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Abstract Them are many errors being introduced into SRS's. 
In 1981, h i l i ' s  requirements specification team reported 
88 errors in the 400 page A-7E operational Flight Numerous treatises exist that define appropriate qualities 

that should be exhibited by a well written software requirements specification [BAs811. 

writing experts. Also in the late 1970's, celko reported vaguely defined. This paper explores thoroughly the 
concept of quality in an SRS and defines attributes that that applying tools to an sRS for 
contribute to that quality. Techniques for measuring an existing Army system 

revealed the presence of many hundreds of errors these attributes are suggested. 

I. Introduction [CEL81]. DeMarco, as quoted by Tavohto and Vincena 

requiremats specification (sRs)' In most - are And that SRS was written by a group of requirements 

Software metrics may be used to measure attributes of 
software process or intermediate or final products of 
software development. One early intermediate product of 
software development is the software requirements 
specification. A software requirements specflcation 
(SRS) is a document that describes all the externally 
observable behaviors and characteristics expected of a 
software system. Generally, a qualiry SRS is one that 

[TAV84], reports that 56% of all errors ever made on a 
software development effort can be traced to errors in the 
SRS. Boehm reports that 45% of all errors made on 
software development efforts at TRW can be traced to 
either requirements or design [BOE75]. 
Obviously, if we can better understand how to recognize 
and measure quality in an SRS, we will be better 
equipped to detect errors in the SRS. 

contributes to successful, cost-effective creation of To make matters worse, SRS errors need to be 
software that solves real user needs. detected during the requirements phase, or the cost to 
ouality SRS is one that exhibits the following qualities: repair them will grow significantly. Three analyses 

Specifically, a 

_ _  * -  

1. Unambiguous 13. Elcctmnically Stored 
2. Comolete 14. ExecutablelIntemretabIe 

PAL77, BOE76, FAG741 provide conclusive evidence 
that the later in the life cycle an error is detected and 

T 

3. Comct 15. Annotated by R&ve Importance repaired, the more it will cost. These show a 200: 1 ratio 
4. Understandable 16. by Relative Stability between detecting and repairing an error during 

requirements vs. maintenance phases. It is only with data 5 .  Verifiable 17. Annotated by Version 
6. Internally Consistent 18. Not Redundant 
7. Externally Consistent 19. At Right Level of Detail from Boehm [BOE75] that we can also see that the reason 
8. Achievable 20. Mi for the cost increase is that errors are remaining latent. 
9. Conciac 21. Reusable 
10. Design Independent 22. Traced 

12. Modifiable 24. Croas-Referenced 
11. Traceable 23. organized 

The purpose of this paper is to provide the beginnings for 
definitions of metrics suitable for these qualities. 
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That is, if we detect an SRS error when writing all we 
do is fix it. If we detect that same SRS error during 
design, we must fix both the design as well as the SRS. 
If we detect the same SRS error during coding, we must 
fix the code, design, and SRS, etc. WIZ831. If we can 
better understand how to recognize SRS quality, we will 
be better equipped to detect SRS errors and thus prevent 
them from remaining, and thus costing more to detect 
and repair. Let us not fail to recognize that t h m  are two 
different general classes of requirements errors: 
knowledge errors and specification errors. Knowledge 
errors are caused by not knowing what the true 
requirements are. Specifcarion errors are caused by not 
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knowing how to adequately specify requirements. 
Knowledge errors can be r e d d  through prototyping 
[ANDSg, DAV921. However, there may exist 
knowledge errors that cannot be found until after the 
system is deployed. There is little excuse for 
specification errors. 

The above list of SRS qualities is a compilation of 
lists made by others. See Figure 1. These authors 
however have not attempted to provide useful ways of 
measuring SRS quality. The implications if we ignore 
SRS quality are [DAV93]: 
- 
- - 

The resulting software may not satisfy user needs 
Multiple interpretations may cause disagreements 
between customers and developers 
It may be impossible to thoroughly test [DAVgOa] 
The wrong system might be built. 

As attempts are made to achieve quality in an SRS, 
me must be carehl to recognize that although quality is 
attainable, perfection is not. Any of the above 24 quality 
attributes can be achieved, but often at the expense of 
other attributes. On any one given project, requirements 
writers need to agree as to which quality attributes are 
most important, and strive for those. 

II. SRS Quality Attributes 
A quality SRS is one that exhibits the 24 attributes listed 
in the introduction, i.e., is devoid of any errors that 
would violate these attributes. The following 24 sub- 
sections (1) define each attribute, (2) provide ideas on 
measuring the attribute, (3) provide the attribute with a 
recommended weight relative to other attributes, and (4) 
describe types of activities that can be used to optimize 
presence of that attribute. In all cases, we assume there 
are n,. requirements in the SRS, and the set of all these 
requirements is denoted as R. In addition, we assume 
that there are nffunctional requirements (R$ and n p o n -  
functional (i.e., ilities) requirements (Rn$ in the SRS, 
where n,. = nf + n n ,  and R = RfU R n ,  

2.1 Unambinuous 
An SRS is unambiguous if and only if every requirement 
stated therein has only one possible interpretation 
[IEEM]. Ambiguity is a function of the backgrounds of 
the reader. For example, "generate a dial tone" may be 
ambiguous to non-telephony people because they do not 
realize that standards exist that demand a dial tone be of a 
specific frequency. Due to these standards, telephony 
people in domestic systems may see the term as totally 
unambiguous. Strangely, telephony people in domestic 
and intemational systems would once again find it 
ambiguous due to conflicting standards. 

Certain languages are inherently more ambiguous than 
other languages. Perhaps there is a measure of inherent 
ambiguity of votiouS languages. Deterministic finite 
state machines (FSM), Petri nets (PN), decision trees 
(DT), propositional calculus, predicate calculus and many 
others all have well defined semantics and thus suffer 
from no inherent ambiguity. Natural language or any 
f o d i s m  that includes natural language (e.g., structured 
English) has much inherent ambiguity. Once you choose 
to use less ambiguous forms of expression, the specific 
choice will be driven primarily by expressive power and 
suitability for the aspect of the system, than by its 
inherent ambiguity. Since ambiguity is primarily in the 
eyes of the reader, one way to "re it is via review, 
i.e., as the percentage of requirements that have been 
interpreted in a unique manner by all its reviewers, i.e., 

where nui is the number of requirements for which all 
reviewers presented identical interpretations. This ranges 
from 0 (every requirement has multiple interpretations) to 
1 (every requirement has a unique interpretation). 
Because unambiguity is so critical to project success, we 
recommend a weight of 1, i.e., Wl = 1. 

Replacing natural language with formal notations, 
e.g., FSMs, PNs, DTs, greatly decreases ambiguity in 
the SRS but almost always at the expense of understand- 
ability'. A better approach is to augment natural lan- 
guage with more formal models. That way, the advan- 
tages of both satural and formal languages are preserved. 

2.2 Comdete 
An SRS is complete if: 

Everything that the software is supposed to do is 
included in the SRS [DAV93] 
Responses of the software to all realizable classes of 
input data in all realizable classes of situations is 
included PE841 
All pages numbered; all figures and tables 
numbered, named, and referenced; all terms 
defined; all units of measure provided; and all 
referenced material present DE841 
No sections marked "To Be Determined" [DAV93]. 

'Decision trees arc one of the few exceptions. m e n  applicable, they 
can be used with no explanation urd can be easily u n d e d  by the 
layperson. 
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Requirements Quality 
Factor 

Unambinuous 

Reference 

B A B D B Z C I N E D J C D R D  
O L E A A A E E C S O P A A O A  
E F L V S V L E C A D L R V M V  
74 76 76 79 81 81 83 84 87 87 88 88 90 90 90 93 

x x x x x x x x x  X x x x  
Complete 

Correct 

Understandable 

Verifiable 

Consistent (Internal) 

Consistent (External) 

x x x x x x x x x x  X x x x  
x x  X X x x x  
X X x x x x x x  x x x  
x x  X X x x x  x x x  

x x x x x x x x x x x x  x x x  
X x x x x  x x  

Achievable x x  X X 

Concise I X X 
Design Independent 

Traceable 

Modifiable 

Electronically Stored 

Interpretable/ 
PrototvDable 

Annotated by Relative 
Imwrtance 

x x x  X X X 
x x  X X X x x x  

X x x  X x x x  
X 

X X 
I 

X X X X 
Annotated by Relative 

Stability X X X 

Annotated by Version I 
NotRedundant I X X X X X X X 

At Right Level of Detail I X 
Precise I X x x  X 

Reusable I 
Traced X x x  x x  X X 

Organized X X x x  
Cross-Referenced 

Figure 1. Attributes of an SRS 

Obviously, if an SRS is incomplete by the first 
meaning, users will not be satisfied when the system is 

about intended behavior, and those assumptions may be 
false, leading once again to unsatisfied users. 

Given the first definition, completeness is extremely 
difficult to measure; it is generally agreed that the more 

deployed. If an SRS is incomplete by any other 
definition, developers are likely to make assumptions 

requirements we include inan SRS (Or see in a system), 

143 

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on November 16,2020 at 05:28:53 UTC from IEEE Xplore.  Restrictions apply. 



the more new requirements we will think of. We are thus 
trying to a moving target. However, using the 
secund blinition, there are some metria that do make 
sense. For example, completeQass implies that the func- 
tion f(staten stimulus) --> (state, response) is d e . M  for 
all elemeuts in the cross product state x stimulue. 
Assuming we count numbers of inputs, i.e., stimuli (ni> 
specified in the SRS, and numbers of states (ns) defined 
in or implied by the SRS, then we know their product (ni 
x n,) is the total number of function values that must be 
specified. If we now count the actual unique functions 
(a3 specified (Note that nu c = nfbecause some of the 
y functions could be redundant), we can measure 
completeness by the equation, 

nA 
nA+ nB+ nc+ nD 

where nAn nBn ncn and nD are numbers of requirements in 
blocks A, B, C, rrnd D, respectively. Values range from 
0 (totally incomplete) to 1 (complete). Since we do not 
know how to measure the areas of blocks C or D, an 
alternative might be: 

nA 

nA + nB. 
QZt = 

Once again, values range from 0 (totally incomplete) to 1 
(complete). 

n 

nix ns. 
Q2 = h. 

This measures percentage of necessary functions 
specified. It may be useful in well understood, bounded, 
problem d o h .  It does not address completeness of 
non-functional requirements. Jaffe, et al. [JAF91] have a 
done a remarkable job of delineating all types of 
requirements that must be present in a FSM-based SRS in 
order to declare it complete. 

In less understood, less bounded, problem domains, it 
is likely that stimuli and states specified in the SRS are 
themselves incomplete. Alexander [ALE901 provided 
ideas that may be of help here. Figure 2 provides an 
omniscient view of all requirements for a system, i.e., 
assume we are able to look to the future and ascertain all 
requirements that users will ever need. Block A repre- 
sents requirements that we know, and that we know are 
applicable to this problem; these are the requirements 
typically captured in an SRS. Block B represents re- 
quirements that we know, but have not really thought 
about or verbalized; these are typically uncovered during 
interviews or brainstorming. Of course, once uncovered, 
they move to block A. Block C represents requirements 
that we know we need, but don't understand them well 
enough to describe them; these are typically uncovered 
during prototyping. Once uncovered, they move to block 
A. Block D represents potential requirements that we 
don't know, and that we don't even know we don't 
know. Prototyping may help uncover these because 
sometimes seeing one feature makes us aware of another. 
Once uncovered, they tend to move to block B. Arrows 
in Figure 2 show requirements migration. Notice the 
trend is all requirements moving to block A. All 
requirements in block A is equivalent to the first 
definition of completeness. A measure of the percentage 
of requirements that are in block A could be an effective 
measure of completeness, i.e., 

A -  

W. ho*r 
wa h o w  Illam. 

C 

W. h o w  

Wa daf t  h o w  mac. 

w. "1 I(n0rv 

- 
B 

D 

Figure 2. Alexander's Requirements Completeness 
Model 

Another altemative is to measure local completeness, 
i.e., percentage of all recognized requirements that have 
been documented in the SRS. Figure 3 is a variation of 
Figure 2 where the vertical axis represents whether or not 
a requirement appears in the SRS, and the vertical axis 
represents the degree to which a requirement is 
understood. Block A represents requirements that we 
know, and that we have captured. Block B represents 
requirements that have been documented, but are either 
poorly specified, abstractly stated, or not yet validated. 
Once h, they move to block A. Block C represents 
requirements that we know we need, but have not yet 
specified. Once documented, they move to block A. 
Block D represents potential requirements that we don't 
understand well enough to document. If we choose to 
specify them abstractly (as a place holder), they move to 
block B. If we choose to investigate their validity first, 
say via a prototype, and we grow to understand them, 
then they move to block C. Arrows in Figure 3 show 
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requirements migration. Notice the trend is all 
"& moviag to block A. Given this model, we 
could measure completeness as the p e " b g e  of 
requirements in the SRS that are well u n w ,  i.e., 

or alternatively (u1 the pawatage of known requiremeats 
that have beep documnted in the SRS, i.e., 

"r 
nA+ ng+ ne+ no Qy = 

where nA, ngr nc, and n4 are numbers of requirements in 
A, B, C, and D, reqectwely. In both cases, nr = nA + 
nB and values range from 0 (totally incomplete) to 1 
(complete). Regardless of which is used, we recommend 
a weight of ppprox. .7, i.e., W2-.7 because complete- 
ness is critical to project success but difficult to measure. 

In 
8Rs 

Not In 
SRS 

A 
t- 

Not Undwstmd 

I - 
D 

P i p  3. Local Requirements Completeness Model 

To achieve completeness by any definition, reviews of 
the SRS by customer or user are essential. Prototypes 
also help raise awareness of new requirements and help 
us better understand poorly or abstractly defined 
requirements [AND89, DAV921. 

2.3. Correct 
An SRS is correct if and only if every requirement repre- 
sents something required of the system to be built 
[DAV93], i.e., every requirement in the SRS contributes 
to the satisfaction of some need. 

Since the term correctness applies to an individual 
requirement and an entire SRS, one convenient way of 
measuring correctness of an SRS might be to measure the 
percentage of individually correct requirements, i.e., 

where nc and nI are the numbers of correct and incorrect 
requirements, repctively, a d  nr = nc + nP Values 
range from 0 (totally incorrect) to 1 (totally correct). 
Ironically, if we could "sure correctness by the above 
formula, we would have to know which requirements 
were incorrect, and we would remove them, making it 
10096 correct! Thus applying the above formula will 
always result in a of 1. A more practical, but less 
theoretically satisfying, is to "re percentage of 
requirements in the SRS tbat have been validated. We 
arrive at a more practical "e of completeness: 

"c - - "C 

ne+ nNv "r 
Q3 = 

where nc and nm are numbers of correct and not (yet) 
validated requirements, respectively, and once again, nr 
= nc + nw Because correctness is so critical to project 
success, we recommend a weight of 1, i.e., W3 = 1. 

There is no oracle against which to validate 
correctness of a requirement. The only technique is to 
involve people who have the problem or mission. In 
effect, they serve as oracles. They can read and study the 
SRS, or can witness or manipulate a prototype. 

2.4 Understandable 
An SRS is u ~ s t u n d a b l e  if all classes of SRS readers 
can easily comprehend the meaning of all requirements 
with a minimum of explanation. Readers include cus- 
tomers, users, project managers (PM), software develop- 
ers, and testers. In general, the first three desire ease of 
reading, and thus natural language is ideal. Obviously, if 
users and customers cannot understand the SRS, they 
cannot intelligently approve it, leaving success of the 
product outcome to chance. In general, the last two 
desire to ascertain precisely what the system is expected 
to do, and thus formal language is ideal. Obviously, if 
designers and testers cannot understand the SRS, it is 
impossible to build or test the system. The burden of 
creating an understandable SRS falls on the shoulders of 
the writers; it is not the readers' responsibility to learn 
everything writers know in order to digest the SRS. 
Measuring understandability is difficult. If we could 

measure the degree of understandability on a scale, we 
have a graph like Figure 4. A point reflects the degree to 
which an SRS is understandable by two categories of 
readers. Use of a technique may contribute to moving 
this point, e.g., adding DTs (which appear regularly in 
common literature without semantic explanation) to an 
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SRS in an appropriate manner would move the point 
toward the northenst, i.e., increased understandability by 
both parties. Adding PNs to M SRS in an appmprinte 
manner would move the point toward the southeast, i.e., 
increased understandability by developers and testers, but 
decreased understandability by customers, users, and 
PMs. The only measure we can conceive of is 

a=% 
"r 

when nUr is the number of requirements for which all 
reviewers thought they understood. This ranges from 0 
(every requirement understood) to 1 (no requirement 
understood). Because understandability is so critical tc 
project success, we recommend a weight of 1, i.e., 
w,= 1. 

High 

vnd.nm- 

-r 
by U m  

aamtan 

Low 

Figure 4. Measuring Understandability 

A variety of techniques are available to determine 
and/or improve SRS understandability. First is to let 
representatives of all reader classes read it and comment. 
Assuming this is done repeatedly, and the SRS is revised 
accordingly, it may converge upon understandability. 
Augmentation with a prototype can improve effective 
understandability because it is often easier to see a 
prototype's behavior than to read a document. 

2.5 Verifiable 
An SRS is verifiable if there exist finite, cost effective 
techniques that can be used to verify that every require- 
ment stated therein is satisfied by the system as built. 
some requirements are easy to test: WHENEVER THE 
BUTTON X IS BEING PRESSED, THE LIGHT L SHALL BE LIT. 
Others are difficult to test: THE SOFIWARE SHALL 

EXHIBIT A FRIENDLY EASY-TO-USE -ACE THE 
USER. There am a variety of reasons why a requirement 

a. Ambiguous. Any requirement with ambiguity will 
fare poorly for verifiability. If multiple 
interpretations exist for a requirement, there is no 
way to verify it [DAV9Oa]. 

b. Undecidable. Any requirement that is equivalent to 
the halting problem renders it unverifiable. Thus the 
requirement THE SYSTEM SHALL NEVER HALT is not 
verifiable. 

c. Not worth cost ( k c i a l  or life). For example, the 

mpy be w f i d t  (0 verify: 

requirement, IN THE CASE OF A REACTOR MELT- 
DOWN, THE SY- SHALL REDUCE THE DEATHS OF 
PERSONNEL A 20 MILE RADNS BY AT LEAST 
80% is not worth the cost to test. 

Measurement of verifiability is difficult. When 
verifiability is related to ambiguity, we have already seen 
it is impossible to adequately measure (see Section 2.1). 
When verifiability is related to the halting problem, the 
requirement either is or is not verifiable. A measure of 
percentage of requirements whose verification is unde- 
cidable is not helpful. There are some measurement 
avenues for cost-effectiveness or finiteness of the verifi- 
cation approach. If c(ri) and t(ri) are the cost and time 
necessary to verify presence of requirement ri, then 

"r 
e5 = 

"r + c c ( q ) +  Ct(TI) 
i i 

measures inherent SRS verifiability where 0 means very 
poor verifiability, and 1 means very good verifiability. 
Verifiability is relative important to project success, so 
we recommend a weight of .7, i.e., W5 = .7. 

Techniques to help verifiability are (1) all techniques 
described above for ambiguity, (2) knowledge of unde- 
cidability and review for its presence+ and (3) review of 
SRS by experienced testers who can determine high cost 
or schedule testing implications. 

2.6. Intemallv Consistent 
An SRS is internally consistent if and only if no subset of 
individual requirements stated therein conflict [IEE84]. 

Measuring intemally consistency is easier if we think 
of the SRS as defining a function that maps inputs and 
states into outputs and states, Le,. treat it as an FSM. A 
consistent SRS is now one that can be described as a 
deterministic FSM. Any nondeterminism implies the 
SRS defines two different system responses or next states 
in identical situations. Assuming that we enumerate all 
stimuli (nj) specified and all states (ns) defined in or 
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implied by the SRS, then we know there should be 
exactly (ni x ns) total function valuea that must be 
specified to be complete, consistent and non-redundant. 
We now count the actual unique functions (nJ specified 
(Note: nu < = nz), and we count how many of them are 
nondeterrrrrm 'stic (nJ, i.e., how many of them mpp the 
same point in the domain into differemt points in the 
range. Then a measure of intemal coluaisteacy is the 
percentage of unique functions that are determiaistic: 

Values range from 0 (100% intemally inconsistent) to 1 
(100% internally consistent). Internal consistency is 
critical to project success, so we recommend a weight of 
1, i.e., W6=1. 

Intemal consistency is most easily achieved with 
tools like RLP [DAV79a] or REVS [ALF85]. Both 
provide consistency error reports for SRSs specified 
using multiple FSMs. Most CASE tools do consistency 
checking for data flow diagrams (DFD) and rudimentary 
consistency checking among DFDs and FSMs. 

2.7 Externallv Consistent 
An SRS is externally consistent if and only if no require- 
ment stated therein conflicts with any already baselined 
project documentation. These baselined documents 
include system-level requirements specifications (RS), 
statements of work (SOW), white papers, an earlier 
version of the SRS to which this new SRS must be 
upward compatible, and RSs for other systems to which 
this system must interface. 

Measuring external consistency is more difficult than 
intemal consistency. The best measure we can arrive at 
is the percentage of requirements that are consistent with 
all other documents, i.e. , 

"EC = - "EC 
Q7 = 

"EC+ nEJ "r 

where nEc is the number of requirements in the SRS that 
are consistent with all other documents and nm is the 
number that is not. Note that n,. = nEc + nu Extemal 
consistency is critical to project success, so we 
" m e n d  a weight of 1, i.e., W7= 1. 

To ensure external consistency one must create and 
maintain full cross-references between all requirements 
and relevant statements made in other documents (see 
Section 2.22). However, maintaining external 
consistency may entail more than this. For example, it 
might be that a s o h a r e  development plan (SDP) or a 
development contract states that development effort must 

consume no more than S1M or last no more than 18 
months, but the SRS &finea so many requirements that it 
is impossible to meet coet or schedule. Here the problem 
is not individual requirements but the combined effect of 
all requirembllte. The SRS must be reviewed 
simultaamly with all possible umflicting documeuts, 
including SOW, development contract, d SDP. 
2.8 Achievable 
An SRS is uchicvable if and only if there could exist at 
least one system design and implementation that correctly 
implements all the requirements stated in the SRS. 
Achievability, Q8, is a "re of the existence of a 
single system and thus has a discrete value of 1 or 0, i.e., 
a set of requirements are either achievable or given 
acceptable development ~e8ou~ces they are not. A weight 
of Ws=l is appropriate. The best way to ensure 
achievability is to collstnrct a working prototype of parts 
of the system where achievability may be in doubt. 

2.9 Concise 
An SRS is concise if it is as short as possible without 
adversely affecting any other quality of the SRS. Thus if 
we have two SRS's that describe the identical system, 
with identical measures of qualities for the 23 other 
quality attributes, then the shorter one is better. 

One way to measure conciseness is to count pages. 
However, comparative SRS sizes are only important after 
we are sure they describe identical systems. In general, 
determining if two SRSs describe identical systems is 
undecideable. The ultimate in conciseness is the null 
SRS; this should a m  a 1. The worst case of conciseness 
is an SRS of infinite size; and score zero. One metric 
that exhibits these properties is the hyperbole: 

%=- 1 
size+ 1 

where size is the number of pages. An appropriate 
weight is probably W9=.2. 

Major reductions in SRS size are rarely possible 
without adversely effecting other qualities. The primary 
exception is when writers are prone to baroque writing, 
e.g., THE CHECK PRINTING FUNCTION OF THE PAYROLL 
SYSTEM SHALL PROVIDE THE CAPABLK'Y TO VALIDATE 

SYSTEM SHALL VUWATE CHECK AMOUNTS and -re 
CHECK AMOUNTS can be shortened to THE PAYROLL 

higher for conciseness and understandability. 

2.10 Desien-Indewxident 
An SRS is design independent if and only if there exist 
more than one system design and implementation that 
correctly implements all requirements stated in the SRS. 
The purpose of the SRS is to express desired extemal 
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behavior to a degree that user satisfaction is guaranteed 
and a maximum number of designs exist to satisfy those 
needs and behaviore. It is okay to describe external 
behavior of a solution system using M FSM as long as it 
is clearly stated that  the^ solution system must behave 
externally the same way that the FSM behaves externally. 
It is not okay to include an FSM and imply that the 
solution system must be designed as an FSM. 

Let us assume that the requirements in the SRS 
include some (Rd that describe pure external behavior, 
and some (R$ that directly address architecture or 
algorithms of the solution (Note that R = RE U RI). 
Then there exists some number of actual solution system 

some number of ttctual solution system designs @(RE)) 
that satisfy only those e x t e d  behavior requirements. 
Design independence can be measured as the percentage 
of possible solution systems that are eliminated by adding 
the overly constraining requirements: 

designs @(RE U RI)) that satisfy all requirements, and 

U R,) 
W E )  - Q1o = 

Values range from 0 (highly design dependent) to 1 
(design independent). Projects can still succeed with 
poor design independence, but their su- becomes 
hampered. For that reason, we give it weight Wlo= .5. 

One effective technique to ensure design independ- 
ence is to have designers review the SRS. In general, 
designers take pride in their ability to synthesize an 
optimal design. Therefore they are likely to have a 
tremendous ego investment in finding ways to reduce 
design dependence of the SRS. 
2.11 Traceable 
An SRS is traceable if and only if it is written in a man- 
ner that facilitates the referencing of each individual 
requirement [DAV93]. During design and test it is 
essential to know which requirements are being supported 
by the component or verified by the test. Without this, it 
is impossible to design or test in a quality manner. 

0 

An SRS is either traceable or it is not. An SRS could 
contain some traceable requirements and some not 
traceable. However, this should render the entire 
document untraceable. Traceability, Qll ,  eams a score 
of 1 if it exhibits any of the qualities described below, or 
0 if it does not. There are a variety of effective 
techniques for achieving traceability [DAV93]: 

Number every paragraph hierarchically. You can 
later refer to any by a paragraph and sentence num- 
ber, e.g., requirement 2.3.2.4~3 refers to the 
requirement in sentence 3 of paragraph 2.3.2.4. 

Number every paragraph hierrvchicaly and include 
only one requirement in any paragraph. You can 
refer to any by a parpgraph number. 
Number every requirement with a unique number in 
pareatheses immediately afker the requirement. 
Use a convention for indicating a requirement, e.g., 
always use the word shd2 in a seatence containing a 
requimmcn~ then use a simple shallexrraction tool to 
extract and number all se~tence with shull. 

2.12 Mod ifiable 
An SRS is &@able if its structure and style are such 
that any changes can be made easily, completely, and 
consistently pEE841. There are two primary reasons for 
modifiability: (1) needs always evolve, aud (2) the SRS, 
like all complex softwarerelated documents, will contain 
errors. As needs evolve, the SRS will be modified to 
capture new, record changes to old, or delete obsolete 
requirements. Obviously, modifiability is enhanced if 
the SRS is also traceable (see Section 2.11), in w h i n e  
readable form (see Section 2.13), traced (see section 
2.22),0rgpnized (see Section 2.23), and cross-referend 
(see Section 2.24). Modifiability is also enhaad if it 
includes a table of contents and index. 

Since most factors are already included in other 
mtrics, we will "re modifiability, QI2, here as: 1 
if table of contents and index are present and 0 otherwise. 
Its weight is highly dependent on the application. 

We know that inherent modifiability of a program is 
related to the degrees of cohesion exhibited by its 
components and coupling existent between components 
[yOU79]. As defined by Yourdon and Constantine, 
these meawes make no sense for requirements, but 
perhaps similar "res can be developed for SRSs so 
we can mearmre cohesion of an SRS section or degree of 
interrelatedness between two SRS sections. 

2.13 Electronicallv Stored 
An SRS is ekctronicalIy stored if and only if the entire 
SRS is in a word processor, it has been generated from a 
requirements database or has been otherwise synthesized 
from some other form. Usually, an SRS is either stored 
electronically or it is not. However, one could measure 
the percentage of the volume of the SRS that has been 
electronically stored and call it Q13. Its weight is 
application dependent. 

2.14 Executable/Iotemretable@mt~ ble 
An SRS is executable, interpretable, or prototypabk if 
and only if there exists a software tool capable of 
inputting the SRS and providing a dynamic behavioral 
model. This might be achieved by the SRS being written 
in a language that (1) is directly understood by a 
computer, or (2) is translatable into a language directly 
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understood by a computer, or (3) can be interpreted by a 
software tool and thus simulated. 

SRSs may be partially written in an executable, 
interpdable, or prototypable language. Therefore the 
metric Qlr ranges h m  0 (entirely not executable) to 1 
(entirely executable). Its weight is highly dependent on 
the application. 

The best technique to ensure executability is to use 
any c o " 5 a U y  available tool that provides such 
execution of PAISLey [ZAVMI, RAPID 
wAS86], and !3TATEMATE [HARSS]. Dozeus of 
DFD-based CASE tools claim to also provide such 
executability, but axecution is limited to DFDs where 
behavior of each bubble is defined using some behavioral 
model (e.g., FSMs, DTs), and the semantics of the 
DFDs are augmented with execution precedence rules. 
These CASE tools can also be used but power, 
versatility, and requirements orientation of behavioral 
models are superior to DFD-based specifications. 

2.15 Annotated bv R elative Imrtan ce 
An SRS is annotated by relative importance if a reader 
can easily determine which requirements are of most 
importance to customers, which are next most important, 
etc. This is n d d  to allocate dollars sensibly, and 
determine priorities #hen budgets are inadequate. 

Typically, an SRS is either annotated by relative 
importance or not. Obviously we can calculate the 
percentage of requirements that are annotated and use that 
as a measure, Q15. Its weight is application dependent. 

One way to achieve this is to suffix every requirement 
with (M), (D) and (0) to denote that this requirement is 
mandatory, desirable, or optional. 

2.16 Annotated bv Relative Stability 
An SRS is annotated by reh iw  stability if a reader can 
easily determine which requirements are of most likely to 
change, which are next most likely, etc. Designers need 
this to help determine where to build in flexibility. 
Kuowhg the relative stability can help a team decide 
whether or not to build in that flexibility. 

Typically, an SRS is either annotated by relative 
stability or not. Obviously we can calculate the 
pemntage of requirements that are annotated and use that 
as a measure, QI6. Its weight is application dependent. 

One way to achieve this is to suffix every requirement 
with (H), (M) and (L) to denote whether the probability 
of change is high, medium, or low. 

149 

v .  
An SRS is annotazed by version if a reader can easily 
determine which requimamts will be satisfied ia which 
versions of the product. Both customers and designers 
obviously need to larow this. 

Like the previous two annotations, and SRS is either 
annotated by version or not. The percentage of 
requirements annotated by version is a reasonable 
measure, Q1,. It is assumed that an SRS written for just 
one version of the sof&ware is Mly annotated (by default) 
and thus scores a 1. Its weight is application dependent. 

The most commoa way of annotating requirements by 
version is to add a column in the margin for each version 
of software to be produced. "X's are placed beside each 
requirement in the respective columns. 

2.18 Not Redundant 
An SRS is redundant if the same requirement is stated 
more than once. Unlike the other 23 attributes, 
redundancy is not necessarily bad. Often redundancy can 
be used to increase readability of the SRS significantly. 
The only problem that redundancy causes is when an SRS 
is revised. If all OCcUrrCnCes of a redundant requirement 
are not changed then the SRS becomes inconsistent. 

If we count the actual functions (n specified, and the 
actual unique functions (nd specifisdf then a measure of 
nonredundancy in an SRS is the percentage of unique 
functions that are not repeated, i.e., 

n. 
Q -x. 

18 - "" 
Values range from 0 (completely redundant) to 1 (no 
redundancy). Weight will usually be 0. 

Since redundancy is not necessarily bad, no technique 
should be applied specifically. There are techniques that 
reduce the risks involved in using redundancy. These 
include incorporation of an index and cross refereaces 
among any redundant requirements. 

2.19 At Right Level of AbstractionlDetail 
Requirements can be stated at many levels of abstraction. 
These examples of requirements range from most abstract 
to most detailed, but all are in the requirements domain: 

8. SYSTEM SHALL PROVIDE COMMUNICATIONS. 

b. SYSTEM SHALL PROVIDE VOICE COMMUNICATIONS. 

C. TELEPHONE SYSTEM SHALL PROVIDE VOICE 

d. TELEPHONE SYSTEM SHALL PROVIDE mAL CALLS, 

COMMUNICATIONS. 

CALL FORWARDING, LONG DISTANCE CALLS.. . . 
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e. -HONE S H A U  PROVIDE LONG DISTANCE CALLS 
WHERE USER LIFTS IDLE PHONE, DIAL TONE IS HHA&D 
WII" 3 SECONDS, USER DIALS N m ,  b&"E 
DIAL TONE IS HEARD WITHIN 2 SECONDS, ETC. 

The right level of detail is a function of how the SRS is 
being used. Generally, the SRS should be specific 
enough that any system built that satisfies the require- 
ments in the SRS satisfies d user needs, and abstract 
enough that all systems that satisfy all user needs also 
satisfy all quire&mts. Thus, an SRS being used for a 
contract between customer and developer should be rela- 
tively specific to emure the customer knows what is 
being acquired, and them are a minimum of surprises. 

We cau certainiy develop ways to subjectively 
measure the abstraction level of an SRS. All we do is 
assign a number to each of the five above examples, 
examine a requirement, decide which example it is 
closest to, and assign it that value. The level of abstrac- 
tion of the SRS, QI9, is then the average of the values of 
each of its constituent requirements. The problem with 
this is that our goal is not to "fe the level of abstrac- 
tion of the SRS but to "re the appropriateness of the 
level of abstractioq. This is highly scenario dependent 
and cannot be mearmred. 

2.20 Precise 
An SRS is precise if and only if (a) numeric quantities 
are used whenever possible, and (b) the appropriate levels 
of precision are used for all numeric quantities. Thus, 
THE SYSTEM SHALL E X H I B ~  PAST RESPONSE TIME is not 
precise &s THE SYSTEM SHALL FULLY RESPOND TO EVERY 
REQUEST WITHIN 2 SECONDS. Also, THE SYSTEM SHALL 
DISPLAY THE WAIT TIMES is not 85 good &s THE SYSTEM 
SHALL. DISPLAY THE W m  TIMES To THE NEAREST TENTH 
OF A SECOND. Also, assuming that the nearest tenth of a 
second is all that is needed, this requirement exhibits 
inappropriate levels of precision: THE SYSTEM SHALL 

2.21 Reusable 
An SRS is reusable if and only if its sentences, 
paragraphs and sections can be easily adopted or adapted 
for use in a subsequent SRS. Much research is underway 
conceming reuse of design and code. Little extends to 
the requirements domain. 

Ideally, reusability should be measured on results 
rather than potential. Thus a score of 1 should be given 
to an SRS whose contents have been fully reused by later 
SRSs and 0 to an SRS none of whose contents have been. 
Unfortunately, metrics are more useful if they can be 
established at the time of SRS creation rather than many 
years later. An alternative is to measure SRS reusability 
as the potential for SRS reuse. In the case of reuse of 

DISPLAY THE WAIT TIMES TO THE NEAREST NANOSECOND. 

b i g n  and code, research results have helped us 
recQgnize what meLee a component reusable, although 
results are not consistent or conclusive. In the case of 
requirements reuse, no "h d t s  are available. 
The next paragraph will introduce some experimental 
requirements reuse properties. When more information 
becomes known, a reusability metric of "percantage of 
paragraphs that exhibit reuse properties" cau be used. 
However, it will have the aane problems as for design 
and code. Given a software system, the percentage of 
components that are data abstrrctionS (or have any of the 
many other qualities that increase potential reuse) does 
not yield a " a b l e  reusability metric because there 
exist data abstractions that cne not Feusable. 

Little is known about techniques to optimize potential 
Here are some reuse of requirements specifications. 

avenues from the most to the least understood: 

Write SRS sections using "symbolic constants," e.g., 
in the performance section, use a word p " r  
symbolic constant for key response times. Then, later 
applications with similar functionality but with 
different respcwse times can simply change the value 
in the symbolic constant. 
Use formal models. The specific FSMs, DTs, PNs, 
and statecharts are unlikely to be reusable, but their 
presence will likely cam the next SRS writer to reuse 
the concept of employing such models. 
Create library of abstracz requiremcnrs types. These 
are generic requirements paragraphs that are 
instantiated by providing tailoring information about 
characteristics of a particular application. The actual 
SRS becomes a series of instantiations. 

2.22 Traced 
An SRS is traced if and only if the origin of each of its 
requirements is clear DAV931. This implies that every 
requirement that has a basis is cross-referen& to that 
basis. Typical bases include: system-level RSs, system- 
level design documents, hardware RSs, SOWS, contracts, 
white paperslresearch reports, and SDPs. Any of these 
documents may hold a clue as to the reason why a 
particular requirement exists. For example, a 
requirement THE SYSTEM SHALL REPORT THE CURRENT 
POSmION OF ALL SHIPS NO LESS OFTEN THAN EVERY 
SECOND may exist because an earlier white paper reported 
the maximum possible ship speed, and an earlier system- 
level RS reported the resolution and scale of the display 
medium. In this case, the above requirement should be 
cross-referen& to both of the earlier documents. 

Measuring the level of traced-ness is impossible. 
Ideally, we want to measure the following: 
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Number of requirements traced to their ongins 
Number of requi"ents that have origins 

Unfortunately, the only way to measure the denominator 
is to examine the SRS for such cross-references! Thus, 
the above frcrcoioa will always have a value of 1. 

There are two techniques to recofd traces. First is to 
include explicit cro88-tBfBTencB8 in parenthews following 
each requirememt in the SRS. Secolid is to record all 
requirements in a da-. Each requiremaat is a 

 become^ a retrieval of the database and might include or 
exclude the cross-referenas. 

2.23 Ornaniped 
An SRS is organized if and only if its contents are 
arranged so that readers can easily locate information and 
logical relationships among adjacent sections is apparent. 
One way is to follow any of the many SRS standards 
[DOR90]. Certainly boiler plate sections of all SRS 
standards are rou~hly equivalent. Primary differences 
concern organization of detailed requirements. There are 
many ways to organize these. However, given any 
particular system, there are probably only a few right 
ways. Soooe dtematives are [DAV93] (in all cases 
assume that detailed requirements are in Section 3): 

1. group the functional requirements by claps of user. 
For example, nn elevator control system SRS might 
include a Section 3.1 for all passenger requirements, 
3.2 for all fireperson requirements, and 3.3 for all 
maintenance person requirements. 

2. group the functional requirements by common 
stimulus. For example, an automated helicopter 
landing system SRS might include a Section 3.1 for 
all requiremeats relating to gusts of wind, 3.2 for all 
relating to being out of fuel, 3.3 for all relating to 
breakage of landing gqu9 etc. 

3. group the hctional requirements by common 
response. For example, a payroll system SRS might 
include a Section 3.1 for all requirements relating to 
generation of paychecks, 3.2 for all relating to 
generation of a report of all current employee with 
their monthly salaries, etc. 

For 
example, a payroll system SRS might include a 
Section 3.1 for all requirements relating to local calls, 
3.2 for all relating to long distance calls, 3.3 for all 
relating to conference calls, etc. 

For 
example, an airline reservation system SRS might 
include a Section 3.1 for all requirements relating to 
seats, 3.2 for all relating to flight segments, 3.3 for 
all relating to travel agents, 3.4 for all relating to 
tickets, etc. 

record. A fidd io u8Bd f a  ~ r o s s - r e h ~ .  The SRS 

4. group the functional requirements by feature. 

5. group the functional requirements by object. 
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Organization is purely subjective; we do not believe it 
canbemeesured. 

To achieve useful organization, (1) follow a standard, 
and (2) use one of the above five organizational models 
which renders the SRS most easily understood. 

2.24 Cross-Referenced 
An SRS is cross referenced if and only if cross-references 
are used in the SRS to relate Sections containing 
requirements to other sections containing: 

o identical (i.e., redundant) requiremeats 
o more abstract or more detailed descriptions of the 

same requirements 
o requirements that depend on them or on which they 

depend (see related discussion of coupling in Section 
2.12). 

Any well-written SRS will describe requirements at a 
variety of levels, usually from the most abstract to the 
most detailed. To increase understandability many SRSs 
include redundancy. All SRSs will include requirements 
with interdependency. Thus, all SRSs should include 
cross-references. Like traced (see Section 2.22), there is 
no way to determine how many cross references are 
appropriate in an SRS. For this reason, any attempt to 
measure cross-references is fallacious. 

The same techniques that work for traced (see Section 
2.22) work for cross-references. Either use explicit in- 
text cross-references or preferably store all requirements 
in a database and use specific fields to store the three 
above types of cross references. 

IU. SRSQuality: ACompromise 
A perfect SRS is impossible. For example, if we remove 
all ambiguity, we will add so much formality that it 
would no longer be understandable by a non-computer 
expert. If we remove all redundancy, it becomes difficult 
to read. If we go overboard with completeness, we lose 
conciseness. There are some qualities for which we can 
strive without adversely affecting others: correct, 
internally consistent, externally consistent, achievable, 
design-independent, organized, traced, traceable, all 
annotations, electronically stored and cross-referenced. 

There may be some value in an overall rating of the 
quality of an SRS. The presence of some of SRS 
qualities appears to be essential for all applications and 
thus have been given weights of 1. Others seem less 
important in general and have lower weights. The actual 
weights for all the attributes must be assigned by each 
project to be medngful. To have an overall quality on a 
scale from 0 to 1, we have: 
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Q =  E.: 
i=l 

The above equation is a gross simplification; it is useful 
primprily for people who seed to see just one number 
that states the q d t y  of an SRS. More mepaingful are 
the values for the entire vector Qi. 

In summary, this paper defined 24 qualities that SRSs 
should exhibit. In 18 cases, it has provided a metric. It 
is hoped that in the future, we (or others) will be able to 
more fully expand the list of qualities, and will provide 
more complete measures for all qualities. 
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