# directly running the DOE because existing surrogates can be explored with another workflow from numpy import random as r import time import importlib.util import multiprocessing # initialise the logic helpers r.seed(int(time.time())) heuristicpath = "/home/remi/Documents/MDAF-GitLAB/SourceCode/SampleAlgorithms/SimmulatedAnnealing.py" heuristic_name = "SimmulatedAnnealing" testfunctionpaths = ["/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin2.py"] funcnames = ["Bukin2"] objs = 0 args = {"high": 200, "low": -200, "t": 0.01, "p": 0.8} scale = 62 def doe(heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale): spec = importlib.util.spec_from_file_location(heuristic_name, heuristicpath) heuristic = importlib.util.module_from_spec(spec) spec.loader.exec_module(heuristic) proc = list() #heuristic.MyClass() for idx, funcpath in enumerate(testfunctionpaths): testspec = importlib.util.spec_from_file_location(funcnames[idx], funcpath) func = importlib.util.module_from_spec(testspec) testspec.loader.exec_module(func) #func.MyClass() initpoint = [r.random() * scale, r.random() * scale] proc.append(multiprocessing.Process(target=heuristic.main, name=funcnames[idx], args=(func, objs, initpoint, args))) best = proc[idx].run() print("started :" + str(initpoint) + "\nEnded :" + str(best)) # simulatedAnnealing(S = [9.00,4.00],y = 0,high = 10,low = -8,t =0.01,p = 0.8) # proc = subprocess.call(["python", heuristic, "arg-15", "arg2", "argN"]) doe (heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale)