mirror of
https://github.com/ejeanboris/MDAF.git
synced 2025-05-02 13:22:27 +00:00
A special method has been created to handle running the algorithm. This simplifies taking measurements from the algorithm's performance.
This commit is contained in:
@ -1,67 +1,94 @@
|
||||
# directly running the DOE because existing surrogates can be explored with another workflow
|
||||
|
||||
from numpy import random as r
|
||||
import time
|
||||
import importlib.util
|
||||
import multiprocessing
|
||||
import time
|
||||
|
||||
from numpy import random as r
|
||||
|
||||
|
||||
|
||||
# initialise the logic helpers
|
||||
r.seed(int(time.time()))
|
||||
|
||||
heuristicpath = "/home/remi/Documents/MDAF-GitLAB/SourceCode/SampleAlgorithms/SimmulatedAnnealing.py"
|
||||
heuristic_name = "SimmulatedAnnealing"
|
||||
testfunctionpaths = ["/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin2.py", "/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin4.py", "/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Brown.py"]
|
||||
funcnames = ["Bukin2", "Bukin4", "Brown"]
|
||||
# testfunctionpaths = ["/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Brown.py"]
|
||||
# funcnames = ["Brown"]
|
||||
# testfunctionpaths = ["/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin4.py"]
|
||||
# funcnames = ["Bukin4"]
|
||||
|
||||
objs = 0
|
||||
args = {"high": 200, "low": -200, "t": 1000, "p": 0.95}
|
||||
scale = 2.5
|
||||
|
||||
def measure(heuristicpath, heuristic_name, funcpath, funcname, objs, args, scale, connection):
|
||||
# Seeding the random module for generating the initial point of the optimizer: Utilising random starting point for experimental validity
|
||||
r.seed(int(time.time()))
|
||||
|
||||
def doe(heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale):
|
||||
# loading the heuristic object into the namespace and memory
|
||||
spec = importlib.util.spec_from_file_location(heuristic_name, heuristicpath)
|
||||
heuristic = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(heuristic)
|
||||
proc = list()
|
||||
connections = []
|
||||
#heuristic.MyClass()
|
||||
for idx, funcpath in enumerate(testfunctionpaths):
|
||||
testspec = importlib.util.spec_from_file_location(funcnames[idx], funcpath)
|
||||
|
||||
testspec = importlib.util.spec_from_file_location(funcname, funcpath)
|
||||
func = importlib.util.module_from_spec(testspec)
|
||||
testspec.loader.exec_module(func)
|
||||
#func.MyClass()
|
||||
|
||||
# Defining a random initial point to start testing the algorithms
|
||||
initpoint = [r.random() * scale, r.random() * scale]
|
||||
connections.append(multiprocessing.Pipe(duplex=False))
|
||||
proc.append(multiprocessing.Process(target=heuristic.main, name=funcnames[idx], args=(func, objs, initpoint, args, connections[idx][1])))
|
||||
|
||||
#This timer calculates directly the CPU time of the process (Nanoseconds)
|
||||
tic = time.process_time_ns()
|
||||
# running the test by calling the heuritic script with the test function as argument
|
||||
best = heuristic.main(func, objs, initpoint, args)
|
||||
toc = time.process_time_ns()
|
||||
# ^^ The timer ends right above this; the CPU time is then calculated below by simple difference ^^
|
||||
|
||||
# Building the response
|
||||
response = "The optimum point obtained is: " + str(best) + "\nThe CPU time of the process was: " + str((toc - tic)*(10**-9))
|
||||
|
||||
connection.send(response)
|
||||
|
||||
|
||||
responses = []
|
||||
failedfunctions = []
|
||||
processtiming = []
|
||||
|
||||
def doe(heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale):
|
||||
|
||||
|
||||
# logic variables to deal with the processes
|
||||
proc = []
|
||||
connections = {}
|
||||
|
||||
# loading the test functions into the namespace and memory
|
||||
for idx, funcpath in enumerate(testfunctionpaths):
|
||||
funcname = funcnames[idx]
|
||||
# Creating the connection objects for communication between the heuristic and this module
|
||||
connections[funcname] = multiprocessing.Pipe(duplex=False)
|
||||
proc.append(multiprocessing.Process(target=measure, name=funcname, args=(heuristicpath, heuristic_name, funcpath, funcname, objs, args, scale, connections[funcname][1])))
|
||||
|
||||
# defining the response variables
|
||||
responses = {}
|
||||
failedfunctions = {}
|
||||
processtiming = {}
|
||||
|
||||
# defining some logic variables
|
||||
|
||||
for idx,process in enumerate(proc):
|
||||
# processtiming.append(time.tic())
|
||||
process.start()
|
||||
# connections[idx][1].close()
|
||||
|
||||
# Waiting for all the runs to be done
|
||||
# Waiting for all the runs to be
|
||||
# multiprocessing.connection.wait([process.sentinel for process in proc])
|
||||
for process in proc: process.join()
|
||||
|
||||
for idx,conn in enumerate(connections):
|
||||
if proc[idx].exitcode == 0: responses.append(conn[0].recv())
|
||||
for process in proc:
|
||||
run = process.name
|
||||
if process.exitcode == 0: responses[run] = connections[run][0].recv()
|
||||
else:
|
||||
responses.append("this run was mot successful")
|
||||
failedfunctions.append((funcnames[idx], proc[idx].exitcode))
|
||||
conn[0].close()
|
||||
conn[1].close()
|
||||
responses[run] = "this run was not successful"
|
||||
failedfunctions[run] = process.exitcode
|
||||
connections[run][0].close()
|
||||
connections[run][1].close()
|
||||
|
||||
# display output
|
||||
print("\n\n||||| Responses |||||")
|
||||
for idx,response in enumerate(responses): print(funcnames[idx] + "____\n" + "started :" + str(initpoint) + "\nEnded :" + str(responses[idx]) + "\n_________________")
|
||||
for process in proc: print(process.name + "____\n" + str(responses[process.name]) + "\n_________________")
|
||||
|
||||
|
||||
doe (heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale)
|
@ -31,7 +31,7 @@ def Quality(Sc,objective,func):
|
||||
print("Error is: "+str(error))
|
||||
return 1/abs(error)
|
||||
|
||||
def main(func, obj, S, args, connection):
|
||||
def main(func, obj, S, args):
|
||||
r.seed(int(time.time()))
|
||||
route = list()
|
||||
#Parsing arguments
|
||||
@ -77,7 +77,7 @@ def main(func, obj, S, args, connection):
|
||||
#print('the Best Quality obtained was:{}'.format(Quality(Best,y)))
|
||||
print("Final Quality is: {}".format(Quality(Best,y,func)))
|
||||
print("final Temperature is: {}".format(t))
|
||||
connection.send(Best)
|
||||
return Best
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user