
18 IEEE SoftwarE | publIShEd by thE IEEE computEr SocIEt y 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

FOCUS: Guest editors’ introduction

The meTaphor of technical debt in
software development was introduced
two decades ago by Ward Cunningham1
to explain to nontechnical product
stakeholders the need for what we call
now “refactoring.” It has been refined
and expanded since, notably by Steve
McConnell in his taxonomy,2 Martin
Fowler with his four quadrants,3 and
Jim Highsmith and his colleagues from
the Cutter Consortium with their model

of the impact of technical debt on the
total cost of ownership.4

From the original description—“not
quite right code which we postpone
making it right”1—various people have
used the metaphor of technical “debt”
to describe many other kinds of debts
or ills of software development, encom-
passing broadly anything that stands in
the way of deploying, selling, or evolv-
ing a software system or anything that
adds to the friction from which soft-
ware development endeavors suffer:
test debt, people debt, architectural
debt, requirement debt, documenta-
tion debt, or just an amorphous, all-
encompassing software debt.5 Conse-
quently, the concept of technical debt

in software development has become
somewhat diluted lately. Is a new re-
quirement, function, or feature not yet
implemented “requirement debt”? Do
we call postponing the development of
a new function “planning debt”? The
metaphor is losing some of its strength.

Furthermore, once we identify tools
such as static code analyzers to assist
us in identifying technical debt, there’s
a danger of equating it with whatever
our tools can detect. This approach
leads to leaving aside large amounts
of potential technical debt that’s un-
detectable by tools, such as structural
or architectural debt or technological
gaps. Gaps in technology are of partic-
ular interest because the debt incurred

Technical Debt:
From Metaphor
to Theory
and Practice

Philippe Kruchten, University
of British Columbia, Vancouver

Robert L. Nord and Ipek Ozkaya,
Software Engineering Institute

See www.computer.org/software
-multimedia for multimedia
content related to this article.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 22,2020 at 17:14:35 UTC from IEEE Xplore. Restrictions apply.

 NovEmbEr/dEcEmbEr 2012 | IEEE SoftwarE 19

isn’t the result of having made a wrong
choice originally, but rather the result
of the context’s evolution—the passing
of time—so that the choice isn’t quite
right in retrospect. Technical debt in
this case is due to external events: tech-
nological obsolescence, change of en-
vironment, rapid commercial success,
advent of new and better technologies,
and so on—in other words, the invisible
aspects of natural software aging and
evolution. You could even argue that
“gold plating” an architectural design,
making the system more flexible and
adaptable than it actually needs to be,
can be a form of technical debt, if this
added flexibility hinders future develop-
ment without actually being exploited.

organizing the Technical
Debt Landscape
To make some progress, we need to go
beyond debt as a “rhetorical concept.”6
We need a better definition of what
constitutes technical debt and some
perspective or viewpoints that let us
reason across a wide range of techni-
cal debt. In short, we need a theoretical
foundation.

Figure 1 shows a possible organiza-
tion of a technical debt landscape—
or rather, of software improvement
from a given state. We can distinguish

visible elements such as new function-
ality to add and defects to fix, and the
invisible elements (or rather, those vis-
ible only to software developers). We
can see that on the left, we’re dealing
primarily with evolution or its chal-
lenges, whereas on the right, we’re
dealing with quality issues, both inter-
nal and external. We propose to limit
debt to the invisible elements—that is,
to the elements in the rectangular box,
including the invisible aspects of evolu-
tion and quality.

Tackling Technical Debt
Most authors agree that the major
cause of technical debt is schedule pres-
sure. However, on the right side of the
picture, when debt is associated with
quality and maintainability issues,
other causes become probable, such as
carelessness, lack of education, poor
processes, nonsystematic verification of
quality, or basic incompetence.

Because they use an iterative de-
velopment process, many agile teams
seem to believe that they’re completely
immune to technical debt. Although
iterations offer the opportunity to re-
imburse debt in a timely fashion, the
opposite often occurs. Developing and
delivering very rapidly, with no time
for proper design or to reflect on the

longer term, and a lack of rigor or sys-
tematic testing (including automated
testing) leads some agile projects into
massive amounts of debt very rapidly.
In fact, such debt can mount much
more quickly than in any old-fashioned
waterfall-like project. But in the end,
it’s all a matter of choice: where time
to market is essential, the debt might
actually be a good investment, but it’s
imperative to remain aware of this debt
and the increased friction it will impose
on the development team, as Cunning-
ham suggested.1

So how can we tackle technical debt,
or at least avoid accumulating too much
of it? The first step is awareness: identi-
fying debt and its causes. The next step
is to manage this debt explicitly, which
involves listing debt-related tasks in a
common backlog during release and
iteration planning, along with other
“things to do.”7 Figure 2 illustrates
how these elements might be organized
in a backlog.8 The element areas’ col-
ors reconcile four types of possible im-
provements—the tasks to attend to in
the future to increase value, such as
adding new features (green) or invest-
ing in the architecture (yellow), and to
reduce the negative effects on value of
defects (red) or technical debt (black).

Project backlogs often contain only

architecture code

Coding style violations

Architectural debt

Structural debt

Test debt
Documentation debt

Low internal quality

Te
ch

no
lo

gi
ca

l g
ap

Code complexity

Defects

Low external quality

New features

Additional functionality Code smells

Visible Mostly invisible

Evolution issues: evolvability Quality issues: maintainability

Visible

FiGure 1. The technical debt landscape. On the left, evolution or its challenges; on the right, quality issues, both internal and external.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 22,2020 at 17:14:35 UTC from IEEE Xplore. Restrictions apply.

20 IEEE SoftwarE | www.computEr.org/SoftwarE

FOCUS: Guest editors’ introduction

the green elements; a few technical
practitioners keep in mind the yellow
elements. The red elements appear else-
where, perhaps in a defect database,
and the black elements are nowhere to
be found but they increasingly cripple
the development, reducing velocity.

It’s important to keep in mind, how-
ever, that technical debt is not only
about code and code quality. Code
analysis tools will identify a small
number of the black elements. There-
fore, code analysis tools aren’t suf-
ficient for identifying technical debt:
more often than not, technical debt
isn’t related to code and its intrinsic
qualities but to structural or architec-
tural choices or to technological gaps.
No tool will reveal that, two years ago,
the team should have used some tool to
internationalize and localize the code.

Architecture plays a significant role
in the development of large systems, to-
gether with other development activi-
ties, such as documentation and test-
ing (which are often lacking). These
activities can add significantly to the
debt and thus are part of the techni-
cal debt landscape in Figure 1. Code
analysis will only tackle the right side
of the box. Professionalism, diligence,

dedication, and craftsmanship will cer-
tainly help, but they aren’t the key de-
terminants in reducing technical debt.

a Unified Theory?
Kevin Sullivan suggested that a simple
model for tackling technical debt repre-
sents a software development endeavor
as a sequence of changes, most of them
improvements.9 At a given point in time,
the past set of changes is what defines
the current state of the software. Some
of these past changes are the events that
triggered the current debt: the change or
the way it was implemented isn’t quite
right from the current perspective.

The main issue facing the software
development organization is how to
decide about future changes: What
evolution should the software system
undergo, and in which sequence? This
evolution is, in most cases, constrained
by cost: the resources available to apply
to making these changes, most likely
driven by value, as viewed by external
stakeholders.

The decision-making process about
which sequence of changes to apply
could be the main reconciling point
across the whole landscape shown in
Figure 1, from adding new features and
adapting to new technologies to fixing
defects and improving the quality, in-
trinsic or extrinsic. Because this deci-
sion process is about balancing cost
and value, perhaps economic or finan-
cial models could become the unifying
concept behind the whole landscape.
A few have already been explored to
some degree:

•	 Net Present Value (NPV) for a
product, from the finance world;

•	 opportunity cost;
•	 real option analysis (ROA), or valu-

ation; and
•	 total cost of ownership (TCO) for

an IT system.

These four models were discussed in

a recent ICSE workshop on technical
debt,9 with one of them (NPV) offering
the most promise: it’s better formalized
than opportunity cost and simpler and
less proprietary than TCO, while ROA
can be seen as a probabilistic exten-
sion to NPV. TCO presents the danger,
mentioned earlier, of diluting technical
debt by introducing elements not re-
lated to software development (deploy-
ment, operations, and support).

Technical debt shouldn’t be treated
in isolation from adding new func-
tionality or fixing defects, even though
these aren’t included in the definition of
debt presented here. The challenge is in
expressing all software development ac-
tivities in terms of sequences of changes
associated with a cost and a value (over
time). These changes aren’t indepen-
dent, unfortunately. Their interdepen-
dencies play a big role—as Mark Denne
and Jane Cleland-Huang have shown,
in particular, visible features depend on
less visible architectural aspects.10

In this new perspective, a system’s
technical debt at a given point in time
could be defined as deferred investment
opportunities or poorly managed risks.

In This Issue
This installment of IEEE Software
gives readers different illustrations of
the multifaceted concept of technical
debt. Erin Lim, Nitin Taksante, and
Carolyn Seaman went out into indus-
try to check how software developers
actually conceptualize, perceive, ex-
perience, and manage technical debt.
They report their results in “A Balanc-
ing Act: What Software Practitioners
Have to Say about Technical Debt.”
Their analysis describes the large and
complex trade space of stakeholders’
short- and long-term concerns and their
strategies to keep them in balance.

Raja Bavani complements this view
from the trenches with interviews
of two agile experts, Johanna Roth-
man and Lisa Crispin, in “Distributed

Visible Invisible

Positive
value

New features
Added
 functionality

Architectural,
 structural
 features

Negative
value Defects

Technical
 debt

FiGure 2. Four colors in a backlog.

The element areas reconcile four types of

possible improvements—the tasks to attend

to in the future to increase value, such as

adding new features (green) or investing in

the architecture (yellow), and to reduce the

negative effects on value of defects (red) or

technical debt (black).

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 22,2020 at 17:14:35 UTC from IEEE Xplore. Restrictions apply.

 NovEmbEr/dEcEmbEr 2012 | IEEE SoftwarE 21

Teams, Agile Testing, and Technical
Debt.” He then goes on to offer his
own taxonomy of technical debt and
how it relates to testing.

Bill Curtis, Jay Sappidi, and Alex-
andra Szynkarski explore the viability
of an estimation framework for detect-
ing technical debt using real-world data.
They use the code analysis toolkit de-
veloped by CAST Software to identify
technical debt in large systems, based on
structural quality data, and literally put
a price on it in “Estimating the Principal
of an Application’s Technical Debt.”

As an alternative, Jean-Louis
Letouzey and Michel Ilkiewicz de-
scribe “Managing Technical Debt with
the SQALE Method.” The SQALE ap-
proach is based on an analysis of an ap-
plication’s source code, using the indi-
cators of quality attributes defined by
the ISO systems and software quality
standard (testability, maintainability,
portability, and so on) to narrow down
the point of focus.

Have we outgrown the financial
debt metaphor? Does it still work? Do
we misuse it? Israel Gat and Christof
Ebert disagree on this topic in a point/
counterpoint article.

W e hope to keep this debt
metaphor useful by con-
fining it to what is really

a debt—namely, the invisible result of
past decisions about software that neg-
atively affect its future—and by not ex-
tending the concept to anything that
has a cost. From a practical perspective,
we hope to see more tools and methods
to identify and manage debt, covering
more elements of the landscape. From a
theoretical standpoint, we’ll see models
emerging, very likely rooted in finan-
cial theories, such as NPV, out of which
better measurements and reasoning
about this form of debt can take place
in the wider context of software evolu-
tion or software improvement.

acknowledgments
Many thanks to all the participants of the
3rd International Workshop on Technical
Debt at ICSE 2012 in Zürich and to our re-
viewers, Len Bass and Raghvinder Sangwan.
This material is based upon work funded and
supported by the US Department of Defense
under contract number FA8721-05-C-0003
with Carnegie Mellon University for the op-
eration of the Software Engineering Institute,
a federally funded research and development
center. This material has been approved for
public release and unlimited distribution.

references
 1. W. Cunningham, “The WyCash Portfolio

Management System,” Proc. OOPSLA, ACM,
1992; http://c2.com/doc/oopsla92.html.

 2. S. McConnell, “Technical Debt,” blog, 2007;
http://blogs.construx.com/blogs/stevemcc/
archive/2007/11/01/technical-debt-2.aspx.

 3. M. Fowler, “Technical Debt,” blog, 2009; http://
martinfowler.com/bliki/TechnicalDebt.html.

 4. I. Gat, ed., “Special Issue on Technical Debt,”
Cutter IT J., vol. 23, no. 10, 2010.

 5. C. Sterling, Managing Software Debt: Build-
ing for Inevitable Change, Addison-Wesley
Professional, 2010.

 6. N. Brown et al., “Managing Technical Debt
in Software-Intensive Systems,” Proc. Future
of Software Eng. Research, ACM, 2010, pp.
47–52; doi: 10.1145/1882362.1882373.

 7. N. Brown, R. Nord, and I. Ozkaya, “Enabling
Agility through Architecture,” CrossTalk,
Nov./Dec. 2010, pp. 12–18.

 8. P. Kruchten, “What Colour Is Your Backlog?,”
blog, 2008; http://philippe.kruchten.com/talks.

 9. P. Kruchten et al., “Report on the 3rd Work-
shop on Managing Technical Debt,” to be
published in ACM SIGSOFT Software Eng.
Notes, vol. 37, no. 5, 2012; http:www.sigsoft.
org/SEN.

 10. M. Denne and J. Cleland-Huang, “The
Incremental Funding Method: Data-Driven
Software Development,” IEEE Software, vol.
21, no. 3, 2004, pp. 39–47.

phILIppe KrUchTen is professor of software engineering at
the University of British Columbia in Vancouver, Canada. A founding
member of IFIP WG2.10, he conducts research in the software develop-
ment process and software architecture. Kruchten received his PhD
from the École Nationale Supérieure des Télécommunications in Paris.
He’s a professional engineer in Canada, an IEEE CSDP, and a senior
(but not senile) member of the IEEE Computer Society. Contact him at
kruchten@ieee.org.

roberT L. norD is a senior member of the technical staff in the
Research, Technology, and System Solutions Program at the Software
Engineering Institute. He’s engaged in activities focusing on agile and
architecture at scale and works to develop and communicate effective
methods and practices for software architecture. Nord received a PhD
in computer science from Carnegie Mellon University and is a distin-
guished member of ACM. Contact him at rn@sei.cmu.edu.

IpeK ozKaya is a senior member of the technical staff in the
Research, Technology, and System Solutions Program at the Software
Engineering Institute. She conducts research in empirical methods for
improving software development efficiency and system evolution with
a focus on software architecture practices, software economics, and
requirements management. Ozkaya received a PhD in computational
design from Carnegie Mellon University. She serves on the advisory
board of IEEE Software. Contact her at ozkaya@sei.cmu.edu.

A
b

o
u

t
 t

h
e

 A
u

t
h

o
r

s

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 22,2020 at 17:14:35 UTC from IEEE Xplore. Restrictions apply.

