

98 end

99 end

100 end

101

102 def test_network(network, domain, num_inputs)

103 correct = 0

104 domain.each do |pattern|

105 input_vector = Array.new(num_inputs) {|k| pattern[k].to_f}

106 output = forward_propagate(network, input_vector)

107 correct += 1 if output.round == pattern.last

108 end

109 puts "Finished test with a score of #{correct}/#{domain.length}"
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110 return correct

111 end

112

113 def create_neuron(num_inputs)

114 return {:weights=>initialize_weights(num_inputs+1),

115 :last_delta=>Array.new(num_inputs+1){0.0},

116 :deriv=>Array.new(num_inputs+1){0.0}}

117 end

118

119 def execute(domain, num_inputs, iterations, num_nodes, lrate)

120 network = []

121 network << Array.new(num_nodes){create_neuron(num_inputs)}

122 network << Array.new(1){create_neuron(network.last.size)}

123 puts "Topology: #{num_inputs} #{network.inject(""){|m,i|m+"#{i.size} "}}"

124 train_network(network, domain, num_inputs, iterations, lrate)

125 test_network(network, domain, num_inputs)

126 return network

127 end

128

129 if __FILE__ == $0

130 # problem configuration

131 xor = [[0,0,0], [0,1,1], [1,0,1], [1,1,0]]

132 inputs = 2

133 # algorithm configuration

134 learning_rate = 0.3

135 num_hidden_nodes = 4

136 iterations = 2000

137 # execute the algorithm

138 execute(xor, inputs, iterations, num_hidden_nodes, learning_rate)

139 end

Listing 8.2: Back-propagation in Ruby

8.3.7 References

Primary Sources

The backward propagation of error method is credited to Bryson and Ho
in [1]. It was applied to the training of multi-layer networks and called
back-propagation by Rumelhart, Hinton and Williams in 1986 [5, 6]. This
effort and the collection of studies edited by Rumelhart and McClelland
helped to define the field of Artificial Neural Networks in the late 1980s
[7, 8].

Learn More

A seminal book on the approach was “Backpropagation: theory, archi-
tectures, and applications” by Chauvin and Rumelhart that provided an
excellent introduction (chapter 1) but also a collection of studies applying
and extending the approach [2]. Reed and Marks provide an excellent
treatment of feed-forward neural networks called “Neural Smithing” that
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includes chapters dedicated to Back-propagation, the configuration of its
parameters, error surface and speed improvements [4].
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8.4 Hopfield Network

Hopfield Network, HN, Hopfield Model.

8.4.1 Taxonomy

The Hopfield Network is a Neural Network and belongs to the field of Arti-
ficial Neural Networks and Neural Computation. It is a Recurrent Neural
Network and is related to other recurrent networks such as the Bidirec-
tional Associative Memory (BAM). It is generally related to feedforward
Artificial Neural Networks such as the Perceptron (Section 8.2) and the
Back-propagation algorithm (Section 8.3).

8.4.2 Inspiration

The Hopfield Network algorithm is inspired by the associated memory
properties of the human brain.

8.4.3 Metaphor

Through the training process, the weights in the network may be thought to
minimize an energy function and slide down an energy surface. In a trained
network, each pattern presented to the network provides an attractor, where
progress is made towards the point of attraction by propagating information
around the network.

8.4.4 Strategy

The information processing objective of the system is to associate the
components of an input pattern with a holistic representation of the pattern
called Content Addressable Memory (CAM). This means that once trained,
the system will recall whole patterns, given a portion or a noisy version of
the input pattern.

8.4.5 Procedure

The Hopfield Network is comprised of a graph data structure with weighted
edges and separate procedures for training and applying the structure. The
network structure is fully connected (a node connects to all other nodes
except itself) and the edges (weights) between the nodes are bidirectional.

The weights of the network can be learned via a one-shot method (one-
iteration through the patterns) if all patterns to be memorized by the
network are known. Alternatively, the weights can be updated incrementally
using the Hebb rule where weights are increased or decreased based on



8.4. Hopfield Network 325

the difference between the actual and the expected output. The one-shot
calculation of the network weights for a single node occurs as follows:

wi,j =

N
∑

k=1

vik × vjk (8.8)

where wi,j is the weight between neuron i and j, N is the number of
input patterns, v is the input pattern and vik is the ith attribute on the kth

input pattern.
The propagation of the information through the network can be asyn-

chronous where a random node is selected each iteration, or synchronously,
where the output is calculated for each node before being applied to the
whole network. Propagation of the information continues until no more
changes are made or until a maximum number of iterations has completed,
after which the output pattern from the network can be read. The activation
for a single node is calculated as follows:

ni =

n
∑

j=1

wi,j × nj (8.9)

where ni is the activation of the ith neuron, wi,j with the weight between
the nodes i and j, and nj is the output of the jth neuron. The activation is
transferred into an output using a transfer function, typically a step function
as follows:

transfer(ni) =

{

1 if ≥ θ
−1 if < θ

where the threshold θ is typically fixed at 0.

8.4.6 Heuristics

� The Hopfield network may be used to solve the recall problem of
matching cues for an input pattern to an associated pre-learned pat-
tern.

� The transfer function for turning the activation of a neuron into an
output is typically a step function f(a) ∈ {−1, 1} (preferred), or more
traditionally f(a) ∈ {0, 1}.

� The input vectors are typically normalized to boolean values x ∈
[−1, 1].

� The network can be propagated asynchronously (where a random
node is selected and output generated), or synchronously (where the
output for all nodes are calculated before being applied).
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� Weights can be learned in a one-shot or incremental method based on
how much information is known about the patterns to be learned.

� All neurons in the network are typically both input and output neurons,
although other network topologies have been investigated (such as the
designation of input and output neurons).

� A Hopfield network has limits on the patterns it can store and retrieve
accurately from memory, described by N < 0.15× n where N is the
number of patterns that can be stored and retrieved and n is the
number of nodes in the network.

8.4.7 Code Listing

Listing 8.3 provides an example of the Hopfield Network algorithm imple-
mented in the Ruby Programming Language. The problem is an instance
of a recall problem where patters are described in terms of a 3× 3 matrix
of binary values (∈ {−1, 1}). Once the network has learned the patterns,
the system is exposed to perturbed versions of the patterns (with errors
introduced) and must respond with the correct pattern. Two patterns are
used in this example, specifically ‘T’, and ‘U’.

The algorithm is an implementation of the Hopfield Network with a
one-shot training method for the network weights, given that all patterns are
already known. The information is propagated through the network using
an asynchronous method, which is repeated for a fixed number of iterations.
The patterns are displayed to the console during the testing of the network,
with the outputs converted from {−1, 1} to {0, 1} for readability.

1 def random_vector(minmax)

2 return Array.new(minmax.size) do |i|

3 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

4 end

5 end

6

7 def initialize_weights(problem_size)

8 minmax = Array.new(problem_size) {[-0.5,0.5]}

9 return random_vector(minmax)

10 end

11

12 def create_neuron(num_inputs)

13 neuron = {}

14 neuron[:weights] = initialize_weights(num_inputs)

15 return neuron

16 end

17

18 def transfer(activation)

19 return (activation >= 0) ? 1 : -1

20 end

21

22 def propagate_was_change?(neurons)

23 i = rand(neurons.size)
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24 activation = 0

25 neurons.each_with_index do |other, j|

26 activation += other[:weights][i]*other[:output] if i!=j

27 end

28 output = transfer(activation)

29 change = output != neurons[i][:output]

30 neurons[i][:output] = output

31 return change

32 end

33

34 def get_output(neurons, pattern, evals=100)

35 vector = pattern.flatten

36 neurons.each_with_index {|neuron,i| neuron[:output] = vector[i]}

37 evals.times { propagate_was_change?(neurons) }

38 return Array.new(neurons.size){|i| neurons[i][:output]}

39 end

40

41 def train_network(neurons, patters)

42 neurons.each_with_index do |neuron, i|

43 for j in ((i+1)...neurons.size) do

44 next if i==j

45 wij = 0.0

46 patters.each do |pattern|

47 vector = pattern.flatten

48 wij += vector[i]*vector[j]

49 end

50 neurons[i][:weights][j] = wij

51 neurons[j][:weights][i] = wij

52 end

53 end

54 end

55

56 def to_binary(vector)

57 return Array.new(vector.size){|i| ((vector[i]==-1) ? 0 : 1)}

58 end

59

60 def print_patterns(provided, expected, actual)

61 p, e, a = to_binary(provided), to_binary(expected), to_binary(actual)

62 p1, p2, p3 = p[0..2].join(', '), p[3..5].join(', '), p[6..8].join(', ')

63 e1, e2, e3 = e[0..2].join(', '), e[3..5].join(', '), e[6..8].join(', ')

64 a1, a2, a3 = a[0..2].join(', '), a[3..5].join(', '), a[6..8].join(', ')

65 puts "Provided Expected Got"

66 puts "#{p1} #{e1} #{a1}"

67 puts "#{p2} #{e2} #{a2}"

68 puts "#{p3} #{e3} #{a3}"

69 end

70

71 def calculate_error(expected, actual)

72 sum = 0

73 expected.each_with_index do |v, i|

74 sum += 1 if expected[i]!=actual[i]

75 end

76 return sum

77 end

78

79 def perturb_pattern(vector, num_errors=1)
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80 perturbed = Array.new(vector)

81 indicies = [rand(perturbed.size)]

82 while indicies.size < num_errors do

83 index = rand(perturbed.size)

84 indicies << index if !indicies.include?(index)

85 end

86 indicies.each {|i| perturbed[i] = ((perturbed[i]==1) ? -1 : 1)}

87 return perturbed

88 end

89

90 def test_network(neurons, patterns)

91 error = 0.0

92 patterns.each do |pattern|

93 vector = pattern.flatten

94 perturbed = perturb_pattern(vector)

95 output = get_output(neurons, perturbed)

96 error += calculate_error(vector, output)

97 print_patterns(perturbed, vector, output)

98 end

99 error = error / patterns.size.to_f

100 puts "Final Result: avg pattern error=#{error}"

101 return error

102 end

103

104 def execute(patters, num_inputs)

105 neurons = Array.new(num_inputs) { create_neuron(num_inputs) }

106 train_network(neurons, patters)

107 test_network(neurons, patters)

108 return neurons

109 end

110

111 if __FILE__ == $0

112 # problem configuration

113 num_inputs = 9

114 p1 = [[1,1,1],[-1,1,-1],[-1,1,-1]] # T

115 p2 = [[1,-1,1],[1,-1,1],[1,1,1]] # U

116 patters = [p1, p2]

117 # execute the algorithm

118 execute(patters, num_inputs)

119 end

Listing 8.3: Hopfield Network in Ruby

8.4.8 References

Primary Sources

The Hopfield Network was proposed by Hopfield in 1982 where the basic
model was described and related to an abstraction of the inspiring biological
system [2]. This early work was extended by Hopfield to ‘graded’ neurons
capable of outputting a continuous value through use of a logistic (sigmoid)
transfer function [3]. An innovative work by Hopfield and Tank considered
the use of the Hopfield network for solving combinatorial optimization
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problems, with a specific study into the system applied to instances of the
Traveling Salesman Problem [4]. This was achieved with a large number of
neurons and a representation that decoded the position of each city in the
tour as a sub-problem on which a customized network energy function had
to be minimized.

Learn More

Popovici and Boncut provide a summary of the Hopfield Network algorithm
with worked examples [5]. Overviews of the Hopfield Network are provided
in most good books on Artificial Neural Networks, such as [6]. Hertz,
Krogh, and Palmer present an in depth study of the field of Artificial Neural
Networks with a detailed treatment of the Hopfield network from a statistical
mechanics perspective [1].
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8.5 Learning Vector Quantization

Learning Vector Quantization, LVQ.

8.5.1 Taxonomy

The Learning Vector Quantization algorithm belongs to the field of Artificial
Neural Networks and Neural Computation. More broadly to the field of
Computational Intelligence. The Learning Vector Quantization algorithm
is an supervised neural network that uses a competitive (winner-take-all)
learning strategy. It is related to other supervised neural networks such as the
Perceptron (Section 8.2) and the Back-propagation algorithm (Section 8.3).
It is related to other competitive learning neural networks such as the the
Self-Organizing Map algorithm (Section 8.6) that is a similar algorithm
for unsupervised learning with the addition of connections between the
neurons. Additionally, LVQ is a baseline technique that was defined with a
few variants LVQ1, LVQ2, LVQ2.1, LVQ3, OLVQ1, and OLVQ3 as well as
many third-party extensions and refinements too numerous to list.

8.5.2 Inspiration

The Learning Vector Quantization algorithm is related to the Self-Organizing
Map which is in turn inspired by the self-organizing capabilities of neurons
in the visual cortex.

8.5.3 Strategy

The information processing objective of the algorithm is to prepare a set of
codebook (or prototype) vectors in the domain of the observed input data
samples and to use these vectors to classify unseen examples. An initially
random pool of vectors is prepared which are then exposed to training
samples. A winner-take-all strategy is employed where one or more of the
most similar vectors to a given input pattern are selected and adjusted to be
closer to the input vector, and in some cases, further away from the winner
for runners up. The repetition of this process results in the distribution
of codebook vectors in the input space which approximate the underlying
distribution of samples from the test dataset.

8.5.4 Procedure

Vector Quantization is a technique from signal processing where density
functions are approximated with prototype vectors for applications such as
compression. Learning Vector Quantization is similar in principle, although
the prototype vectors are learned through a supervised winner-take-all
method.
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Algorithm 8.6.1 provides a high-level pseudocode for preparing codebook
vectors using the Learning Vector Quantization method. Codebook vectors
are initialized to small floating point values, or sampled from an available
dataset. The Best Matching Unit (BMU) is the codebook vector from the
pool that has the minimum distance to an input vector. A distance measure
between input patterns must be defined. For real-valued vectors, this is
commonly the Euclidean distance:

dist(x, c) =
n
∑

i=1

(xi − ci)
2 (8.10)

where n is the number of attributes, x is the input vector and c is a
given codebook vector.

Algorithm 8.5.1: Pseudocode for LVQ1.

Input: ProblemSize, InputPatterns, iterationsmax,
CodebookV ectorsnum, learnrate

Output: CodebookVectors
CodebookVectors ←1

InitializeCodebookVectors(CodebookV ectorsnum, ProblemSize);
for i = 1 to iterationsmax do2

Patterni ← SelectInputPattern(InputPatterns);3

Bmui ← SelectBestMatchingUnit(Patterni,4

CodebookVectors);
foreach Bmuattribute

i ∈ Bmui do5

if Bmuclass
i ≡ Patternclass

i then6

Bmuattribute
i ← Bmuattribute

i + learnrate ×7

(Patternattribute
i − Bmuattribute

i )
else8

Bmuattribute
i ← Bmuattribute

i − learnrate ×9

(Patternattribute
i − Bmuattribute

i )
end10

end11

end12

return CodebookVectors;13

8.5.5 Heuristics

� Learning Vector Quantization was designed for classification problems
that have existing data sets that can be used to supervise the learning
by the system. The algorithm does not support regression problems.

� LVQ is non-parametric, meaning that it does not rely on assumptions
about that structure of the function that it is approximating.
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� Real-values in input vectors should be normalized such that x ∈ [0, 1).

� Euclidean distance is commonly used to measure the distance between
real-valued vectors, although other distance measures may be used
(such as dot product), and data specific distance measures may be
required for non-scalar attributes.

� There should be sufficient training iterations to expose all the training
data to the model multiple times.

� The learning rate is typically linearly decayed over the training period
from an initial value to close to zero.

� The more complex the class distribution, the more codebook vectors
that will be required, some problems may need thousands.

� Multiple passes of the LVQ training algorithm are suggested for more
robust usage, where the first pass has a large learning rate to prepare
the codebook vectors and the second pass has a low learning rate and
runs for a long time (perhaps 10-times more iterations).

8.5.6 Code Listing

Listing 8.4 provides an example of the Learning Vector Quantization algo-
rithm implemented in the Ruby Programming Language. The problem is a
contrived classification problem in a 2-dimensional domain x ∈ [0, 1], y ∈
[0, 1] with two classes: ‘A’ (x ∈ [0, 0.4999999], y ∈ [0, 0.4999999]) and ‘B’
(x ∈ [0.5, 1], y ∈ [0.5, 1]).

The algorithm was implemented using the LVQ1 variant where the best
matching codebook vector is located and moved toward the input vector if
it is the same class, or away if the classes differ. A linear decay was used for
the learning rate that was updated after each pattern was exposed to the
model. The implementation can easily be extended to the other variants of
the method.

1 def random_vector(minmax)

2 return Array.new(minmax.size) do |i|

3 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

4 end

5 end

6

7 def generate_random_pattern(domain)

8 classes = domain.keys

9 selected_class = rand(classes.size)

10 pattern = {:label=>classes[selected_class]}

11 pattern[:vector] = random_vector(domain[classes[selected_class]])

12 return pattern

13 end

14

15 def initialize_vectors(domain, num_vectors)
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16 classes = domain.keys

17 codebook_vectors = []

18 num_vectors.times do

19 selected_class = rand(classes.size)

20 codebook = {}

21 codebook[:label] = classes[selected_class]

22 codebook[:vector] = random_vector([[0,1],[0,1]])

23 codebook_vectors << codebook

24 end

25 return codebook_vectors

26 end

27

28 def euclidean_distance(c1, c2)

29 sum = 0.0

30 c1.each_index {|i| sum += (c1[i]-c2[i])**2.0}

31 return Math.sqrt(sum)

32 end

33

34 def get_best_matching_unit(codebook_vectors, pattern)

35 best, b_dist = nil, nil

36 codebook_vectors.each do |codebook|

37 dist = euclidean_distance(codebook[:vector], pattern[:vector])

38 best,b_dist = codebook,dist if b_dist.nil? or dist<b_dist

39 end

40 return best

41 end

42

43 def update_codebook_vector(bmu, pattern, lrate)

44 bmu[:vector].each_with_index do |v,i|

45 error = pattern[:vector][i]-bmu[:vector][i]

46 if bmu[:label] == pattern[:label]

47 bmu[:vector][i] += lrate * error

48 else

49 bmu[:vector][i] -= lrate * error

50 end

51 end

52 end

53

54 def train_network(codebook_vectors, domain, iterations, learning_rate)

55 iterations.times do |iter|

56 pat = generate_random_pattern(domain)

57 bmu = get_best_matching_unit(codebook_vectors, pat)

58 lrate = learning_rate * (1.0-(iter.to_f/iterations.to_f))

59 if iter.modulo(10)==0

60 puts "> iter=#{iter}, got=#{bmu[:label]}, exp=#{pat[:label]}"

61 end

62 update_codebook_vector(bmu, pat, lrate)

63 end

64 end

65

66 def test_network(codebook_vectors, domain, num_trials=100)

67 correct = 0

68 num_trials.times do

69 pattern = generate_random_pattern(domain)

70 bmu = get_best_matching_unit(codebook_vectors, pattern)

71 correct += 1 if bmu[:label] == pattern[:label]
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72 end

73 puts "Done. Score: #{correct}/#{num_trials}"

74 return correct

75 end

76

77 def execute(domain, iterations, num_vectors, learning_rate)

78 codebook_vectors = initialize_vectors(domain, num_vectors)

79 train_network(codebook_vectors, domain, iterations, learning_rate)

80 test_network(codebook_vectors, domain)

81 return codebook_vectors

82 end

83

84 if __FILE__ == $0

85 # problem configuration

86 domain = {"A"=>[[0,0.4999999],[0,0.4999999]],"B"=>[[0.5,1],[0.5,1]]}

87 # algorithm configuration

88 learning_rate = 0.3

89 iterations = 1000

90 num_vectors = 20

91 # execute the algorithm

92 execute(domain, iterations, num_vectors, learning_rate)

93 end

Listing 8.4: Learning Vector Quantization in Ruby

8.5.7 References

Primary Sources

The Learning Vector Quantization algorithm was described by Kohonen in
1988 [2], and was further described in the same year by Kohonen [1] and
benchmarked by Kohonen, Barna, and Chrisley [5].

Learn More

Kohonen provides a detailed overview of the state of LVQ algorithms and
variants (LVQ1, LVQ2, and LVQ2.1) [3]. The technical report that comes
with the LVQ PAK software (written by Kohonen and his students) provides
both an excellent summary of the technique and its main variants, as well as
summarizing the important considerations when applying the approach [6].
The seminal book on Learning Vector Quantization and the Self-Organizing
Map is “Self-Organizing Maps” by Kohonen, which includes a chapter
(Chapter 6) dedicated to LVQ and its variants [4].
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8.6 Self-Organizing Map

Self-Organizing Map, SOM, Self-Organizing Feature Map, SOFM, Kohonen
Map, Kohonen Network.

8.6.1 Taxonomy

The Self-Organizing Map algorithm belongs to the field of Artificial Neural
Networks and Neural Computation. More broadly it belongs to the field of
Computational Intelligence. The Self-Organizing Map is an unsupervised
neural network that uses a competitive (winner-take-all) learning strategy.
It is related to other unsupervised neural networks such as the Adaptive
Resonance Theory (ART) method. It is related to other competitive learning
neural networks such as the the Neural Gas Algorithm, and the Learning
Vector Quantization algorithm (Section 8.5), which is a similar algorithm for
classification without connections between the neurons. Additionally, SOM
is a baseline technique that has inspired many variations and extensions,
not limited to the Adaptive-Subspace Self-Organizing Map (ASSOM).

8.6.2 Inspiration

The Self-Organizing Map is inspired by postulated feature maps of neurons in
the brain comprised of feature-sensitive cells that provide ordered projections
between neuronal layers, such as those that may exist in the retina and
cochlea. For example, there are acoustic feature maps that respond to
sounds to which an animal is most frequently exposed, and tonotopic maps
that may be responsible for the order preservation of acoustic resonances.

8.6.3 Strategy

The information processing objective of the algorithm is to optimally place
a topology (grid or lattice) of codebook or prototype vectors in the domain
of the observed input data samples. An initially random pool of vectors is
prepared which are then exposed to training samples. A winner-take-all
strategy is employed where the most similar vector to a given input pattern
is selected, then the selected vector and neighbors of the selected vector
are updated to closer resemble the input pattern. The repetition of this
process results in the distribution of codebook vectors in the input space
which approximate the underlying distribution of samples from the test
dataset. The result is the mapping of the topology of codebook vectors to
the underlying structure in the input samples which may be summarized or
visualized to reveal topologically preserved features from the input space in
a low-dimensional projection.
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8.6.4 Procedure

The Self-Organizing map is comprised of a collection of codebook vectors
connected together in a topological arrangement, typically a one dimensional
line or a two dimensional grid. The codebook vectors themselves represent
prototypes (points) within the domain, whereas the topological structure
imposes an ordering between the vectors during the training process. The
result is a low dimensional projection or approximation of the problem
domain which may be visualized, or from which clusters may be extracted.

Algorithm 8.6.1 provides a high-level pseudocode for preparing codebook
vectors using the Self-Organizing Map method. Codebook vectors are
initialized to small floating point values, or sampled from the domain. The
Best Matching Unit (BMU) is the codebook vector from the pool that has
the minimum distance to an input vector. A distance measure between
input patterns must be defined. For real-valued vectors, this is commonly
the Euclidean distance:

dist(x, c) =
n
∑

i=1

(xi − ci)
2 (8.11)

where n is the number of attributes, x is the input vector and c is a
given codebook vector.

The neighbors of the BMU in the topological structure of the network
are selected using a neighborhood size that is linearly decreased during
the training of the network. The BMU and all selected neighbors are then
adjusted toward the input vector using a learning rate that too is decreased
linearly with the training cycles:

ci(t+ 1) = learnrate(t)× (ci(t)− xi) (8.12)

where ci(t) is the ith attribute of a codebook vector at time t, learnrate

is the current learning rate, an xi is the ith attribute of a input vector.
The neighborhood is typically square (called bubble) where all neigh-

borhood nodes are updated using the same learning rate for the iteration,
or Gaussian where the learning rate is proportional to the neighborhood
distance using a Gaussian distribution (neighbors further away from the
BMU are updated less).

8.6.5 Heuristics

� The Self-Organizing Map was designed for unsupervised learning
problems such as feature extraction, visualization and clustering. Some
extensions of the approach can label the prepared codebook vectors
which can be used for classification.

� SOM is non-parametric, meaning that it does not rely on assumptions
about that structure of the function that it is approximating.
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Algorithm 8.6.1: Pseudocode for the SOM.

Input: InputPatterns, iterationsmax, learn
init
rate, neighborhood

init
size,

Gridwidth, Gridheight
Output: CodebookVectors
CodebookVectors ← InitializeCodebookVectors(Gridwidth,1

Gridheight, InputPatterns);
for i = 1 to iterationsmax do2

learni
rate ← CalculateLearningRate(i, learninit

rate);3

neighborhoodisize ← CalculateNeighborhoodSize(i,4

neighborhoodinitsize);
Patterni ← SelectInputPattern(InputPatterns);5

Bmui ← SelectBestMatchingUnit(Patterni,6

CodebookVectors);
Neighborhood ← Bmui;7

Neighborhood ← SelectNeighbors(Bmui, CodebookVectors,8

neighborhoodisize);
foreach V ectori ∈Neighborhood do9

foreach V ectorattributei ∈ V ectori do10

V ectorattributei ← V ectorattributei + learni
rate ×11

(Patternattribute
i − V ectorattributei )

end12

end13

end14

return CodebookVectors;15

� Real-values in input vectors should be normalized such that x ∈ [0, 1).

� Euclidean distance is commonly used to measure the distance between
real-valued vectors, although other distance measures may be used
(such as dot product), and data specific distance measures may be
required for non-scalar attributes.

� There should be sufficient training iterations to expose all the training
data to the model multiple times.

� The more complex the class distribution, the more codebook vectors
that will be required, some problems may need thousands.

� Multiple passes of the SOM training algorithm are suggested for more
robust usage, where the first pass has a large learning rate to prepare
the codebook vectors and the second pass has a low learning rate and
runs for a long time (perhaps 10-times more iterations).

� The SOM can be visualized by calculating a Unified Distance Matrix
(U-Matrix) shows highlights the relationships between the nodes in
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the chosen topology. A Principle Component Analysis (PCA) or
Sammon’s Mapping can be used to visualize just the nodes of the
network without their inter-relationships.

� A rectangular 2D grid topology is typically used for a SOM, although
toroidal and sphere topologies can be used. Hexagonal grids have
demonstrated better results on some problems and grids with higher
dimensions have been investigated.

� The neuron positions can be updated incrementally or in a batch model
(each epoch of being exposed to all training samples). Batch-mode
training is generally expected to result in a more stable network.

� The learning rate and neighborhood size parameters typically decrease
linearly with the training iterations, although non-linear functions
may be used.

8.6.6 Code Listing

Listing 8.5 provides an example of the Self-Organizing Map algorithm
implemented in the Ruby Programming Language. The problem is a feature
detection problem, where the network is expected to learn a predefined
shape based on being exposed to samples in the domain. The domain is
two-dimensional x, y ∈ [0, 1], where a shape is pre-defined as a square in
the middle of the domain x, y ∈ [0.3, 0.6]. The system is initialized to
vectors within the domain although is only exposed to samples within the
pre-defined shape during training. The expectation is that the system will
model the shape based on the observed samples.

The algorithm is an implementation of the basic Self-Organizing Map
algorithm based on the description in Chapter 3 of the seminal book on
the technique [5]. The implementation is configured with a 4 × 5 grid
of nodes, the Euclidean distance measure is used to determine the BMU
and neighbors, a Bubble neighborhood function is used. Error rates are
presented to the console, and the codebook vectors themselves are described
before and after training. The learning process is incremental rather than
batch, for simplicity.

An extension to this implementation would be to visualize the resulting
network structure in the domain - shrinking from a mesh that covers the
whole domain, down to a mesh that only covers the pre-defined shape within
the domain.

1 def random_vector(minmax)

2 return Array.new(minmax.size) do |i|

3 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

4 end

5 end

6

7 def initialize_vectors(domain, width, height)
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8 codebook_vectors = []

9 width.times do |x|

10 height.times do |y|

11 codebook = {}

12 codebook[:vector] = random_vector(domain)

13 codebook[:coord] = [x,y]

14 codebook_vectors << codebook

15 end

16 end

17 return codebook_vectors

18 end

19

20 def euclidean_distance(c1, c2)

21 sum = 0.0

22 c1.each_index {|i| sum += (c1[i]-c2[i])**2.0}

23 return Math.sqrt(sum)

24 end

25

26 def get_best_matching_unit(codebook_vectors, pattern)

27 best, b_dist = nil, nil

28 codebook_vectors.each do |codebook|

29 dist = euclidean_distance(codebook[:vector], pattern)

30 best,b_dist = codebook,dist if b_dist.nil? or dist<b_dist

31 end

32 return [best, b_dist]

33 end

34

35 def get_vectors_in_neighborhood(bmu, codebook_vectors, neigh_size)

36 neighborhood = []

37 codebook_vectors.each do |other|

38 if euclidean_distance(bmu[:coord], other[:coord]) <= neigh_size

39 neighborhood << other

40 end

41 end

42 return neighborhood

43 end

44

45 def update_codebook_vector(codebook, pattern, lrate)

46 codebook[:vector].each_with_index do |v,i|

47 error = pattern[i]-codebook[:vector][i]

48 codebook[:vector][i] += lrate * error

49 end

50 end

51

52 def train_network(vectors, shape, iterations, l_rate, neighborhood_size)

53 iterations.times do |iter|

54 pattern = random_vector(shape)

55 lrate = l_rate * (1.0-(iter.to_f/iterations.to_f))

56 neigh_size = neighborhood_size * (1.0-(iter.to_f/iterations.to_f))

57 bmu,dist = get_best_matching_unit(vectors, pattern)

58 neighbors = get_vectors_in_neighborhood(bmu, vectors, neigh_size)

59 neighbors.each do |node|

60 update_codebook_vector(node, pattern, lrate)

61 end

62 puts ">training: neighbors=#{neighbors.size}, bmu_dist=#{dist}"

63 end



8.6. Self-Organizing Map 341

64 end

65

66 def summarize_vectors(vectors)

67 minmax = Array.new(vectors.first[:vector].size){[1,0]}

68 vectors.each do |c|

69 c[:vector].each_with_index do |v,i|

70 minmax[i][0] = v if v<minmax[i][0]

71 minmax[i][1] = v if v>minmax[i][1]

72 end

73 end

74 s = ""

75 minmax.each_with_index {|bounds,i| s << "#{i}=#{bounds.inspect} "}

76 puts "Vector details: #{s}"

77 return minmax

78 end

79

80 def test_network(codebook_vectors, shape, num_trials=100)

81 error = 0.0

82 num_trials.times do

83 pattern = random_vector(shape)

84 bmu,dist = get_best_matching_unit(codebook_vectors, pattern)

85 error += dist

86 end

87 error /= num_trials.to_f

88 puts "Finished, average error=#{error}"

89 return error

90 end

91

92 def execute(domain, shape, iterations, l_rate, neigh_size, width, height)

93 vectors = initialize_vectors(domain, width, height)

94 summarize_vectors(vectors)

95 train_network(vectors, shape, iterations, l_rate, neigh_size)

96 test_network(vectors, shape)

97 summarize_vectors(vectors)

98 return vectors

99 end

100

101 if __FILE__ == $0

102 # problem configuration

103 domain = [[0.0,1.0],[0.0,1.0]]

104 shape = [[0.3,0.6],[0.3,0.6]]

105 # algorithm configuration

106 iterations = 100

107 l_rate = 0.3

108 neigh_size = 5

109 width, height = 4, 5

110 # execute the algorithm

111 execute(domain, shape, iterations, l_rate, neigh_size, width, height)

112 end

Listing 8.5: Self-Organizing Map in Ruby
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8.6.7 References

Primary Sources

The Self-Organizing Map was proposed by Kohonen in 1982 in a study
that included the mathematical basis for the approach, summary of related
physiology, and simulation on demonstration problem domains using one
and two dimensional topological structures [3]. This work was tightly related
two other papers published at close to the same time on topological maps
and self-organization [1, 2].

Learn More

Kohonen provides a detailed introduction and summary of the Self-Organizing
Map in a journal article [4]. Kohonen et al. provide a practical presentation
of the algorithm and heuristics for configuration in the technical report
written to accompany the released SOM-PAK implementation of the al-
gorithm for academic research [6]. The seminal book on the technique is
“Self-Organizing Maps” by Kohonen, which includes chapters dedicated to
the description of the basic approach, physiological interpretations of the
algorithm, variations, and summaries of application areas [5].
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Chapter 9

Advanced Topics

This chapter discusses a number of advanced topics that may be considered
once one or more of the algorithms described in this book have been
mastered.

The topics in this section consider some practical concerns such as:

� How to implement an algorithm using a different programming paradigm
(Section 9.1).

� How to devise and investigate a new biologically-inspired algorithm
(Section 9.2).

� How to test algorithm implementations to ensure they are implemented
correctly (Section 9.3).

� How to visualize problems, algorithm behavior and candidate solutions
(Section 9.4).

� How to direct these algorithms toward practical problem solving
(Section 9.5).

� Issues to consider when benchmarking and comparing the capabilities
of algorithms (Section 9.6).

The objective of this chapter is to illustrate the concerns and skills
necessary for taking the algorithms described in this book into the real-
world.

345
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9.1 Programming Paradigms

This section discusses three standard programming paradigms that may be
used to implement the algorithms described throughput the book:

� Procedural Programming (Section 9.1.1)

� Object-Oriented Programming (Section 9.1.2)

� Flow Programming (Section 9.1.3)

Each paradigm is described and an example implementation is provided
using the Genetic Algorithm (described in Section 3.2) as a context.

9.1.1 Procedural Programming

This section considers the implementation of algorithms from the Clever
Algorithms project in the Procedural Programming Paradigm.

Description

The procedural programming paradigm (also called imperative program-
ming) is concerned with defining a linear procedure or sequence of pro-
gramming statements. A key feature of the paradigm is the partitioning
of functionality into small discrete re-usable modules called procedures
(subroutines or functions) that act like small programs themselves with their
own scope, inputs and outputs. A procedural code example is executed
from a single point of control or entry point which calls out into declared
procedures, which in turn may call other procedures.

Procedural programming was an early so-called ‘high-level programming
paradigm’ (compared to lower-level machine code) and is the most common
and well understood form of programming. Newer paradigms (such as
Object-Oriented programming) and modern businesses programming lan-
guages (such as C++, Java and C#) are built on the principles of procedural
programming.

All algorithms in this book were implemented using a procedural pro-
gramming paradigm in the Ruby Programming Language. A procedural
representation was chosen to provide the most transferrable instantiation
of the algorithm implementations. Many languages support the procedural
paradigm and procedural code examples are expected to be easily ported to
popular paradigms such as object-oriented and functional.

Example

Listing 3.1 in Section 3.2 provides an example of the Genetic Algorithm
implemented in the Ruby Programming Language using the procedural
programming paradigm.
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9.1.2 Object-Oriented Programming

This section considers the implementation of algorithms from the Clever
Algorithms project in the Object-Oriented Programming Paradigm.

Description

The Object-Oriented Programming (OOP) paradigm is concerned with
modeling problems in terms of entities called objects that have attributes
and behaviors (data and methods) and interact with other entities using
message passing (calling methods on other entities). An object developer
defines a class or template for the entity, which is instantiated or constructed
and then may be used in the program.

Objects can extend other objects, inheriting some or all of the attributes
and behaviors from the parent providing specific modular reuse. Objects can
be treated as a parent type (an object in its inheritance tree) allowing the
use or application of the objects in the program without the caller knowing
the specifics of the behavior or data inside the object. This general property
is called polymorphism, which exploits the encapsulation of attributes and
behavior within objects and their capability of being treated (viewed or
interacted with) as a parent type.

Organizing functionality into objects allows for additional constructs
such as abstract types where functionality is only partially defined and
must be completed by descendant objects, overriding where descending
objects re-define behavior defined in a parent object, and static classes and
behaviors where behavior is executed on the object template rather than
the object instance. For more information on Object-Oriented programming
and software design refer to a good textbook on the subject, such as Booch
[1] or Meyer [3].

There are common ways of solving discrete problems using object-
oriented programs called patterns. They are organizations of behavior
and data that have been abstracted and presented as a solution or idiom
for a class of problem. The Strategy Pattern is an object-oriented pattern
that is suited to implementing an algorithm. This pattern is intended to
encapsulate the behavior of an algorithm as a strategy object where differ-
ent strategies can be used interchangeably on a given context or problem
domain. This strategy can be useful in situations where the performance or
capability of a range of different techniques needs to be assessed on a given
problem (such as algorithm racing or bake-offs). Additionally, the problem
or context can also be modeled as an interchangeable object, allowing both
algorithms and problems to be used interchangeably. This method is used in
object-oriented algorithm frameworks. For more information on the strategy
pattern or object-oriented design patterns in general, refer to Gamma et al.
[2].
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Example

Listing 9.1 provides an example of the Genetic Algorithm implemented in
the Ruby Programming Language using the Object-Oriented Programming
Paradigm.

The implementation provides general problem and strategy classes that
define their behavioral expectations. A OneMax problem class and a Genetic-
Algorithm strategy class are specified. The algorithm makes few assump-
tions of the problem other than it can assess candidate solutions and
determine whether a given solution is optimal. The problem makes very
few assumptions about candidate solutions other than they are map data
structures that contain a binary string and fitness key-value pairs. The use
of the Strategy Pattern allows a new algorithm to easily be defined to work
with the existing problem, and that new problems could be defined for the
Genetic Algorithm to execute.

Note that Ruby does not support abstract classes, so this construct
is simulated by defining methods that raise an exception if they are not
overridden by descendant classes.

1 # A problem template

2 class Problem

3 def assess(candidate_solution)

4 raise "A problem has not been defined"

5 end

6

7 def is_optimal?(candidate_solution)

8 raise "A problem has not been defined"

9 end

10 end

11

12 # An strategy template

13 class Strategy

14 def execute(problem)

15 raise "A strategy has not been defined!"

16 end

17 end

18

19 # An implementation of the OneMax problem using the problem template

20 class OneMax < Problem

21

22 attr_reader :num_bits

23

24 def initialize(num_bits=64)

25 @num_bits = num_bits

26 end

27

28 def assess(candidate_solution)

29 if candidate_solution[:bitstring].length != @num_bits

30 raise "Expected #{@num_bits} in candidate solution."

31 end

32 sum = 0

33 candidate_solution[:bitstring].size.times do |i|

34 sum += 1 if candidate_solution[:bitstring][i].chr =='1'
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35 end

36 return sum

37 end

38

39 def is_optimal?(candidate_solution)

40 return candidate_solution[:fitness] == @num_bits

41 end

42 end

43

44 # An implementation of the Genetic algorithm using the strategy template

45 class GeneticAlgorithm < Strategy

46

47 attr_reader :max_generations, :population_size, :p_crossover, :p_mutation

48

49 def initialize(max_gens=100, pop_size=100, crossover=0.98,

mutation=1.0/64.0)

50 @max_generations = max_gens

51 @population_size = pop_size

52 @p_crossover = crossover

53 @p_mutation = mutation

54 end

55

56 def random_bitstring(num_bits)

57 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

58 end

59

60 def binary_tournament(pop)

61 i, j = rand(pop.size), rand(pop.size)

62 j = rand(pop.size) while j==i

63 return (pop[i][:fitness] > pop[j][:fitness]) ? pop[i] : pop[j]

64 end

65

66 def point_mutation(bitstring)

67 child = ""

68 bitstring.size.times do |i|

69 bit = bitstring[i].chr

70 child << ((rand()<@p_mutation) ? ((bit=='1') ? "0" : "1") : bit)

71 end

72 return child

73 end

74

75 def uniform_crossover(parent1, parent2)

76 return ""+parent1 if rand()>=@p_crossover

77 child = ""

78 parent1.length.times do |i|

79 child << ((rand()<0.5) ? parent1[i].chr : parent2[i].chr)

80 end

81 return child

82 end

83

84 def reproduce(selected)

85 children = []

86 selected.each_with_index do |p1, i|

87 p2 = (i.modulo(2)==0) ? selected[i+1] : selected[i-1]

88 p2 = selected[0] if i == selected.size-1

89 child = {}
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90 child[:bitstring] = uniform_crossover(p1[:bitstring], p2[:bitstring])

91 child[:bitstring] = point_mutation(child[:bitstring])

92 children << child

93 break if children.size >= @population_size

94 end

95 return children

96 end

97

98 def execute(problem)

99 population = Array.new(@population_size) do |i|

100 {:bitstring=>random_bitstring(problem.num_bits)}

101 end

102 population.each{|c| c[:fitness] = problem.assess(c)}

103 best = population.sort{|x,y| y[:fitness] <=> x[:fitness]}.first

104 @max_generations.times do |gen|

105 selected = Array.new(population_size){|i|

binary_tournament(population)}

106 children = reproduce(selected)

107 children.each{|c| c[:fitness] = problem.assess(c)}

108 children.sort!{|x,y| y[:fitness] <=> x[:fitness]}

109 best = children.first if children.first[:fitness] >= best[:fitness]

110 population = children

111 puts " > gen #{gen}, best: #{best[:fitness]}, #{best[:bitstring]}"

112 break if problem.is_optimal?(best)

113 end

114 return best

115 end

116 end

117

118 if __FILE__ == $0

119 # problem configuration

120 problem = OneMax.new

121 # algorithm configuration

122 strategy = GeneticAlgorithm.new

123 # execute the algorithm

124 best = strategy.execute(problem)

125 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:bitstring]}"

126 end

Listing 9.1: Genetic Algorithm in Ruby using OOP

9.1.3 Flow Programming

This section considers the implementation of algorithms from the Clever
Algorithms project in the Flow Programming paradigm.

Description

Flow, data-flow, or pipeline programming involves chaining a sequence of
smaller processes together and allowing a flow of information through the
sequence in order to perform the desired computation. Units in the flow are
considered black-boxes that communicate with each other using message
passing. The information that is passed between the units is considered a
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stream and a given application may have one or more streams of potentially
varying direction. Discrete information in a stream is partitioned into
information packets which are passed from unit-to-unit via message buffers,
queues or similar data structures.

A flow organization allows computing units to be interchanged readily.
It also allows for variations of the pipeline to be considered with minor
reconfiguration. A flow or pipelining structure is commonly used by software
frameworks for the organization within a given algorithm implementation,
allowing the specification of operators that manipulate candidate solutions
to be varied and interchanged.

For more information on Flow Programming see a good textbook on the
subject, such as Morrison [4].

Example

Listing 9.2 provides an example of the Genetic Algorithm implemented in
the Ruby Programming Language using the Flow Programming paradigm.
Each unit is implemented as an object that executes its logic within a
standalone thread that reads input from the input queue and writes data
to its output queue. The implementation shows four flow units organized
into a cyclic graph where the output queue of one unit is used as the input
of the next unit in the cycle (EvalFlowUnit to StopConditionUnit to
SelectFlowUnit to VariationFlowUnit).

Candidate solutions are the unit of data that is passed around in the flow
between units. When the system is started it does not have any information
to process until a set of random solutions are injected into the evaluation
unit’s input queue. The solution are evaluated and sent to the stop condition
unit where the constraints of the algorithm execution are tested (optima
found or maximum number of evaluations) and the candidates are passed on
to the selection flow unit. The selection unit collects a predefined number
of candidate solutions then passes the better solutions onto the variation
unit. The variation unit performs crossover and mutation on each pair of
candidate solutions and sends the results to the evaluation unit, completing
the cycle.

1 require 'thread'

2

3 # Generic flow unit

4 class FlowUnit

5 attr_reader :queue_in, :queue_out, :thread

6

7 def initialize(q_in=Queue.new, q_out=Queue.new)

8 @queue_in, @queue_out = q_in, q_out

9 start()

10 end

11

12 def execute

13 raise "FlowUnit not defined!"
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14 end

15

16 def start

17 puts "Starting flow unit: #{self.class.name}!"

18 @thread = Thread.new do

19 execute() while true

20 end

21 end

22 end

23

24 # Evaluation of solutions flow unit

25 class EvalFlowUnit < FlowUnit

26 def onemax(bitstring)

27 sum = 0

28 bitstring.size.times {|i| sum+=1 if bitstring[i].chr=='1'}

29 return sum

30 end

31

32 def execute

33 data = @queue_in.pop

34 data[:fitness] = onemax(data[:bitstring])

35 @queue_out.push(data)

36 end

37 end

38

39 # Stop condition flow unit

40 class StopConditionUnit < FlowUnit

41 attr_reader :best, :num_bits, :max_evaluations, :evals

42

43 def initialize(q_in=Queue.new, q_out=Queue.new, max_evaluations=10000,

num_bits=64)

44 @best, @evals = nil, 0

45 @num_bits = num_bits

46 @max_evaluations = max_evaluations

47 super(q_in, q_out)

48 end

49

50 def execute

51 data = @queue_in.pop

52 if @best.nil? or data[:fitness] > @best[:fitness]

53 @best = data

54 puts " >new best: #{@best[:fitness]}, #{@best[:bitstring]}"

55 end

56 @evals += 1

57 if @best[:fitness]==@num_bits or @evals>=@max_evaluations

58 puts "done! Solution: f=#{@best[:fitness]}, s=#{@best[:bitstring]}"

59 @thread.exit()

60 end

61 @queue_out.push(data)

62 end

63 end

64

65 # Fitness-based selection flow unit

66 class SelectFlowUnit < FlowUnit

67 def initialize(q_in=Queue.new, q_out=Queue.new, pop_size=100)

68 @pop_size = pop_size
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69 super(q_in, q_out)

70 end

71

72 def binary_tournament(pop)

73 i, j = rand(pop.size), rand(pop.size)

74 j = rand(pop.size) while j==i

75 return (pop[i][:fitness] > pop[j][:fitness]) ? pop[i] : pop[j]

76 end

77

78 def execute

79 population = Array.new

80 population << @queue_in.pop while population.size < @pop_size

81 @pop_size.times do |i|

82 @queue_out.push(binary_tournament(population))

83 end

84 end

85 end

86

87 # Variation flow unit

88 class VariationFlowUnit < FlowUnit

89 def initialize(q_in=Queue.new, q_out=Queue.new, crossover=0.98,

mutation=1.0/64.0)

90 @p_crossover = crossover

91 @p_mutation = mutation

92 super(q_in, q_out)

93 end

94

95 def uniform_crossover(parent1, parent2)

96 return ""+parent1 if rand()>=@p_crossover

97 child = ""

98 parent1.length.times do |i|

99 child << ((rand()<0.5) ? parent1[i].chr : parent2[i].chr)

100 end

101 return child

102 end

103

104 def point_mutation(bitstring)

105 child = ""

106 bitstring.size.times do |i|

107 bit = bitstring[i].chr

108 child << ((rand()<@p_mutation) ? ((bit=='1') ? "0" : "1") : bit)

109 end

110 return child

111 end

112

113 def reproduce(p1, p2)

114 child = {}

115 child[:bitstring] = uniform_crossover(p1[:bitstring], p2[:bitstring])

116 child[:bitstring] = point_mutation(child[:bitstring])

117 return child

118 end

119

120 def execute

121 parent1 = @queue_in.pop

122 parent2 = @queue_in.pop

123 @queue_out.push(reproduce(parent1, parent2))
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124 @queue_out.push(reproduce(parent2, parent1))

125 end

126 end

127

128 def random_bitstring(num_bits)

129 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

130 end

131

132 def search(population_size=100, num_bits=64)

133 # create the pipeline

134 eval = EvalFlowUnit.new

135 stopcondition = StopConditionUnit.new(eval.queue_out)

136 selection = SelectFlowUnit.new(stopcondition.queue_out)

137 variation = VariationFlowUnit.new(selection.queue_out, eval.queue_in)

138 # push random solutions into the pipeline

139 population_size.times do

140 solution = {:bitstring=>random_bitstring(num_bits)}

141 eval.queue_in.push(solution)

142 end

143 stopcondition.thread.join

144 return stopcondition.best

145 end

146

147 if __FILE__ == $0

148 best = search()

149 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:bitstring]}"

150 end

Listing 9.2: Genetic Algorithm in Ruby using the Flow Programming

9.1.4 Other Paradigms

A number of popular and common programming paradigms have been
considered in this section, although many more have not been described.

Many programming paradigms are not appropriate for implementing
algorithms as-is, but may be useful with the algorithm as a component in a
broader system, such as Agent-Oriented Programming where the algorithm
may be a procedure available to the agent. Meta-programming a case where
the capabilities of the paradigm may be used for parts of an algorithm
implementation, such as the manipulation of candidate programs in Genetic
Programming (Section 3.3). Aspect-Oriented Programming could be layered
over an object oriented algorithm implementation and used to separate the
concerns of termination conditions and best solution logging.

Other programming paradigms provide variations on what has already
been described, such as Functional Programming which would be similar to
the procedural example, and Event-Driven Programming that would not
be too dissimilar in principle to the Flow-Based Programming. Another
example is the popular idiom of Map-Reduce which is an application of
functional programming principles organized into a data flow model.
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Finally, there are programming paradigms that are not relevant or
feasible to consider implementing algorithms, such as Logic Programming.
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9.2 Devising New Algorithms

This section provides a discussion of some of the approaches that may be
used to devise new algorithms and systems inspired by biological systems for
addressing mathematical and engineering problems. This discussion covers:

� An introduction to adaptive systems and complex adaptive systems as
an approach for studying natural phenomenon and deducing adaptive
strategies that may be the basis for algorithms (Section 9.2.1).

� An introduction to some frameworks and methodologies for reducing
natural systems into abstract information processing procedures and
ultimately algorithms (Section 9.2.2).

� A summary of a methodology that may be used to investigate a devised
adaptive system that considers the trade-off in model fidelity and
descriptive power proposed by Goldberg, a pioneer in the Evolutionary
Computation field (Section 9.2.3).

9.2.1 Adaptive Systems

Many algorithms, such as the Genetic Algorithm have come from the study
and models of complex and adaptive systems. Adaptive systems research
provides a methodology by which these systems can be systematically
investigated resulting in adaptive plans or strategies that can provide the
basis for new and interesting algorithms.

Holland proposed a formalism in his seminal work on adaptive systems
that provides a general manner in which to define an adaptive system [7].
Phrasing systems in this way provides a framework under which adaptive
systems may be evaluated and compared relative to each other, the diffi-
culties and obstacles of investigating specific adaptive systems are exposed,
and the abstracted principles of different system types may be distilled.
This section provides a summary of the Holland’s seminal adaptive systems
formalism and considers clonal selection as an example of an adaptive plan.

Adaptive Systems Formalism

This section presents a brief review of Holland’s adaptive systems formalism
described in [7] (Chapter 2). This presentation focuses particularly on
the terms and their description, and has been hybridized with the concise
presentation of the formalism by De Jong [9] (page 6). The formalism is
divided into sections: 1) Primary Objects summarized in Table 9.1, and
2) Secondary Objects summarized in Table 9.2. Primary Objects are the
conventional objects of an adaptive system: the environment e, the strategy
or adaptive plan that creates solutions in the environment s, and the utility
assigned to created solutions U .
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Term Object Description

e Environment The environment of the system undergoing adapta-
tion.

s Strategy The adaptive plan which determines successive struc-
tural modifications in response to the environment.

U Utility A measure of performance or payoff of different struc-
tures in the environment. Maps a given solution (A)
to a real number evaluation.

Table 9.1: Primary Objects in the adaptive systems formalism.

Secondary Objects extend beyond the primary objects providing the
detail of the formalism. These objects suggest a broader context than
that of the instance specific primary objects, permitting the evaluation and
comparison of sets of objects such as plans (S), environments (E), search
spaces (A), and operators (O).

A given adaptive plan acts in discrete time t, which is a useful simpli-
fication for analysis and computer simulation. A framework for a given
adaptive system requires the definition of a set of strategies S, a set of
environments E, and criterion for ranking strategies X. A given adaptive
plan is specified within this framework given the following set of objects: a
search space A, a set of operators O, and feedback from the environment I.
Holland proposed a series of fundamental questions when considering the
definition for an adaptive system, which he rephrases within the context of
the formalism (see Table 9.3).

Some Examples

Holland provides a series of illustrations rephrasing common adaptive sys-
tems in the context of the formalism [7] (pages 35-36). Examples include:
genetics, economics, game playing, pattern recognition, control, function
optimization, and the central nervous system. The formalism is applied to
investigate his schemata theorem, reproductive plans, and genetic plans.
These foundational models became the field of Evolutionary Computation
(Chapter 3).

From working within the formalism, Holland makes six observations
regarding obstacles that may be encountered whilst investigating adaptive
systems [7] (pages 159-160):

� High cardinality of A: makes searches long and storage of relevant
data difficult.

� Appropriateness of credit : knowledge of the properties about ‘success-
ful’ structures is incomplete, making it hard to predict good future
structures from past structures.
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Term Object Description

A Search Space The set of attainable structures, solutions, and the
domain of action for an adaptive plan.

E Environments The range of different environments, where e is an
instance. It may also represent the unknowns of the
strategy about the environment.

O Operators Set of operators applied to an instance of A at time
t (At) to transform it into At+1.

S Strategies Set of plans applicable for a given environment
(where s is an instance), that use operators from
the set O.

X Criterion Used to compare strategies (in the set S), under
the set of environments (E). Takes into account the
efficiency of a plan in different environments.

I Feedback Set of possible environmental inputs and signals pro-
viding dynamic information to the system about the
performance of a particular solution A in a particular
environment E.

M Memory The memory or retained parts of the input history
(I) for a solution (A).

Table 9.2: Secondary Objects in the adaptive systems formalism.

� High dimensionality of U on an e: performance is a function of a
large number of variables which is difficult for classical optimization
methods.

� Non-linearity of U on an e: many false optima or false peaks, resulting
in the potential for a lot of wasted computation.

� Mutual interference of search and exploitation: the exploration (ac-
quisition of new information), exploitation (application of known
information) trade-off.

� Relevant non-payoff information: the environment may provide a lot
more information in addition to payoff, some of which may be relevant
to improved performance.

Cavicchio provides perhaps one of the first applications of the formalism
(after Holland) in his dissertation investigating Holland’s reproductive plans
[10] (and to a lesser extent in [11]). The work summarizes the formalism,
presenting essentially the same framework, although he provides a special-
ization of the search space A. The search space is broken down into a
representation (codes), solutions (devices), and a mapping function from
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Question Formal

To what parts of its environment is the organism (system,
organization) adapting?

What is E?

How does the environment act upon the adapting organism
(system, organization)?

What is I?

What structures are undergoing adaptation? What is A?

What are the mechanisms of adaptation? What is O?

What part of the history of its interaction with the environment
does the organism (system, organization) retain in addition to
that summarized in the structure tested?

What is M?

What limits are there to the adaptive process? What is S?

How are different (hypotheses about) adaptive processes to be
compared?

What is X?

Table 9.3: Questions when investigating adaptive systems, taken from [7]
(pg. 29).

representation to solutions. The variation highlights the restriction the
representation and mapping have on the designs available to the adaptive
plan. Further, such mappings may not be one-to-one, there may be many
instances in the representation space that map to the same solution (or the
reverse).

Although not explicitly defined, Holland’s specification of structures A is
clear in pointing out that the structures are not bound to a level of abstrac-
tion; the definition covers structures at all levels. Nevertheless, Cavicchio’s
specialization for a representation-solution mapping was demonstrated to be
useful in his exploration of reproductive plans (early Genetic Algorithms).
He proposed that an adaptive system is first order if the utility function U
for structures on an environment encompasses feedback I.

Cavicchio described the potential independence (component-wise) and
linearity of the utility function with respect to the representation used.
De Jong also employed the formalism to investigate reproductive plans in
his dissertation research [9]. He indicated that the formalism covers the
essential characteristics of adaptation, where the performance of a solution
is a function of its characteristics and its environment. Adaptation is defined
as a strategy for generating better-performing solutions to a problem by
reducing initial uncertainty about the environment via feedback from the
evaluation of individual solutions. De Jong used the formalism to define a
series of genetic reproductive plans, which he investigated in the context of
function optimization.
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Complex Adaptive Systems

Adaptive strategies are typically complex because they result in irreducible
emergent behaviors that occur as a result of the non-linear interactions of
system components. The study of Complex Adaptive Systems (CAS) is
the study of high-level abstractions of natural and artificial systems that
are generally impervious to traditional analysis techniques. Macroscopic
patterns emerge from the dynamic and non-linear interactions of the sys-
tem’s low-level (microscopic) adaptive agents. The emergent patterns are
more than the sum of their parts. As such, traditional reductionist method-
ologies fail to describe how the macroscopic patterns emerge. Holistic and
totalistic investigatory approaches are applied that relate the simple rules
and interactions of the simple adaptive agents to their emergent effects in a
‘bottom-up’ manner.

Some relevant examples of CAS include: the development of embryos,
ecologies, genetic evolution, thinking and learning in the brain, weather
systems, social systems, insect swarms, bacteria becoming resistant to an
antibiotic, and the function of the adaptive immune system.

The field of CAS was founded at the Santa Fe Institute (SFI), in the
late 1980s by a group of physicists, economists, and others interested in
the study of complex systems in which the agents of those systems change
[1]. One of the most significant contributors to the inception of the field
from the perspective of adaptation was Holland. He was interested in the
question of how computers could be programmed so that problem-solving
capabilities are built up by specifying: “what is to be done” (inductive
information processing) rather than “how to do it” (deductive information
processing). In the 1992 reprint of his book he provided a summary of CAS
with a computational example called ECHO [7]. His work on CAS was
expanded in a later book which provided an in depth study of the topic [8].

There is no clear definition of a Complex Adaptive System, rather sets
of parsimonious principles and properties, many different researches in the
field defining their own nomenclature. Popular definitions beyond Holland’s
work include that of Gell-Mann [4] and Arthur [2].

9.2.2 Biologically Inspired Algorithms

Explicit methodologies have been devised and used for investigating natural
systems with the intent of devising new computational intelligence tech-
niques. This section introduces two such methodologies taken from the field
of Artificial Immune Systems (Chapter 7).

Conceptual Framework

Although the progression from an inspiring biological system to an inspired
computation system may appear to be an intuitive process, it can involve
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problems of standardization of nomenclature, effective abstraction and
departure from biology, and rigor. Stepney, et al. caution that by following
a process that lacks the detail of modeling, one may fall into the trap of
reasoning by metaphor [12–14].

Besides the lack of rigor, the trap suggests that such reasoning and lack
of objective analysis limits and biases the suitability and applicability of
resultant algorithms. They propose that many algorithms in the field of
Artificial Immune Systems (and beyond) have succumbed to this trap. This
observation resulted in the development and application of a conceptual
framework to provide a general process that may be applied in the field
of Biological Inspired Computation toward realizing Biological Inspired
Computational Intelligence systems.

The conceptual framework is comprised of the following actors and steps:

1. Biological System: The driving motivation for the work that possesses
some innate information processing qualities.

2. Probes : Observations and experiments that provide a partial or noisy
perspective of the biological system.

3. Models: From probes, abstract and simplified models of the informa-
tion processing qualities of the system are built and validated.

4. Framework : Built and validated analytical computational frameworks.
Validation may use mathematical analysis, benchmark problems, and
engineering demonstration.

5. Algorithms : The framework provides the principles for designing and
analyzing algorithms that may be general and applicable to domains
unrelated to the biological motivation.

Immunology as Information Processing

Forrest and Hofmeyr summarized their AIS research efforts at the University
of New Mexico and the Santa Fe Institute as “immunology as information
processing” [3]. They define information as spatio-temporal patterns that
can be abstracted and described independent of the biological system and
information processing as computation with these patterns. They proposed
that such patterns are encoded in the proteins and other molecules of the
immune system, and that they govern the behavior of the biological system.
They suggest that their information processing perspective can be con-
trasted with the conventional structural perspective of cellular interactions
as mechanical devices. They consider a simple four-step procedure for the
investigation of immunology as information processing, transitioning from
the biological system to a usable computational tool:

1. Identify a specific mechanism that appears to be interesting computa-
tionally.
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2. Write a computer program that implements or models the mechanism.

3. Study its properties through simulation and mathematical analysis.

4. Demonstrate capabilities either by applying the model to a biological
question of interest or by showing how it can be used profitably in a
computer science setting.

The procedure is similar to the outlined in the conceptual framework for
Biologically Inspired Algorithms in that in addition to identifying biological
mechanisms (input) and demonstrating a resultant algorithms (output),
the procedure 1) highlights the need for abstraction involving modeling the
identified mechanism, and 2) highlights the need to analyze the models
and abstractions. The procedure of Forrest and Hofmeyr can be used to
specialize the conceptual framework of Stepney et al. by clearly specifying
the immunological information processing focus.

9.2.3 Modeling a New Strategy

Once an abstract information processing system is devised it must be investi-
gated in a systematic manner. There are a range of modeling techniques for
such a system from weak and rapid to realize to strong and slow to realize.
This section considers the trade-off’s in modeling an adaptive technique.

Engineers and Mathematicians

Goldberg describes the airplane and other products of engineering as ma-
terial machines, and distinguishes them from the engineering of genetic
algorithms and other adaptive systems as conceptual machines. He argues
the methodological distinction between the two is counter-productive and
harmful from the perspective of conceptual machines, specifically that the
methodology of the material is equally applicable to that of the conceptual
[5].

The obsession of mathematical rigor in computer science, although
extremely valuable, is not effective in the investigation of adaptive systems
given their complexity. Goldberg sites the airplane as an example where
the engineering invention is used and trusted without a formal proof that
the invention works (that an airplane can fly).1

This defense leads to what Goldberg refers to the economy of design,
which is demonstrated with a trade-off that distinguishes ‘model description’
(mathematician-scientists) that is concerned with model fidelity, and model
prescription (engineer-inventor) that is concerned with a working product.
In descriptive modeling the model is the thing whereas in ‘prescriptive
modeling’, the object is the thing. In the latter, the model (and thus its

1Goldberg is quick to point out that sets of equations do exist for various aspects of
flight, although no integrated mathematical proof for airplane flight exists.
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utility) serves the object, in the former model accuracy may be of primary
concern. This economy of modeling provides a perspective that distinguishes
the needs of the prescriptive and descriptive fields of investigation.

The mathematician-scientist is interested in increasing model accuracy at
the expense of speed (slow), whereas the engineer may require a marginally
predictive (less accurate) model relatively quickly. This trade-off between
high-cost high-accuracy models and low-cost low-fidelity models is what
may be referred to as the modeling spectrum that assists in selecting an
appropriate level of modeling. Goldberg proposes that the field of Genetic
Algorithms expend too much effort at either ends of this spectrum. There
is much work where there is an obsession with blind-prototyping many
different tweaks in the hope of striking it lucky with the right mechanism,
operator, or parameter. Alternatively, there is also an obsession with
detailed mathematical models such as differential equations and Markov
chains. The middle ground of the spectrum, what Goldberg refers to as little
models is a valuable economic modeling consideration for the investigation
of conceptual machines to “do good science through good engineering”.

Methodology

The methodology has been referred to as post-modern systems engineering
and is referred to by Goldberg as a methodology of innovation [6]. The core
principles of the process are as follows:

1. Decomposition: Decompose the large problem approximately and
intuitively, breaking into quasi-separate sub-problems (as separate as
possible).

2. Modeling : Investigate each sub-problem separately (or as separate as
possible) using empirical testing coupled with adequately predictive,
low-cost models.

3. Integration: Assemble the sub-solutions and test the overall invention,
paying attention to unforeseen interactions between the sub-problems.

Decomposition Problem decomposition and decomposition design is an
axiom of reductionism and is at the very heart of problem solving in com-
puter science. In the context of adaptive systems, one may consider the base
or medium on which the system is performing its computation mechanisms
the so-called building blocks of information processing. A structural decom-
position may involve the architecture and data structures of the system.
Additionally, one may also consider a functional breakdown of mechanisms
such as the operators applied at each discrete step of an algorithmic process.
The reductions achieved provide the basis of investigation and modeling.
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Small Models Given the principle of the economy of modeling presented
as a spectrum, one may extend the description of each of the five presented
model types. Small Models refers to the middle of the spectrum, specifically
to the application of dimensional and facet-wise models. These are mid-
range quantitative models that make accurate prediction over a limited
range of states at moderate cost. Once derived, this class of models generally
require a small amount of formal manipulation and large amounts of data
for calibration and verification. The following summarizes the modeling
spectrum:

� Unarticulated Wisdom: (low-cost, high-error) Intuition, what is used
when there is nothing else.

� Articulated Qualitative Models : Descriptions of mechanisms, graphical
representations of processes and/or relationships, empirical observation
or statistical data collection and analysis.

� Dimensional Models: Investigate dimensionless parameters of the
system.

� Facet-wise Models: Investigation of a decomposition element of a
model in relative isolation.

� Equations of Motion: (high-cost, low-error) Differential equations and
Markov chains.

Facet-wise models are an exercise in simple mathematics that may
be used to investigate a decomposition element of a model in relative
isolation. They are based on the idea of bracketing high-order phenomena
by simplifying or making assumptions about the state of the system. An
example used by Goldberg from fluid mechanics is a series of equations
that simplify the model by assuming that a fluid or gas has no viscosity,
which matches no known substance. A common criticism of this modeling
approach is “system X doesn’t work like that, the model is unrealistic.” The
source of such concerns with adaptive systems is that their interactions are
typically high-dimensional and non-linear. Goldberg’s response is that for a
given poorly understood area of research, any ‘useful’ model is better than
no model. Dimensional analysis or the so-called dimensional reasoning and
scaling laws are another common conceptual tool in engineering and the
sciences. Such models may be used to investigate dimensionless parameters
of the system, which may be considered the formalization of the systemic
behaviors.

Integration Integration is a unification process of combining the findings
of various models together to form a patch-quilt coherent theory of the
system. Integration is not limited to holistic unification, and one may
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address specific hypothesis regarding the system resulting in conclusions
about existing systems and design decisions pertaining to the next generation
of systems.

Application In addition to elucidating the methodology, Goldberg speci-
fies a series of five useful heuristics for the application of the methodology
(taken from [5], page 8):

1. Keep the goal of a working conceptual machine in mind. Experimenters
commonly get side tracked by experimental design and statistical
verification; theoreticians get side tracked with notions of mathematical
rigor and model fidelity.

2. Decompose the design ruthlessly. One cannot address the analytical
analysis of a system like a Genetic Algorithm in one big ‘gulp’.

3. Use facet-wise models with almost reckless abandon. One should build
easy models that can be solved by bracketing everything that gets in
the way.

4. Integrate facet-wise models using dimensional arguments. One can
combine many small models together in a patch-quilt manner and
defend the results of such models using dimensional analysis.

5. Build high-order models when small models become inadequate. Add
complexity to models as complexity is needed (economy of modeling).
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9.3 Testing Algorithms

This section provides an introduction to software testing and the testing of
Artificial Intelligence algorithms. Section 9.3.1 introduces software testing
and focuses on a type of testing relevant to algorithms called unit testing.
Section 9.3.2 provides a specific example of an algorithm and a prepared
suite of unit tests, and Section 9.3.3 provides some rules-of-thumb for testing
algorithms in general.

9.3.1 Software Testing

Software testing in the field of Software Engineering is a process in the
life-cycle of a software project that verifies that the product or service meets
quality expectations and validates that software meets the requirements
specification. Software testing is intended to locate defects in a program,
although a given testing method cannot guarantee to locate all defects. As
such, it is common for an application to be subjected to a range of testing
methodologies throughout the software life-cycle, such as unit testing during
development, integration testing once modules and systems are completed,
and user acceptance testing to allow the stakeholders to determine if their
needs have been met.

Unit testing is a type of software testing that involves the preparation
of well-defined procedural tests of discrete functionality of a program that
provide confidence that a module or function behaves as intended. Unit
tests are referred to as ‘white-box’ tests (contrasted to ‘black-box’ tests)
because they are written with full knowledge of the internal structure of
the functions and modules under tests. Unit tests are typically prepared by
the developer that wrote the code under test and are commonly automated,
themselves written as small programmers that are executed by a unit testing
framework (such as JUnit for Java or the Test framework in Ruby). The
objective is not to test each path of execution within a unit (called complete-
test or complete-code coverage), but instead to focus tests on areas of risk,
uncertainty, or criticality. Each test focuses on one aspect of the code (test
one thing) and are commonly organized into test suites of commonality.

Some of the benefits of unit testing include:

� Documentation: The preparation of a suite of tests for a given sys-
tem provide a type of programming documentation highlighting the
expected behavior of functions and modules and providing examples
of how to interact with key components.

� Readability : Unit testing encourages a programming style of small
modules, clear input and output and fewer inter-component depen-
dencies. Code written for easy of testing (testability) may be easier
to read and follow.
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� Regression: Together, the suite of tests can be executed as a regression-
test of the system. The automation of the tests means that any defects
caused by changes to the code can easily be identified. When a defect
is found that slipped through, a new test can be written to ensure it
will be identified in the future.

Unit tests were traditionally written after the program was completed.
A popular alternative is to prepare the tests before the functionality of
the application is prepared, called Test-First or Test-Driven Development
(TDD). In this method, the tests are written and executed, failing until
the application functionality is written to make the test pass. The early
preparation of tests allow the programmer to consider the behavior required
from the program and the interfaces and functions the program needs to
expose before they are written.

The concerns of software testing are very relevant to the development,
investigation, and application of Metaheuristic and Computational Intelli-
gence algorithms. In particular, the strong culture of empirical investigation
and prototype-based development demands a baseline level of trust in the
systems that are presented in articles and papers. Trust can be instilled in
an algorithm by assessing the quality of the algorithm implementation itself.
Unit testing is lightweight (requiring only the writing of automated test
code) and meets the needs of promoting quality and trust in the code while
prototyping and developing algorithms. It is strongly suggested as a step in
the process of empirical algorithm research in the fields of Metaheuristics,
Computational Intelligence, and Biologically Inspired Computation.

9.3.2 Unit Testing Example

This section provides an example of an algorithm and its associated unit
tests as an illustration of the presented concepts. The implementation of
the Genetic Algorithm is discussed from the perspective of algorithm testing
and an example set of unit tests for the Genetic Algorithm implementation
are presented as a case study.

Algorithm

Listing 3.1 in Section 3.2 provides the source code for the Genetic Algorithm
in the Ruby Programming Language. Important considerations when in us-
ing the Ruby test framework, is ensuring that the functions of the algorithm
are exposed for testing and that the algorithm demonstration itself does
not execute. This is achieved through the use of the (if FILE == $0)
condition, which ensures the example only executes when the file is called
directly, allowing the functions to be imported and executed independently
by a unit test script. The algorithm is very modular with its behavior
partitioned into small functions, most of which are independently testable.
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The reproduce function has some dependencies although its orches-
tration of sub-functions is still testable. The search function is the only
monolithic function, which both depends on all other functions in the imple-
mentation (directly or indirectly) and hence is difficult to unit test. At best,
the search function may be a case for system testing addressing functional
requirements, such as “does the algorithm deliver optimized solutions”.

Unit Tests

Listing 9.3 provides the TC GeneticAlgorithm class that makes use of the
built-in Ruby unit testing framework by extending the TestCase class. The
listing provides an example of ten unit tests for six of the functions in the
Genetic Algorithm implementation. Two types of unit tests are provided:

� Deterministic: Directly test the function in question, addressing ques-
tions such as: does onemax add correctly? and does point mutation

behave correctly?

� Probabilistic: Test the probabilistic properties of the function in ques-
tion, addressing questions such as: does random bitstring provide
an expected 50/50 mixture of 1s and 0s over a large number of cases?
and does point mutation make an expected number of changes over
a large number of cases?

The tests for probabilistic expectations is a weaker form of unit testing
that can be used to either provide additional confidence to deterministically
tested functions, or to be used as a last resort when direct methods cannot
be used.

Given that a unit test should ‘test one thing’ it is common for a given
function to have more than one unit tests. The reproduce function is a
good example of this with three tests in the suite. This is because it is a
larger function with behavior called in dependent functions which is varied
based on parameters.

1 class TC_GeneticAlgorithm < Test::Unit::TestCase

2

3 # test that the objective function behaves as expected

4 def test_onemax

5 assert_equal(0, onemax("0000"))

6 assert_equal(4, onemax("1111"))

7 assert_equal(2, onemax("1010"))

8 end

9

10 # test the creation of random strings

11 def test_random_bitstring

12 assert_equal(10, random_bitstring(10).size)

13 assert_equal(0, random_bitstring(10).delete('0').delete('1').size)

14 end

15
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16 # test the approximate proportion of 1's and 0's

17 def test_random_bitstring_ratio

18 s = random_bitstring(1000)

19 assert_in_delta(0.5, (s.delete('1').size/1000.0), 0.05)

20 assert_in_delta(0.5, (s.delete('0').size/1000.0), 0.05)

21 end

22

23 # test that members of the population are selected

24 def test_binary_tournament

25 pop = Array.new(10) {|i| {:fitness=>i} }

26 10.times {assert(pop.include?(binary_tournament(pop)))}

27 end

28

29 # test point mutations at the limits

30 def test_point_mutation

31 assert_equal("0000000000", point_mutation("0000000000", 0))

32 assert_equal("1111111111", point_mutation("1111111111", 0))

33 assert_equal("1111111111", point_mutation("0000000000", 1))

34 assert_equal("0000000000", point_mutation("1111111111", 1))

35 end

36

37 # test that the observed changes approximate the intended probability

38 def test_point_mutation_ratio

39 changes = 0

40 100.times do

41 s = point_mutation("0000000000", 0.5)

42 changes += (10 - s.delete('1').size)

43 end

44 assert_in_delta(0.5, changes.to_f/(100*10), 0.05)

45 end

46

47 # test cloning with crossover

48 def test_crossover_clone

49 p1, p2 = "0000000000", "1111111111"

50 100.times do

51 s = crossover(p1, p2, 0)

52 assert_equal(p1, s)

53 assert_not_same(p1, s)

54 end

55 end

56

57 # test recombination with crossover

58 def test_crossover_recombine

59 p1, p2 = "0000000000", "1111111111"

60 100.times do

61 s = crossover(p1, p2, 1)

62 assert_equal(p1.size, s.size)

63 assert_not_equal(p1, s)

64 assert_not_equal(p2, s)

65 s.size.times {|i| assert( (p1[i]==s[i]) || (p2[i]==s[i]) ) }

66 end

67 end

68

69 # test odd sized population

70 def test_reproduce_odd

71 pop = Array.new(9) {|i| {:fitness=>i,:bitstring=>"0000000000"} }
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72 children = reproduce(pop, pop.size, 0, 1)

73 assert_equal(9, children.size)

74 end

75

76 # test reproduce size mismatch

77 def test_reproduce_mismatch

78 pop = Array.new(10) {|i| {:fitness=>i,:bitstring=>"0000000000"} }

79 children = reproduce(pop, 9, 0, 0)

80 assert_equal(9, children.size)

81 end

82 end

Listing 9.3: Unit Tests for the Genetic Algorithm in Ruby

9.3.3 Rules-of-Thumb

Unit testing is easy, although writing good unit tests is difficult given the
complex relationship the tests have with the code under test. Testing
Metaheuristics and Computational Intelligence algorithms is harder again
given their probabilistic nature and their ability to ‘work in spite of you’,
that is, provide some kind of result even when implemented with defects.

The following guidelines may help when unit testing an algorithm:

� Start Small : Some unit tests are better than no unit test and each
additional test can improve the trust and the quality of the code. For
an existing algorithm implementation, start by writing a test for a
small and simple behavior and slowly build up a test suite.

� Test one thing : Each test should focus on verifying the behavior of
one aspect of one unit of code. Writing concise and behavior-focused
unit tests are the objective of the methodology.

� Test once: A behavior or expectation only needs to be tested once,
do not repeat a test each time a given unit is tested.

� Don’t forget the I/O : Remember to test the inputs and outputs of a
unit of code, specifically the pre-conditions and post-conditions. It
can be easy to focus on the decision points within a unit and forget
its primary purpose.

� Write code for testability : The tests should help to shape the code
they test. Write small functions or modules, think about testing while
writing code (or write tests first), and refactor code (update code after
the fact) to make it easier to test.

� Function independence: Attempt to limit the direct dependence be-
tween functions, modules, objects and other constructs. This is related
to testability and writing small functions although suggests limits on
how much interaction there is between units of code in the algorithm.
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Less dependence means less side-effects of a given unit of code and
ultimately less complicated tests.

� Test Independence: Test should be independent from each other.
Frameworks provide hooks to set-up and tear-down state prior to the
execution of each test, there should be no needed to have one test
prepare data or state for other tests. Tests should be able to execute
independently and in any order.

� Test your own code: Avoid writing tests that verify the behavior
of framework or library code, such as the randomness of a random
number generator or whether a math or string function behaves as
expected. Focus on writing test for the manipulation of data performed
by the code you have written.

� Probabilistic testing : Metaheuristics and Computational Intelligence
algorithms generally make use of stochastic or probabilistic decisions.
This means that some behaviors are not deterministic and are more
difficult to test. As with the example, write probabilistic tests to verify
that such processes behave as intended. Given that probabilistic tests
are weaker than deterministic tests, consider writing deterministic
tests first. A probabilistic behavior can be made deterministic by
replacing the random number generator with a proxy that returns
deterministic values, called a mock. This level of testing may require
further impact to the original code to allow for dependent modules
and objects to be mocked.

� Consider test-first : Writing the tests first can help to crystallize
expectations when implementing an algorithm from the literature, and
help to solidify thoughts when developing or prototyping a new idea.

9.3.4 References

For more information on software testing, consult a good book on software
engineering. Two good books dedicated to testing are “Beautiful Testing:
Leading Professionals Reveal How They Improve Software” that provides a
compendium of best practices from professional programers and testers [2],
and “Software testing” by Patton that provides a more traditional treatment
[4].

Unit testing is covered in good books on software engineering or software
testing. Two good books that focus on unit testing include “Test Driven
Development: By Example” on the TDD methodology by Beck, a pioneer
of Extreme Programming and Test Drive Development [1] and “Pragmatic
unit testing in Java with JUnit” by Hunt and Thomas [3].
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9.4 Visualizing Algorithms

This section considers the role of visualization in the development and
application of algorithms from the fields of Metaheuristics, Computational
Intelligence, and Biologically Inspired Computation. Visualization can be
a powerful technique for exploring the spatial relationships between data
(such as an algorithm’s performance over time) and investigatory tool (such
as plotting an objective problem domain or search space). Visualization
can also provide a weak form of algorithm testing, providing observations
of efficiency or efficacy that may be indicative of the expected algorithm
behavior.

This section provides a discussion of the techniques and methods that
may be used to explore and evaluate the problems and algorithms described
throughout this book. The discussion and examples in this section are
primarily focused on function optimization problems, although the principles
of visualization as exploration (and a weak form of algorithm testing) are
generally applicable to function approximation problem instances.

9.4.1 Gnuplot

Gnuplot is a free open source command line tool used to generate plots
from data. It supports a large number of different plot types and provides
seemingly limitless configurability. Plots are shown to the screen by default,
but the tool can easily be configured to generate image files as well as LATEX,
PostScript and PDF documents.

Gnuplot can be downloaded from the website2 that also provides many
demonstrations of different plot types with sample scripts showing how
the plots were created. There are many tutorials and examples on the
web, and help is provided inside the Gnuplot software by typing help

followed by the command name (for example: help plot). For a more
comprehensive reference on Gnuplot, see Janert’s introductory book to the
software, “Gnuplot in Action” [1].

Gnuplot was chosen for the demonstrations in this section as useful plots
can be created with a minimum number of commands. Additionally, it is
easily integrated into a range of scripting languages is supported on a range
of modern operating systems. All examples in this section include both the
resulting plot and the script used to generate it. The scripts may be typed
directly into the Gnuplot interpreter or into a file which is processed by
the Gnuplot command line tool. The examples in this section provide a
useful starting point for visualizing the problems and algorithms described
throughout this book.

2Gnuplot URL: http://www.gnuplot.info

http://www.gnuplot.info
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9.4.2 Plotting Problems

The visualization of the problem under study is an excellent start in learning
about a given domain. A simple spatial representation of the search space
or objective function can help to motivate the selection and configuration
of an appropriate technique.

The visualization method is specific to the problem type and instance
being considered. This section provides examples of visualizing problems
from the fields of continuous and combinatorial function optimization, two
classes of problems that appear frequently in the described algorithms.

Continuous Function Optimization

A continuous function optimization problem is typically visualized in two
dimensions as a line where x = input, y = f(input) or three dimensions as
a surface where x, y = input, z = f(input).

Some functions may have many more dimensions, which if the function
is linearly separable can be visualized in lower dimensions. Functions that
are not linearly-separable may be able to make use of projection techniques
such as Principle Component Analysis (PCA). For example, preparing a
stratified sample of the search space as vectors with associated cost function
value and using PCA to project the vectors onto a two-dimensional plane
for visualization.

Similarly, the range of each variable input to the function may be large.
This may mean that some of the complexity or detail may be lost when
the function is visualized as a line or surface. An indication of this detail
may be achieved by creating spot-sample plots of narrow sub-sections of
the function.

Figure 9.1 provides an example of the Basin function in one dimension.
The Basin function is a continuous function optimization that seeks min f(x)
where f =

∑n

i=1 x
2
i , −5.0 ≤ xi ≤ 5.0. The optimal solution for this function

is (v0, . . . , vn−1) = 0.0. Listing 9.4 provides the Gnuplot script used to
prepare the plot (n = 1).

1 set xrange [-5:5]

2 plot x*x

Listing 9.4: Gnuplot script for plotting a function in one-dimension.

Figure 9.2 provides an example of the basin function in two-dimensions
as a three-dimensional surface plot. Listing 9.5 provides the Gnuplot script
used to prepare the surface plot.

1 set xrange [-5:5]

2 set yrange [-5:5]

3 set zrange [0:50]

4 splot x*x+y*y

Listing 9.5: Gnuplot script for plotting a function in two-dimensions
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Figure 9.1: Plot of the Basin function in one-dimension.
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Figure 9.2: Plot of the Basin function in two-dimensions.
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Both plots show the optimum in the center of the domain at x = 0.0 in
one-dimension and x, y = 0.0 in two-dimensions.

Traveling Salesman Problem

The Traveling Salesman Problem (TSP) description is comprised of a list of
cities, each with a different coordinate (at least in the case of the symmetric
TSP). This can easily be visualized as a map if the coordinates at latitudes
and longitudes, or as a scatter plot.

A second possible visualization is to prepare a distance matrix (distance
between each point and all other points) and visualize the matrix directly,
with each cell shaded relative to the distances of all other cells (largest
distances darker and the shorter distances lighter). The light areas in the
matrix highlight short or possible nearest-neighbor cities.

Figure 9.3 provides a scatter plot of the Berlin52 TSP used through
out the algorithm descriptions in this book. The Berlin52 problem seeks a
permutation of the order to visit cities (called a tour) that minimize the
total distance traveled. The optimal tour distance for Berlin52 is 7542 units.
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Figure 9.3: Plot of the cities of the Berlin52 TSP.

Listing 9.6 provides the Gnuplot script used to prepare the plot, where
berlin52.tsp is a file that contains a listing of the coordinates of all cities,
one city per line separated by white space. Listing 9.7 provides a snippet of
the first five lines of the berlin52.tsp file.
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1 plot "berlin52.tsp"

Listing 9.6: Gnuplot script for plotting the Berlin52 TSP.

1 565.0 575.0

2 25.0 185.0

3 345.0 750.0

4 945.0 685.0

5 845.0 655.0

6 ...

Listing 9.7: Snippet of the berlin52.tsp file.

The scatter plot shows some clustering of points toward the middle of
the domain as well as many points spaced out near the periphery of the
plot. An optimal solution is not obvious from looking at the plot, although
one can see the potential for nearest-neighbor heuristics and importance of
structure preserving operations on candidate solutions.

9.4.3 Plotting Algorithm Performance

Visualizing the performance of an algorithm can give indications that it is
converging (implemented correctly) and provide insight into its dynamic
behavior. Many algorithms are very simple to implement but exhibit complex
dynamic behavior that is difficult to model and predict beforehand. An
understanding of such behavior and the effects of changing an algorithm’s
parameters can be understood through systematic and methodological
investigation. Exploring parameter configurations and plots of an algorithm’s
performance can give a quick first-pass approximation of the algorithms
capability and potentially highlight fruitful areas for focused investigation.

Two quite different perspectives on visualizing algorithm performance
are: a single algorithm run and a comparison between multiple algorithm
runs. The visualization of algorithm runs is explored in this section in the
context of the Genetic Algorithm applied to a binary optimization problem
called OneMax (see Section 3.2).

Single Algorithm Run

The performance of an algorithm over the course of a single run can easily
be visualized as a line graph, regardless of the specific measures used. The
graph can be prepared after algorithm execution has completed, although,
many algorithm frameworks provide dynamic line graphs.

Figure 9.4 provides an example line graph, showing the quality of the
best candidate solution located by the Genetic Algorithm each generation
for a single run applied to a 64-bit OneMax problem. Listing 9.8 provides
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the Gnuplot script used to prepare the plot, where ga1.txt is a text file
that provides the fitness of the best solution each algorithm iteration on a
new line. Listing 9.9 provides a snippet of the first five lines of the ga1.txt
file.
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Figure 9.4: Line graph of the best solution found by the Genetic Algorithm.

1 set yrange [45:64]

2 plot "ga1.txt" with linespoints

Listing 9.8: Gnuplot script for creating a line graph.

1 45

2 45

3 47

4 48

5 48

6 ...

Listing 9.9: Snippet of the ga1.txt file.

Multiple Algorithm Runs

Multiple algorithm runs can provide insight into the tendency of an algorithm
or algorithm configuration on a problem, given the stochastic processes
that underlie many of these techniques. For example, a collection of the
best result observed over a number of runs may be taken as a distribution
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indicating the capability of an algorithm for solving a given instance of a
problem. This distribution may be visualized directly.

Figure 9.5 provides a histogram plot showing the best solutions found
and the number of times they were located by Genetic Algorithm over 100
runs on a 300-bit OneMax function.

0

2

4

6

8

10

12

14

16

276 278 280 282 284 286 288 290

Figure 9.5: Histogram of the best solutions found by a Genetic Algorithm.

Listing 9.10 provide the Gnuplot script used to prepare the plot, where
ga2.histogram.txt is a text file that contains discrete fitness values and
the number of times it was discovered by the algorithm over 100 runs.

1 set yrange [0:17]

2 set xrange [275:290]

3 plot "ga2.histogram.txt" with boxes

Listing 9.10: Gnuplot script for creating a histogram.

Listing 9.11 provides a snippet of the first five lines of the ga2.histogram.txt
file.

1 276 3

2 277 3

3 278 3

4 279 14

5 280 11

6 ...

Listing 9.11: Snippet of the ga2.histogram.txt file.
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Multiple Distributions of Algorithm Runs

Algorithms can be compared against each other based on the distributions
of algorithm performance over a number of runs. This comparison usually
takes the form of statistical tests that can make meaningful statements
about the differences between distributions. A visualization of the relative
difference between the distributions can aid in an interpretation of such
statistical measures.

A compact way for representing a distribution is to use a box-and-whisker
plot that partitions the data into quartiles, showing the central tendency
of the distribution, the middle mass of the data (the second and third
quartiles), the limits of the distribution and any outliers. Algorithm run
distributions may be summarized as a box-and-whisker plots and plotted
together to spatially show relative performance relationships.

Figure 9.6 provides box-and-whisker plots of the best score distribution
of 100 runs for the Genetic Algorithm applied to a 300-bit OneMax problem
with three different mutation configurations. The measure collected from
each run was the quality of the best candidate solution found.

160

180

200

220

240

260

280

-1 -0.5 0 0.5 1 1.5 2 2.5 3

Figure 9.6: Box-and-whisker plots of the Genetic Algorithm’s performance.

Listing 9.12 provide the Gnuplot script used to prepare the plot, where
the file boxplots1.txt contains summaries of the results one run per line,
each each line containing the min, first, second, and third quartiles and the
max values separated by a space. Listing 9.13 provides a complete listing of
the three lines of the boxplots1.txt file.
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1 set bars 15.0

2 set xrange [-1:3]

3 plot 'boxplots1.txt' using 0:2:1:5:4 with candlesticks whiskerbars 0.5

Listing 9.12: Gnuplot script for creating a Box-and-whisker plot.

1 251.0 261.0 263.0 266.0 277.0

2 214.0 218.0 220.0 224.0 234.0

3 176.0 180.0 182.0 184.0 192.0

Listing 9.13: Complete listing of the boxplots1.txt file.

9.4.4 Plotting Candidate Solutions

Visualizing candidate solutions can provide an insight into the complexity
of the problem and the behavior of an algorithm. This section provides
examples of visualizing candidate solutions in the context of their problem
domains from both continuous and combinatorial function optimization.

Continuous Function Optimization

Visualizing candidate solutions from a continuous function optimization
domain at periodic times over the course of a run can provide an indication of
the algorithms behavior in moving through a search space. In low dimensions
(such as one or two dimensions) this can provide qualitative insights into
the relationship between algorithm configurations and behavior.

Figure 9.7 provides a plot of the best solution found each iteration by
the Particle Swarm Optimization algorithm on the Basin function in two
dimensions (see Section 6.2). The positions of the candidate solutions are
projected on top of a heat map of the Basin function in two-dimensions, with
the gradient representing the cost of solutions at each point. Listing 9.14
provides the Gnuplot script used to prepare the plot, where pso1.txt is a
file that contains the coordinates of the best solution found by the algorithm,
with one coordinate per line separated by a space. Listing 9.15 provides a
snippet of the first five lines of the pso1.txt file.

1 set xrange [-5:5]

2 set yrange [-5:5]

3 set pm3d map

4 set palette gray negative

5 set samples 20

6 set isosamples 20

7 splot x*x+y*y, "pso1.txt" using 1:2:(0) with points

Listing 9.14: Gnuplot script use to create a heat map and selected samples.
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Figure 9.7: Heat map plot showing selected samples in the domain.

1 -3.9986483808224222 3.8910758979126956 31.12966051677087

2 -3.838580364459159 3.266132168962991 25.402318559546302

3 -3.678512348095896 2.6411884400132863 20.507329470753803

4 -3.518444331732633 2.0162447110635817 16.44469325039336

5 -3.35837631536937 1.391300982113877 13.214409898464986

6 ...

Listing 9.15: Snippet of the pso1.txt file.

Traveling Salesman Problem

Visualizing the results of a combinatorial optimization can provide insight
into the areas of the problem that a selected technique is handling well, or
poorly. Candidate solutions can be visualized over the course of a run to
observe how the complexity of solutions found by a technique change over
time. Alternatively, the best candidate solutions can be visualized at the
end of a run.

Candidate solutions for the TSP are easily visualized as tours (order of
city visits) in the context of the city coordinates of the problem definition.

Figure 9.8 provides a plot of an example Nearest-Neighbor solution for
the Berlin52 TSP. A Nearest-Neighbor solution is constructed by randomly
selecting the first city in the tour then selecting the next city in the tour
with the minimum distance to the current city until a complete tour is
created.
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Figure 9.8: Plot of a Nearest-Neighbor tour for the Berlin52 TSP.

Listing 9.16 provides the Gnuplot script used to prepare the plot, where
berlin52.nn.tour is a file that contains a listing of the coordinates of all
cities separated by white space in order that the cities are visited with one
city per line. The first city in the tour is repeated as the last city in the
tour to provide a closed polygon in the plot. Listing 9.17 provides a snippet
of the first five lines of the berlin52.nn.tour file.

1 plot "berlin52.nn.tour" with linespoints

Listing 9.16: Gnuplot script for plotting a tour for a TSP.

1 475 960

2 525 1000

3 510 875

4 555 815

5 575 665

6 ...

Listing 9.17: Snippet of the berlin52.nn.tour file.

Figure 9.9 provides a plot of the known optimal solution for the Berlin52
Traveling Salesman problem.

Listing 9.18 provides the Gnuplot script used to prepare the plot, where
berlin52.optimal is a file that contains a listing of the coordinates of all
cities in order that the cities are visited with one city per line separated by
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Figure 9.9: Plot of the optimal tour for the Berlin52 TSP.

white space. The first city in the tour is repeated as the last city in the tour
to provide a closed polygon in the plot.

1 plot "berlin52.optimal" with linespoints

Listing 9.18: Gnuplot script for plotting a tour for a TSP.

Listing 9.19 provides a snippet of the first five lines of the berlin52.optimal
file.

1 565.0 575.0

2 605.0 625.0

3 575.0 665.0

4 555.0 815.0

5 510.0 875.0

6 ...

Listing 9.19: Snippet of the berlin52.optimal file.

9.4.5 Bibliography
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9.5 Problem Solving Strategies

The field of Data Mining has clear methodologies that guide a practitioner
to solve problems, such as Knowledge Discovery in Databases (KDD) [16].
Metaheuristics and Computational Intelligence algorithms have no such
methodology.3

This section describes some of the considerations when applying algo-
rithms from the fields of Metaheuristics, Computational Intelligence, and
Biologically Inspired Computation to practical problem domains. This
discussion includes:

� The suitability of application of a given technique to a given prob-
lem and the transferability of algorithm and problem features (Sec-
tion 9.5.1)

� The distinction between strong and weak methods which use more
or less problem specific information respectively, and the continuum
between these extremes (Section 9.5.2).

� A summary of problem solving strategies that suggest different ways
of applying a given technique to the function optimization and ap-
proximation fields (Section 9.5.3).

9.5.1 Suitability of Application

From a problem-solving perspective, the tools that emerge from the field
of Computational Intelligence are generally assessed with regard to their
utility as efficiently or effectively solving problems. An important lesson
from the No-Free-Lunch Theorem was to bound claims of applicability (see
Section subsec:nfl), that is to consider the suitability of a given strategy
with regard to the feature overlap with the attributes of a given problem
domain. From a Computational Intelligence perspective, one may consider
the architecture, processes, and constraints of a given strategy as the features
of an approach.

The suitability of the application of a particular approach to a problem
takes into considerations concerns such as the appropriateness (can the
approach address the problem), the feasibility (available resources and
related efficiency concerns), and the flexibility (ability to address unexpected
or unintended effects). This section summarizes a general methodology
toward addressing the problem of suitability in the context of Computational
Intelligence tools. This methodology involves 1) the systematic elicitation
of system and problem features, and 2) the consideration of the overlap of
problem-problem, algorithm-algorithm, and problem-algorithm overlap of
feature sets.

3Some methods can be used for classification and regression and as such may fit into
methodologies such as KDD.
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Systematic Feature Elicitation

A feature of a system (tool, strategy, model) or a problem is a distinctive
element or property that may be used to differentiate it from similar and/or
related cases. Examples may include functional concerns such as: processes,
data structures, architectures, and constraints, as well as emergent concerns
that may have a more subjective quality such as general behaviors, organiza-
tions, and higher-order structures. The process of the elicitation of features
may be taken from a system or problem perspective:

� System Perspective: This requires a strong focus on the lower level
functional elements and investigations that work toward correlating
specific controlled procedures towards predictable emergent behaviors.

� Problem Perspective: May require both a generalization of the specific
case to the general problem case, as well as a functional or logical
decomposition into constituent parts.

Problem generalization and functional decomposition are important and
commonly used patterns for problem solving in the broader fields of Artificial
Intelligence and Machine Learning. The promotion of simplification and
modularity can reduce the cost and complexity of achieving solutions [10, 43].

Feature Overlap

Overlap in elicited features may be considered from three important per-
spectives: between systems, between problems, and between a system and
a problem. Further, such overlap may be considered at different levels of
detail with regard to generalized problem solving strategies and problem
definitions. These overlap cases are considered as follows:

� System Overlap defines the suitability of comparing one system to
another, referred to as comparability. For example, systems may be
considered for the same general problems and compared in terms of
theoretical or empirical capability, the results of which may only be
meaningful if the systems are significantly similar to each other as
assessed in terms of feature overlap.

� Problem Overlap defines the suitability of comparing one problem to
another, referred to as transferability. From a systems focus, transfer-
ability refers to the capability of a technique on a given problem to
be successfully applied to another problem, the result of which is only
meaningful if there is a strong overlap between the problems under
consideration.

� System-Problem Overlap defines the suitability of a system on a
given problem, referred to as applicability. For example, a system is
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considered suitable for a given problem if it has a significant overlap
in capabilities with the requirements of the problem definition.

Such mappings are imprecise given the subjective assessment and com-
plexity required in both the elicitation and consideration overlap of the
of features, the hardest of which is expected to be the mapping between
systems and problems. The mapping of salient features of algorithms and
problems was proposed as an important reconciliation of the No-Free-Lunch
Theorem by Wolpert and Macready [58], although the important difference
of this approach is that the system and algorithm are given prior to the
assessment. In their first work on the theorem, Wolpert and Macready
specifically propose the elicitation of the features from a problem-first per-
spective, for which specialized algorithms can be defined [57]. Therefore,
this methodology of suitability may be considered a generalization of this
reconciliation suitable for the altered Computational Intelligence (strategy
first) perspective on Artificial Intelligence.

9.5.2 Strong and Weak Methods

Generally, the methods from the fields of Metaheuristics, Computational
Intelligence, and Biologically Inspired Computation may be considered weak
methods. They are general purpose and are typically considered black-box
solvers for a range of problem domains. The stronger the method, the more
that must be known about the problem domain. Rather than discriminating
techniques into weak and strong it is more useful to consider a continuum of
methods from pure block box techniques that have few assumptions about
the problem domain, to strong methods that exploit most or all of the
problem specific information available.

For example, the Traveling Salesman Problem is an example of a combi-
natorial optimization problem. A näıve (such a Random Search) black box
method may simply explore permutations of the cities. Slightly stronger
methods may initialize the search with a heuristic-generated technique
(such as nearest neighbor) and explore the search space using a variation
method that also exploits heuristic information about the domain (such as
a 2-opt variation). Continuing along this theme, a stochastic method may
explore the search space using a combination of probabilistic and heuristic
information (such as Ant Colony Optimization algorithms). At the other
end of the scale the stochastic elements are decreased or removed until one
is left with pure heuristic methods such as the Lin-Kernighan heuristic [31]
and exact algorithms from linear and dynamic programming that focus on
the structure and nature of the problem [55].

Approaching a problem is not as simple as selecting the strongest method
available and solving it. The following describes two potential strategies:

� Start Strong : Select the strongest technique available and apply it
to the problem. Difficult problems can be resistant to traditional
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methods for many intrinsic and extrinsic reasons. Use products from
a strong technique (best solution found, heuristics) to seed the next
weaker method in line.

� Start Weak : Strong methods do not exist for all problems, and if they
do exist, the computation, skill, and/or time resources may not be
available to exploit them. Start with a weak technique and use it to
learn about the problem domain. Use this information to make better
decisions about subsequent techniques to try that can exploit what
has been learned.

In a real-world engineering or business scenario, the objective is to solve
a problem or achieve the best possible solution to the problem within the
operating constraints. Concerns of algorithm and technique purity become
less important than they may be in their respective fields of research. Both
of the above strategies suggest an iterative methodology, where the product
or knowledge gained from one technique may be used to prime a subsequent
stronger or weaker technique.

9.5.3 Domain-Specific Strategies

An algorithm may be considered a strategy for problem solving. There
are a wide range of ways in which a given algorithm can be used to solve
a problem. Function Optimization and Function Approximation were
presented as two general classes of problems to which the algorithms from
the fields of Metaheuristics, Computational Intelligence, and Biologically
Inspired Computation are applied. This section reviews general problem
problem solving strategies that may be adopted for a given technique in
each of these general problem domains.

Function Optimization

This section reviews a select set of strategies for addressing optimization
problems from the field of Metaheuristics and Computational Intelligence to
provide general insight into the state of the interaction between stochastic
algorithms and the field of optimization. This section draws heavily from
the field of Evolutionary Computation, Swarm Intelligence, and related
Computational Intelligence sub-fields.

Global and Local Optimization Global Optimization refers to seeking
a globally optimal structure or approximation thereof in a given problem
domain. Global is differentiated from Local Optimization in that the latter
focuses on locating an optimal structure within a constrained region of
the decision variable search space, such as a single peak or valley (basin of
attraction). In the literature, global optimization problems refers to the class
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of optimization problems that generally cannot be addressed through more
conventional approaches such as gradient descent methods (that require
mathematical derivatives) and pattern search (that can get ‘stuck’ in local
optima and never converge) [41, 53].

A global search strategy provides the benefit of making few if any
assumptions about where promising areas of the search space may be,
potentially highlighting unintuitive combinations of parameters. A local
search strategy provides the benefit of focus and refinement of an existing
candidate solution. It is common to apply a local search method to the
solutions located by a global search procedure as a refinement strategy
(such as using a Hill Climber (Section 2.4) after a Genetic Algorithm
(Section 3.2)), and some methods have both techniques built in (such as
GRASP in Section 2.8).

Parallel Optimization A natural step toward addressing difficult (large
and rugged cost landscapes) is to exploit parallel and distributed hardware,
to get an improved result in the same amount of time, the same result in less
time, or both [12]. Towards unifying the myriad of approaches and hardware
configurations, a general consensus and taxonomy has been defined by the
Parallel Evolutionary Algorithms (PEA) and Parallel Metaheuristics fields
that considers the ratio of communication to computation called granularity
[4, 11].

This taxonomy is presented concisely by Alba and Tomassini as a plot
or trade-off of three concerns: 1) the number of sub-populations (models or
parallel strategies working on the problem), 2) the coupling between the
sub-populations (frequency and amplitude of communication), and 3) the
size of the sub-populations (size or extent of the sub-models) [5].

Two important and relevant findings from the narrower field of Parallel
Evolutionary Algorithms include 1) that tight coupling (frequent inter-
system migration of candidate solutions) between coarse-grained models
typically results in worse performance than a non-distributed approach [6],
and 2) that loose coupling (infrequent migration) between coarse-grained
models has been consistently shown to provide a super-linear increase in
performance [3, 7, 11].

Cooperative Search This is a more general approach that considers the
use of multiple models that work together to address a difficult optimization
problems. Durfee et al. consider so-called Cooperative Distributed Problem
Solving (CDPS) in which a network of loosely coupled solvers are employed
to address complex distributed problems. In such systems, it is desirable
to match the processing capabilities of the solver to the attributes of the
problem. For example, a given problem may have spatially distributed,
functionally distributed, or temporally distributed sub-problems to which a
centralized and monolithic system may not be suitable.
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Lesser [30] considers CDPS and proposes such models perform dis-
tributed search on dependent or independent and potentially overlapping
sub-problems as a motivating perspective for conducting research into
Distributed Artificial Intelligence (DAI)4. Lesser points out that in real
world applications, it is hard to get a optimal mapping between the al-
located resources and the needs or availability of information for a given
problem, suggesting that such problems may be caused by a mismatch in
processing times and/or number of sub-problems, interdependencies be-
tween sub-problems, and local experts whose expertise cannot be effectively
communicated. For a more detail on the relationships between parallel and
cooperative search, El-Abd and Kamel provide a rigorous taxonomy [15].

Hybrid Search Hybrid Search is a perspective on optimization that fo-
cuses on the use of multiple and likely different approaches either sequentially
(as in the canonical global and local search case), or in parallel (such as in
Cooperative Search). For example in this latter case, it is common in the
field of PEA to encourage different levels of exploration and exploitation
across island populations by varying the operators or operator configurations
used [2, 51].

Talbi proposed a detailed 4-level taxonomy of Hybrid Metaheuristics
that concerns parallel and cooperating approaches [50]. The taxonomy
encompasses parallel and cooperative considerations for optimization and fo-
cuses on the discriminating features in the lowest level such as heterogeneity,
and specialization of approaches.

Functional Decomposition Three examples of a functional decomposi-
tion of optimization include 1) multiple objectives, 2) multiple constraints,
and 3) partitions of the decision variable search space.

Multi-Objective Optimization (MOO) is a sub-field that is concerned
with the optimization of two or more objective functions. A solution to
a MOO conventionally involves locating and returning a set of candidate
solutions called the non-dominated set [13]. The Pareto optimal set, is the
set of optimal non-dominated solutions. For a given problem no feasible
solution exists that dominates a Pareto optimal solution. All solutions that
are Pareto optimal belong to the Pareto set, and the points that these
solutions map to in the objective space is called the Pareto front. The
complexity with MOO problems is in the typically unknown dependencies
between decision variables across objectives, that in the case of conflicts,
must be traded off (Purshouse and Fleming provide a taxonomy of such
complexity [42]).

Constraint Satisfaction Problem’s (CSP) involve the optimization of
decision variables under a set of constraints. The principle complexity in

4This perspective provided the basis for what became the field of Multi-Agent Systems
(MAS).
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such problems is in locating structures that are feasible or violate the least
number of constraints, optimizing such feasibility [27, 54].

Search Space Partitioning involves partitioning of the decision variable
search space (for example see Multispace Search by Gu et al. [14, 21, 22]).
This is a critical consideration given that for equal-sized dimensional bounds
on parameters, an increase in decision variables results in an exponential
increase in the volume of the space to search.

Availability Decomposition Optimization problems may be partitioned
by the concerns of temporal and spatial distribution of 1) information
availability, and 2) computation availability. An interesting area of research
regarding variable information availability for optimization problems is
called Interactive Evolutionary Computation, in which one or a collection
of human operators dynamically interact with an optimization process [49].
Example problem domains include but are not limited to computer graphics,
industrial design, image processing, and drug design.

There is an increasing demand to exploit clusters of heterogeneous
workstations to complete large-scale distributed computation tasks like
optimization, typically in an opportunistic manner such as when individual
machines are underutilized. The effect is that optimization strategies such
as random partitioning of the search space (independent non-interacting pro-
cessing) are required to take advantage of such environments for optimization
problems [32, 46].

Meta Optimization One may optimize at a level above that considered
in previous sections. Specifically, 1) the iterative generation of an inductive
model called multiple restart optimization, and 2) the optimization of the
parameters of the process that generates an inductive model of an optimiza-
tion problem. Multiple or iterative restarts involves multiple independent
algorithm executions from different (random) starting conditions. It is gen-
erally considered as a method for achieving an improved result in difficult
optimization problems where a given strategy is deceived by local or false
optima [24, 34], typically requiring a restart schedule [17].

A second and well studied form of meta optimization involves the op-
timization of the search process itself. Classical examples include the
self-adaptation of mutation parameters (step sizes) in the Evolutionary
Strategies (ES) and Evolutionary Programming (EP) approaches. Smith
and Fogarty provided a review of genetic algorithms with adaptive strategies
including a taxonomy in which the meta-adaptations are applied at one
of three levels: 1) the population (adapting the overall sampling strategy),
2) the individual (adapting the creation of new samples in the decision
variable space), and 3) components (modifying component contributions
and/or individual step sizes as in ES and EP) [48].
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Function Approximation

This section reviews a select set of strategies for addressing Function Approx-
imation problems from the fields of Artificial Intelligence and Computational
Intelligence to to provide general insight into the state of the interaction
between stochastic algorithms and the field. The review draws heavily from
the fields of Artificial Neural Networks, specifically Competitive Learning,
as well as related inductive Machine Learning fields such as Instance Based
Learning.

Vector Quantization Vector Quantization (VQ) refers to a method
of approximating a target function using a set of exemplar (prototype
or codebook) vectors. The exemplars represent a discrete subset of the
problem, generally restricted to the features of interest using the natural
representation of the observations in the problem space, typically an an
unconstrained n-dimensional real valued space. The VQ method provides
the advantage of a non-parametric model of a target function (like instance-
based and lazy learning such as the k-Nearest-Neighbor method (kNN))
using a symbolic representation that is meaningful in the domain (like
tree-based approaches).

The promotion of compression addresses the storage and retrieval con-
cerns of kNN, although the selection of codebook vectors (the so-called
quantization problem) is a hard problem that is known to be NP-complete
[18]. More recently Kuncheva and Bezdek have worked towards unifying
quantization methods in the application to classification problems, referring
to the approaches as Nearest Prototype Classifiers (NPC) and proposing a
generalized nearest prototype classifier [28, 29].

Parallelization Instance-based approaches are inherently parallel given
the generally discrete independent nature in which they are used, specifically
in a case or per-query manner. As such, parallel hardware can be exploited
in the preparation of the corpus of prototypes (parallel preparation), and
more so in the application of the corpus given its read-only usage [1, 35, 39].
With regard to vector quantization specifically, there is an industry centered
around the design and development of VQ and WTA algorithms and circuits
given their usage to compress digital audio and video data [36, 38].

Cooperative Methods Classical cooperative methods in the broader
field of statistical machine learning are referred to as Ensemble Methods
[37, 40] or more recently Multiclassifier Systems [20].

Boosting is based on the principle of combining a set of quasi-independent
weak learners that collectively are as effective as a single strong learner
[26, 44]. The seminal approach is called Adaptive Boosting (AdaBoost) that
involves the preparation of a series of classifiers, where subsequent classifiers
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are prepared for the observations that are misclassified by the proceeding
classifier models (creation of specialists) [45].

Bootstrap Aggregation (bagging) involves partitioning the observations
into N randomly chosen subsets (with re-selection), and training a differ-
ent model on each [9]. Although robust to noisy datasets, the approach
requires careful consideration as to the consensus mechanism between the
independent models for decision making.

Stacked Generalization (stacking) involves creating a sequence of models
of generally different types arranged into a stack, where subsequently added
models generalize the behavior (success or failure) of the model before it
with the intent of correcting erroneous decision making [52, 56].

Functional Decomposition As demonstrated, it is common in ensemble
methods to partition the dataset either explicitly or implicitly to improve
the approximation of the underlying target function. A first important
decomposition involves partitioning the problem space into sub-spaces based
on the attributes, regular groups of attributes called features, and decision
attributes such as class labels. A popular method for attribute-based
partitioning is called the Random Subspace Method, involving the random
partitioning of attributes to which specialized model is prepared for each
(commonly used on tree-based approaches) [23].

A related approach involves a hierarchical partitioning of attributes space
into sub-vectors (sub-spaces) used to improve VQ-based compression [19].
Another important functional decomposition methods involve the partition-
ing of the set of observations. The are many ways in which observations
may be divided, although common approaches include pre-processing using
clustering techniques to divide the set into natural groups, additional statis-
tical approaches that partition based on central tendency and outliers, and
re-sampling methods that are required to reduce the volume of observations.

Availability Decomposition The availability observations required to
address function approximation in real-world problem domains motivate the
current state of the art in Distributed Data Mining (DDM, or sometimes
Collective Data Mining), Parallel Data Mining (PDM), and Distributed
Knowledge Discovery in Database (DKDD) [25]. The general information
availability concerns include 1) the intractable volume of observations, and 2)
the spatial (geographical) and temporal distribution of information [59]. In
many real-world problems it is infeasible to centralize relevant observations
for modeling, requiring scalable, load balancing, and incremental acquisition
of information [47].

Meta-Approximation The so-called ensemble or multiple-classifier meth-
ods may be considered meta approximation approaches as they are not
specific to a given modeling technique. As with function optimization,
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meta-approaches may be divided into restart methods and meta-learning
algorithms. The use of restart methods is a standard practice for connection-
ist approaches, and more generally in approaches that use random starting
conditions and a gradient or local search method of refinement.

The method provides an opportunity for over-coming local optima in
the error-response surface, when there is an unknown time remaining until
convergence [33], and can exploit parallel hardware to provide a speed
advantage [8]. Ensemble methods and variants are examples of meta ap-
proximation approaches, as well as the use of consensus classifiers (gate
networks in mixtures of experts) to integrate and weight the decision making
properties from ensembles.

9.5.4 Bibliography

[1] A. Aamodt and E. Plaza. Case-based reasoning: Foundational is-
sues, methodological variations, and system approaches. Artificial
Intelligence Communications, 7(1):39–59, 1994.

[2] P. Adamidis, P. Adamidis, and V. Petridis. Co–operating populations
with different evolution behaviours. In V. Petridis, editor, Proceedings
IEEE International Conference on Evolutionary Computation, pages
188–191, 1996.

[3] E. Alba. Parallel evolutionary algorithms can achieve super-linear
performance. Information Processing Letters, 82:7–13, 2002.

[4] E. Alba. Parallel Metaheuristics: A New Class of Algorithms. John
Wiley, 2005.

[5] E. Alba and M. Tomassini. Parallelism and evolutionary algorithms.
IEEE Transactions on Evolutionary Computation, 6(5):443–462, 2002.

[6] E. Alba and J. M. Troya. Influence of the migration policy in parallel
distributed gas with structured and panmictic populations. Applied
Intelligence, 12:163–181, 2000.

[7] T. C. Belding. The distributed genetic algorithm revisited. In Pro-
ceedings of the 6th International Conference on Genetic Algorithms,
1995.

[8] A. Di Blas, A. Jagota, and R. Hughey. Optimizing neural networks on
SIMD parallel computers. Parallel Computing, 31:97–115, 2005.

[9] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140,
1996.

[10] R. Brooks. A robust layered control system for a mobile robot. IEEE
Journal Of Robotics And Automation, 2(1):14–23, 1986.



396 Chapter 9. Advanced Topics
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9.6 Benchmarking Algorithms

When it comes to evaluating an optimization algorithm, every researcher
has their own thoughts on the way it should be done. Unfortunately, many
empirical evaluations of optimization algorithms are performed and reported
without addressing basic experimental design considerations. This section
provides a summary of the literature on experimental design and empirical
algorithm comparison methodology. This summary contains rules of thumb
and the seeds of best practice when attempting to configure and compare
optimization algorithms, specifically in the face of the no-free-lunch theorem.

9.6.1 Issues of Benchmarking Methodology

Empirically comparing the performance of algorithms on optimization prob-
lem instances is a staple for the fields of Heuristics and Biologically Inspired
Computation, and the problems of effective comparison methodology have
been discussed since the inception of these fields. Johnson suggests that the
coding of an algorithm is the easy part of the process; the difficult work
is getting meaningful and publishable results [24]. He goes on to provide
a very through list of questions to consider before racing algorithms, as
well as what he describes as his “pet peeves” within the field of empirical
algorithm research.

Hooker [22] (among others) practically condemns what he refers to
as competitive testing of heuristic algorithms, calling it “fundamentally
anti-intellectual”. He goes on to strongly encourag a rigorous methodology
of what he refers to as scientific testing where the aim is to investigate
algorithmic behaviors.

Barr, Golden et al. [1] list a number of properties worthy of a heuristic
method making a contribution, which can be paraphrased as; efficiency,
efficacy, robustness, complexity, impact, generalizability, and innovation.
This is interesting given that many (perhaps a majority) of conference
papers focus on solution quality alone (one aspect of efficacy). In their
classical work on reporting empirical results of heuristics Barr, Golden et al.
specify a loose experimental setup methodology with the following steps:

1. Define the goals of the experiment.

2. Select measure of performance and factors to explore.

3. Design and execute the experiment.

4. Analyze the data and draw conclusions.

5. Report the experimental results.

They then suggest eight guidelines for reporting results, in summary
they are; reproducibility, specify all influential factors (code, computing
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environment, etc), be precise regarding measures, specify parameters, use
statistical experimental design, compare with other methods, reduce vari-
ability of results, and ensure results are comprehensive. They then clarify
these points with examples.

Peer, Engelbrecht et al. [32] summarize the problems of algorithm bench-
marking (with a bias toward particle swarm optimization) to the following
points: duplication of effort, insufficient testing, failure to test against
state-of-the-art, poor choice of parameters, conflicting results, and invalid
statistical inference. Eiben and Jelasity [14] sight four problems with the
state of benchmarking evolutionary algorithms; 1) test instances are chosen
ad hoc from the literature, 2) results are provided without regard to research
objectives, 3) scope of generalized performance is generally too broad, and
4) results are hard to reproduce. Gent and Walsh provide a summary of
simple dos and don’ts for experimentally analyzing algorithms [20]. For
an excellent introduction to empirical research and experimental design in
artificial intelligence see Cohen’s book “Empirical Methods for Artificial
Intelligence” [10].

The theme of the classical works on algorithm testing methodology is that
there is a lack of rigor in the field. The following sections will discuss three
main problem areas to consider before benchmarking, namely 1) treating
algorithms as complex systems that need to be tuned before applied, 2)
considerations when selecting problem instances for benchmarking, and
3) the selection of measures of performance and statistical procedures for
testing experimental hypotheses. A final section 4) covers additional best
practices to consider.

9.6.2 Selecting Algorithm Parameters

Optimization algorithms are parameterized, although in the majority of
cases the effect of adjusting algorithm parameters is not fully understood.
This is because unknown non-linear dependencies commonly exist between
the variables resulting in the algorithm being considered a complex sys-
tem. Further, one must be careful when generalizing the performance of
parameters across problem instances, problem classes, and domains. Finally,
given that algorithm parameters are typically a mixture of real and integer
numbers, exhaustively enumerating the parameter space of an algorithm is
commonly intractable.

There are many solutions to this problem such as self-adaptive pa-
rameters, meta-algorithms (for searching for good parameter values), and
methods of performing sensitivity analysis over parameter ranges. A good
introduction to the parameterization of genetic algorithms is Lobo, Lima
et al. [27]. The best and self-evident place to start (although often ignored
[14]) is to investigate the literature and see what parameters been used
historically. Although not a robust solution, it may prove to be a useful
starting point for further investigation. The traditional approach is to
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run an algorithm on a large number of test instances and generalize the
results [37]. We, as a field, haven’t really come much further than this
historical methodology other than perhaps the application of more and
differing statistical methods to decrease effort and better support findings.

A promising area of study involves treating the algorithm as a complex
systems, where problem instances may become yet another parameter of
the model [7, 36]. From here, sensitivity analysis can be performed in
conjunction with statistical methods to discover parameters that have the
greatest effect [8] and perhaps generalize model behaviors.

Francois and Lavergne [18] mention the deficiencies of the traditional
trial-and-error and experienced-practitioner approaches to parameter tuning,
further suggesting that seeking general rules for parameterization will lead to
optimization algorithms that offer neither convergent or efficient behaviors.
They offer a statistical model for evolutionary algorithms that describes
a functional relationship between algorithm parameters and performance.
Nannen and Eiben [29, 30] propose a statistical approach called REVAC
(previously Calibration and Relevance Estimation) to estimating the rele-
vance of parameters in a genetic algorithm. Coy, Golden et al. [12] use a
statistical steepest decent method procedure for locating good parameters
for metaheuristics on many different combinatorial problem instances.

Bartz-Beielstein [3] used a statistical experimental design methodol-
ogy to investigate the parameterization of the Evolutionary Strategy (ES)
algorithm. A sequential statistical methodology is proposed by Bartz-
Beielstein, Parsopoulos et al. [4] for investigating the parameterization and
comparisons between the Particle Swarm Optimization (PSO) algorithm,
the Nelder-Mead Simplex Algorithm (direct search), and the Quasi-Newton
algorithm (derivative-based). Finally, an approach that is popular within
the metaheuristic and Ant Colony Optimization (ACO) community is to use
automated Monte Carlo and statistical procedures for sampling discretized
parameter space of algorithms on benchmark problem instances [6]. Similar
racing procedures have also been applied to evolutionary algorithms [41].

9.6.3 Problem Instances

This section focuses on issues related to the selection of function optimiza-
tion test instances, but the general theme of cautiously selecting problem
instances is generally applicable.

Common lists of test instances include; De Jong [25], Fogel [17], and
Schwefel [38]. Yao, Lui et al. [40] list many canonical test instances as
does Schaffer, Caruana et al. [37]. Gallagher and Yuan [19] review test
function generators and propose a tunable mixture of Gaussians test problem
generators. Finally, McNish [28] proposes using fractal-based test problem
generators via a web interface.

The division of test problems into classes is another axiom of modern
optimization algorithm research, although the issues with this methodology
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are the taxonomic criterion for problem classes and on the selection of
problem instances for classes.

Eiben and Jelasity [14] strongly support the division of problem instances
into categories and encourage the evaluation of optimization algorithms over
a large number of test instances. They suggest classes could be natural

(taken from the real world), or artificial (simplified or generated). In
their paper on understanding the interactions of GA parameters, Deb and
Agrawal [13] propose four structural properties of problems for testing ge-
netic algorithms; multi-modality, deception, isolation, and collateral noise.
Yao, Lui et al. [40] divide their large test dataset into the categories of
unimodal, ‘multimodal-many local optima’, and ‘multimodal-few local op-
tima’. Whitley, Rana et al. [39] provide a detailed study on the problems of
selecting test instances for genetic algorithms. They suggest that difficult
problem instances should be non-linear, non-separable, and non-symmetric.

English [15] suggests that many functions in the field of EC are selected
based on structures in the response surface (as demonstrated in the above
examples), and that they inherently contain a strong Euclidean bias. The
implication is that the algorithms already have some a priori knowledge
about the domain built into them and that results are always reported on
a restricted problem set. This is a reminder that instances are selected to
demonstrate algorithmic behavior, rather than performance.

9.6.4 Measures and Statistical Methods

There are many ways to measure the performance of an optimization algo-
rithm for a problem instance, although the most common involves a quality
(efficacy) measure of solution(s) found (see the following for lists and discus-
sion of common performance measures [1, 4, 5, 14, 23]). Most biologically
inspired optimization algorithms have a stochastic element, typically in their
starting position(s) and in the probabilistic decisions made during sampling
of the domain. Thus, the performance measurements must be repeated a
number of times to account for the stochastic variance, which could also be
a measure of comparison between algorithms.

Irrespective of the measures used, sound statistical experimental design
requires the specification of 1) a null hypothesis (no change), 2) alternative
hypotheses (difference, directional difference), and 3) acceptance or rejection
criteria for the hypothesis. The null hypothesis is commonly stated as the
equality between two or more central tendencies (mean or medians) of a
quality measure in a typical case of comparing stochastic-based optimization
algorithms on a problem instance.

Peer, Engelbrech et al. [32] and Birattari and Dorigo [5] provide a basic
introduction (suitable for an algorithm-practitioner) into the appropriateness
of various statistical tests for algorithm comparisons. For a good introduction
to statistics and data analysis see Peck et al. [31], for an introduction to
non-parametric methods see Holander and Wolfe [21], and for a detailed
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presentation of parametric and nonparametric methods and their suitability
of application see Sheskin [23]. For an excellent open source software package
for performing statistical analysis on data see the R Project.5

To summarize, parametric statistical methods are used for interval and
ratio data (like a real-valued performance measure), and nonparametric
methods are used for ordinal, categorical and rank-based data. Interval data
is typically converted to ordinal data when salient constraints of desired
parametric tests (such as assumed normality of distribution) are broken
such that the less powerful nonparametric tests can be used. The use of
nonparametric statistical tests may be preferred as some authors [9, 32] claim
the distribution of cost values are very asymmetric and/or not Gaussian. It
is important to remember that most parametric tests degrade gracefully.

Chiarandini, Basso et al. [9] provide an excellent case study for using
the permutation test (a nonparametric statistical method) to compare
stochastic optimizers by running each algorithm once per problem instance,
and multiple times per problem instance. While rigorous, their method
appears quite complex and their results are difficult to interpret.

Barrett, Marathe et al. [2] provide a rigorous example of applying the
parametric test Analysis of Variance (ANOVA) of three different heuristic
methods on a small sample of scenarios. Reeves and Write [34, 35] also
provide an example of using ANOVA in their investigation into epistasis on
genetic algorithms. In their tutorial on the experimental investigation of
heuristic methods, Rardin and Uzsoy [33] warn against the use of statistical
methods, claiming their rigidity as a problem, and the importance of practi-
cal significance over that of statistical significance. They go on in the face
of their own objections to provide an example of using ANOVA to analyze
the results of an illustrative case study.

Finally, Peer, Engelbrech et al. [32] highlight a number of case study
example papers that use statistical methods inappropriately. In their
OptiBench system and method, algorithm results are standardized, ranked
according to three criteria and compared using the Wilcoxon Rank-Sum
test, a non-parametric alternative to the Student-T test that is commonly
used.

9.6.5 Other

Another pervasive problem in the field of optimization is the reproducibility
(implementation) of an algorithm. An excellent solution to this problem
is making source code available by creating or collaborating with open-
source software projects. This behavior may result in implementation
standardization, a reduction in the duplication of effort for experimentation
and repeatability, and perhaps more experimental accountability [14, 32].

5R Project is online at http://www.r-project.org

http://www.r-project.org
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Peer, Engelbrech et al. [32] stress the need to compare to the state-of-
the-art implementations rather than the historic canonical implementations
to give a fair and meaningful evaluation of performance.

Another area that is often neglected is that of algorithm descriptions,
particularly in regard to reproducibility. Pseudocode is often used, although
(in most cases) in an inconsistent manner and almost always without refer-
ence to a recognized pseudocode standard or mathematical notation. Many
examples are a mix of programming languages, English descriptions and
mathematical notation, making them difficult to follow, and commonly
impossible to implement in software due to incompleteness and ambiguity.

An excellent tool for comparing optimization algorithms in terms of
their asymptotic behavior from the field of computation complexity is the
Big-O notation [11]. In addition to clarifying aspects of the algorithm, it
provides a problem independent way of characterizing an algorithms space
and or time complexity.

9.6.6 Summary

It is clear that there is no silver bullet to experimental design for empirically
evaluating and comparing optimization algorithms, although there are as
many methods and options as there are publications on the topic. The
field of stochastic optimization has not yet agreed upon general methods
of application like the field of data mining (processes such as Knowledge
Discovery in Databases (KDD) [16]). Although these processes are not
experimental methods for comparing machine learning algorithms, they do
provide a general model to encourage the practitioner to consider important
issues before application of an approach.

Finally, it is worth pointing out a somewhat controversially titled paper
by De Jong [26] that provides a reminder that although the genetic algorithm
has been shown to solve function optimization, it is not innately a function
optimizer, and function optimization is only a demonstration of this complex
adaptive system’s ability to learn. It is a reminder to be careful not to
link an approach too tightly with a domain, particularly if the domain was
chosen for demonstration purposes.
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comparison of stochastic optimizers. In M. Gendreau, P. Greistorfer,
W. J. Gutjahr, R. F. Hartl, and M. Reimann, editors, MIC2005:
Proceedings of the 6th Metaheuristics International Conference, pages
189–196, 2005.

[10] P. R. Cohen. Empirical Methods for Artificial Intelligence. The MIT
Press, Cambridge, Massachusetts, USA; London, England, 1995.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press and McGraw-Hill, 2001.

[12] S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil. Using
experimental design to find effective parameter settings for heuristics.
Journal of Heuristics, 7(1):77–97, 2001.



9.6. Benchmarking Algorithms 407

[13] K. Deb and S. Agrawal. Understanding interactions among genetic
algorithm parameters. In Colin R. Reeves, editor, Proceedings of the
Fifth Workshop on Foundations of Genetic Algorithms (FOGA), pages
265–286. Morgan Kaufmann, 1999.

[14] A. E. Eiben and M. Jelasity. A critical note on experimental research
methodology in ec. In Proceedings of the 2002 Congress on Evolutionary
Computation (CEC ’02), volume 1, pages 582–587. IEEE Press, USA,
2002.

[15] T. M. English. Evaluation of evolutionary and genetic optimizers: No
free lunch. In Evolutionary Programming V: Proceedings of the Fifth
Annual Conference on Evolutionary Programming, pages 163–169. MIT
Press, USA, 1996.

[16] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD process for
extracting useful knowledge from volumes of data. Communications of
the ACM, 39(11):27–34, 1996.

[17] D. B. Fogel. Evolutionary computation: Toward a new philosophy of
machine intelligence. IEEE Press, 1995.

[18] O. François and C. Lavergne. Design of evolutionary algorithms – a sta-
tistical perspective. IEEE Transactions on Evolutionary Computation,
5(2):129–148, April 2001.

[19] M. Gallagher and B. Yuan. A general-purpose tunable landscape
generator. IEEE Transactions on Evolutionary Computation, 10(5):590–
603, October 2006.

[20] I. Gent and T. Walsh. How not to do it. In Presented at the AAAI Work-
shop on Experimental Evaluation of Reasoning and Search Methods.
1994.

[21] M. Hollander and D. A. Wolfe. Nonparametric Statistical Methods.
John Wiley & Sons, Inc., Canada, 1999.

[22] J. N. Hooker. Testing heuristics: We have it all wrong. Journal of
Heuristics, 1(1):33–42, September 1995.

[23] E. J. Hughes. Assessing robustness of optimisation performance for
problems with expensive evaluation functions. In IEEE Congress on
Evolutionary Computation (CEC 2006), pages 2920–2927. IEEE Press,
USA, 2006.

[24] D. S. Johnson. A theoreticians guide for experimental analysis of
algorithms. In D. S. Johnson and C. C. McGeoch, editors, Proceedings
of the 5th and 6th DIMACS Implementation Challenges, pages 215–250.
American Mathematical Society, 2002.



408 Chapter 9. Advanced Topics

[25] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan Ann Arbor, MI, USA,
1975.

[26] K. A. De Jong. Genetic algorithms are NOT function optimizers.
In Proceedings of the Second Workshop on Foundations of Genetic
Algorithms, pages 5–17. Morgan Kaufmann, 1992.

[27] F. G. Lobo, C. F. Lima, and Z. Michalewicz. Parameter Setting in
Evolutionary Algorithms. Springer, 2007.

[28] C. MacNish. Benchmarking evolutionary algorithms: The Huygens
suite. In F. Rothlauf, editor, Late breaking paper at Genetic and
Evolutionary Computation Conference, Washington, D.C., USA, 25-29
June 2005.

[29] V. Nannen and A. E. Eiben. A method for parameter calibration and
relevance estimation in evolutionary algorithms. In Proceedings of the
8th annual conference on Genetic and evolutionary computation, pages
183–190. ACM Press, New York, NY, USA, 2006.

[30] V. Nannen and A. E. Eiben. Relevance estimation and value calibration
of evolutionary algorithm parameters. In Joint International Conference
for Artificial Intelligence (IJCAI), pages 975–980. Morgan Kaufmann
Publishers Inc., 2007.

[31] R. Peck, C. Olsen, and J. Devore. Introduction to Statistics and Data
Analysis. Duxbury Publishing, USA, 2005.

[32] E. S. Peer, A. P. Engelbrecht, and F. van den Bergh. CIRGUP
OptiBench: A statistically sound framework for benchmarking optimi-
sation algorithms. In The 2003 Congress on Evolutionary Computation,
volume 4, pages 2386–2392. IEEE Press, USA, 2003.

[33] R. L. Rardin and R. Uzsoy. Experimental evaluation of heuristic
optimization algorithms: A tutorial. Journal of Heuristics, 7(3):261–
304, May 2001.

[34] C. Reeves and C. Wright. An experimental design perspective on
genetic algorithms. In M. D. Vose, editor, Foundations of Genetic
Algorithms 3, pages 7–22. Morgan Kaufmann, San Francisco, CA, USA,
1995.

[35] C. R. Reeves and C. C. Wright. Epistasis in genetic algorithms: An
experimental design perspective. In Proceedings of the 6th International
Conference on Genetic Algorithms, pages 217–224. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1995.



9.6. Benchmarking Algorithms 409

[36] A. Saltelli. Making best use of model evaluations to compute sensitivity
indices. Computer Physics Communications, 145(2):280–297, 2002.

[37] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and Rajarshi Das. A
study of control parameters affecting online performance of genetic
algorithms for function optimization. In Proceedings of the third in-
ternational conference on Genetic algorithms, pages 51–60. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1989.

[38] H-P. Schwefel. Evolution and optimum seeking. Wiley, New York, USA,
1995.

[39] D. Whitley, S. Rana, J. Dzubera, and K E. Mathias. Evaluating
evolutionary algorithms. Artificial Intelligence - Special volume on
empirical methods, 85(1-2):245–276, 1996.

[40] X. Yao, Y. Liu, and G. Lin. Evolutionary programming made faster.
IEEE Transactions on Evolutionary Computation, 3(2):82–102, 1999.

[41] B. Yuan and M. Gallagher. Statistical racing techniques for improved
empirical evaluation of evolutionary algorithms. In Problem Solving
From Nature, volume 3242, pages 171–181. Springer, 2004.



410 Chapter 9. Advanced Topics



Part IV

Appendix

411





Appendix A

Ruby: Quick-Start Guide

A.1 Overview

All code examples in this book are provided in the Ruby programming
language. This appendix provides a high-level introduction to the Ruby
programming language. This guide is intended for programmers of an
existing imperative or programming language (such as Python, Java, C,
C++, C#) to learn enough Ruby to be able to interpret and modify the
code examples provided in the Clever Algorithms project.

A.2 Language Basics

This section summarizes the basics of the language, including variables, flow
control, data structures, and functions.

A.2.1 Ruby Files

Ruby is an interpreted language, meaning that programs are typed as text
into a .rb file which is parsed and executed at the time the script is run. For
example, the following snippet shows how to invoke the Ruby interpreter on
a script in the file genetic algorithm.rb from the command line: ruby

genetic algorithm.rb

Ruby scripts are written in ASCII text and are parsed and executed
in a linear manner (top to bottom). A script can define functionality (as
modules, functions, and classes) and invoke functionality (such as calling a
function).

Comments in Ruby are defined by a # character, after which the re-
mainder of the line is ignored. The only exception is in strings, where the
character can have a special meaning.
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The ruby interpreter can be used in an interactive manner by typing
out a ruby script directly. This can be useful for testing specific behavior.
For example, it is encouraged that you open the ruby interpreter and follow
along this guide by typing out the examples. The ruby interpreter can be
opened from the command line by typing irb and exited again by typing
exit from within the interpreter.

A.2.2 Variables

A variable holds a piece of information such as an integer, a scalar, boolean
or a string.

1 a = 1 # a holds the integer value '1'

2 b = 2.2 # b holds the floating point value '2.2'

3 c = false # c holds the boolean value false

4 d = "hello, world" # d holds the string value 'hello, world'

Ruby has a number of different data types (such as numbers and strings)
although it does not enforce the type safety of variables. Instead it uses
‘duck typing’, where as long as the value of a variable responds appropriately
to messages it receives, the interpreter is happy.

Strings can be constructed from static text as well as the values of
variables. The following example defines a variable and then defines a string
that contains the variable. The #{} is a special sequence that informs the
interrupter to evaluate the contents of inside the brackets, in this case to
evaluate the variable n, which happens to be assigned the value 55.

1 n = 55 # an integer

2 s = "The number is: #{n}" # => The number is: 55

The values of variables can be compared using the == for equality and
!= for inequality. The following provides an example of testing the equality
of two variables and assigning the boolean (true or false) result to a third
variable.

1 a = 1

2 b = 2

3 c = (a == b) # false

Ruby supports the classical && and || for AND and or OR, but it also
support the and and or keywords themselves.

1 a = 1

2 b = 2

3 c = a==1 and b==2 # true

A.2.3 Flow Control

A script is a sequence of statements that invoke pre-defined functionality.
There are structures for manipulating the flow of control within the script
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such as conditional statements and loops.
Conditional statements can take the traditional forms of if condition

then action, with the standard variants of if-then-else and if-then-elseif. For
example:

1 a == 1

2 b == 2

3 if(a == b)

4 a += 1 # equivalent to a = a + a

5 elsif a == 1 # brackets around conditions are optional

6 a = 1 # this line is executed

7 else

8 a = 0

9 end

Conditional statements can also be added to the end of statements. For
example a variable can be assigned a value only if a condition holds, defined
all on one line.

1 a = 2

2 b = 99 if a == 2 # b => 99

Loops allow a set of statements to be repeatedly executed until a
condition is met or while a condition is not met

1 a = 0

2 while a < 10 # condition before the statements

3 puts a += 1

4 end

1 b = 10

2 begin

3 puts b -= 1

4 end until b==0 # condition after the statements

As with the if conditions, the loops can be added to the end of statements
allowing a loop on a single line.

1 a = 0

2 puts a += 1 while a<10

A.2.4 Arrays and Hashs

An array is a linear collection of variables and can be defined by creating a
new Array object.

1 a = [] # define a new array implicitly

2 a = Array.new # explicilty create a new array

3 a = Array.new(10) # create a new array with space for 10 items

The contents of an array can be accessed by the index of the element.
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1 a = [1, 2, 3] # inline declaration and definition of an array

2 b = a[0] # first element, equivilient to a.first

Arrays are also not fixed sized and elements can be added and deleted
dynamically.

1 a = [1, 2, 3] # inline declaration and definition of an array

2 a << 4 # => [1, 2, 3, 4]

3 a.delete_at(0) # => returns 1, a is now [2, 3, 4]

A hash is an associative array, where values can be stored and accessed
using a key. A key can be an object (such as a string) or a symbol.

1 h = {} # empty hash

2 h = Hash.new

3

4 h = {"A"=>1, "B"=>2} # string keys

5 a = h["A"] # => 1

1 h = {:a=>1, :b=>2} # label keys

2 a = h[:a] # => 1

3 h[:c] = 3 # add new key-value combination

4 h[:d] # => nil as there is no value

A.2.5 Functions and Blocks

The puts function can be used to write a line to the console.

1 puts("Testing 1, 2, 3") # => Testing 1, 2, 3

2 puts "Testing 4, 5, 6" # note brackets are not required for the function call

Functions allow a program to be partitioned into discrete actions and
pre-defined and reusable. The following is an example of a simple function.

1 def test_function()

2 puts "Test!"

3 end

4

5 puts test_function # => Test!

A function can take a list of variables called function arguments.

1 def test_function(a)

2 puts "Test: #{a}"

3 end

4

5 puts test_function("me") # => Test: me

Function arguments can have default values, meaning that if the argu-
ment is not provided in a call to the function, that the default is used.
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1 def test_function(a="me")

2 puts "Test: #{a}"

3 end

4

5 puts test_function() # => Test: me

6 puts test_function("you") # => Test: you

A function can return a variable, called a return value.

1 def square(x)

2 return x**2 # note the ** is a power-of operator in Ruby

3 end

4

5 puts square(3) # => 9

A block is a collection of statements that can be treated as a single
unit. A block can be provided to a function and it can be provided with
parameters. A block can be defined using curly brackets {} or the do and
end keywords. Parameters to a block are signified by |var|.

The following examples shows an array with a block passed to the
constructor of the Array object that accepts a parameter of the current
array index being initialized and return’s the value with which to initialize
the array.

1 b = Array.new(10) {|i| i} # define a new array initialized 0..9

2

3 # do...end block

4 b = Array.new(10) do |i| # => [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

5 i * i

6 end

Everything is an object in ruby, even numbers, and as such everything
has some behaviors defined. For example, an integer has a .times function
that can be called that takes a block as a parameter, executing the block
the integer number of times.

1 10.times {|i| puts i} # prints 0..9 each on a new line

A.3 Ruby Idioms

There are standard patterns for performing certain tasks in Ruby, such
as assignment and enumerating. This section presents the common Ruby
idioms used throughout the code examples in this book.

A.3.1 Assignment

Assignment is the definition of variables (setting a variable to a value). Ruby
allows mass assignment, for example, multiple variables can be assigned to
respective values on a single line.
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1 a,b,c = 1,2,3

Ruby also has special support for arrays, where variables can be mass-
assigned from the values in an array. This can be useful if a function returns
an array of values which are mass assigned to a collection of variables.

1 a, b, c = [1, 2, 3]

2

3 def get_min_max(vector)

4 return [vector.min, vector.max]

5 end

6

7 v = [1,2,3,4,5]

8 min, max = get_min_max(v) # => 1, 5

A.3.2 Enumerating

Those collections that are enumerable, such as arrays, provide convenient
functions for visiting each value in the collection. A very common idiom is
the use of the .each and .each with index functions on a collection which
accepts a block. These functions are typically used with an in-line block {}
so that they fit onto one line.

1 [1,2,3,4,5].each {|v| puts v} # in-line block

2

3 # a do...end block

4 [1,2,3,4,5].each_with_index do |v,i|

5 puts "#{i} = #{v}"

6 end

The sort function is a very heavily used enumeration function. It returns
a copy of the collection that is sorted.

1 a = [3, 2, 4, 1]

2 a = a.sort # => [1, 2, 3, 4]

There are a few versions of the sort function including a version that
takes a block. This version of the sort function can be used to sort the
variables in the collection using something other than the actual direct
values in the array. This is heavily used in code examples to sort arrays
of hash maps by a particular key-value pair. The <=> operator is used to
compare two values together, returning a -1, 0, or 1 if the first value is
smaller, the same, or larger than the second.

1 a = {:quality=>2, :quality=>3, :quality=>1}

2 a = a.sort {|x,y| x[:quality]<=>y[:quality] } # => ordered by quality
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A.3.3 Function Names

Given that everything is an object, executing a function on a object (a
behavior) can be thought of as sending a message to that object. For some
messages sent to objects, there is a convention to adjust the function name
accordingly. For example, functions that ask a question of an object (return
a boolean) have a question mark (?) on the end of the function name. Those
functions that change the internal state of an object (its data) have an
exclamation mark on the end (!). When working with an imperative script
(a script without objects) this convention applies to the data provided as
function arguments.

1 def is_rich?(amount)

2 return amount >= 1000

3 end

4 puts is_rich?(99) # => false

5

6 def square_vector!(vector)

7 vector.each_with_index {|v,i| vector[i] = v**2}

8 end

9 v = [2,2]

10 square_vector!(v)

11 puts v.inspect # => [4,4]

A.3.4 Conclusions

This quick-start guide has only scratched the surface of the Ruby Pro-
gramming Language. Please refer to one of the referenced text books on
the language for a more detailed introduction into this powerful and fun
programming language [1, 2].
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