# directly running the DOE because existing surrogates can be explored with another workflow from numpy import random as r import time import importlib.util import multiprocessing # initialise the logic helpers r.seed(int(time.time())) heuristicpath = "/home/remi/Documents/MDAF-GitLAB/SourceCode/SampleAlgorithms/SimmulatedAnnealing.py" heuristic_name = "SimmulatedAnnealing" testfunctionpaths = ["/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin2.py", "/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin4.py", "/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin6.py"] funcnames = ["Bukin2", "Bukin4", "Bukin6"] objs = 0 args = {"high": 200, "low": -200, "t": 100, "p": 0.95} scale = 2.5 def doe(heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale): spec = importlib.util.spec_from_file_location(heuristic_name, heuristicpath) heuristic = importlib.util.module_from_spec(spec) spec.loader.exec_module(heuristic) proc = list() connections = [] #heuristic.MyClass() for idx, funcpath in enumerate(testfunctionpaths): testspec = importlib.util.spec_from_file_location(funcnames[idx], funcpath) func = importlib.util.module_from_spec(testspec) testspec.loader.exec_module(func) #func.MyClass() initpoint = [r.random() * scale, r.random() * scale] connections.append(multiprocessing.Pipe()) proc.append(multiprocessing.Process(target=heuristic.main, name=funcnames[idx], args=(func, objs, initpoint, args, connections[idx][0]))) responses = [] for idx,process in enumerate(proc): process.start() responses.append(connections[idx][1].recv()) print("started :" + str(initpoint) + "\nEnded :" + str(responses[0])) doe (heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale)