Reorganised the code into a PyPI package format

This commit is contained in:
Remi Ehounou
2021-05-23 16:45:16 -04:00
parent 00e46546f4
commit 43de559f08
43 changed files with 181 additions and 159 deletions

1
.gitignore vendored
View File

@ -15,3 +15,4 @@ pkg/
src/ src/
snippets/ snippets/
PackageCode/setup.py

View File

@ -42,7 +42,7 @@ class counter:
self.count += 1 self.count += 1
return self.func(*args, **kwargs) return self.func(*args, **kwargs)
def simulate(algName, algPath, funcname, funcpath, objs, args, initpoint): def simulate(algName, algPath, funcname, funcpath, args, initpoint):
# loading the heuristic object into the namespace and memory # loading the heuristic object into the namespace and memory
spec = importlib.util.spec_from_file_location(algName, algPath) spec = importlib.util.spec_from_file_location(algName, algPath)
heuristic = importlib.util.module_from_spec(spec) heuristic = importlib.util.module_from_spec(spec)
@ -63,7 +63,7 @@ def simulate(algName, algPath, funcname, funcpath, objs, args, initpoint):
#This timer calculates directly the CPU time of the process (Nanoseconds) #This timer calculates directly the CPU time of the process (Nanoseconds)
tic = time.process_time_ns() tic = time.process_time_ns()
# running the test by calling the heuritic script with the test function as argument # running the test by calling the heuritic script with the test function as argument
quality = heuristic.main(testfunc, objs, initpoint, args) quality = heuristic.main(testfunc, initpoint, args)
toc = time.process_time_ns() toc = time.process_time_ns()
# ^^ The timer ends right above this; the CPU time is then calculated below by simple difference ^^ # ^^ The timer ends right above this; the CPU time is then calculated below by simple difference ^^
@ -78,34 +78,61 @@ def simulate(algName, algPath, funcname, funcpath, objs, args, initpoint):
converged = 0 converged = 0
return cpuTime, quality, numCalls, converged return cpuTime, quality, numCalls, converged
def measure(heuristicpath, heuristic_name, funcpath, funcname, objs, args, scale, connection): def measure(heuristicpath, funcpath, args, connection):
''' '''
This function runs each optimization process of the heuristic with one test function This function runs a set of optimization flows for each test function. it returns the mean and standard deviation of the performance results
''' '''
#defining the heuristic's name
heuristic_name = path.splitext(path.basename(heuristicpath))[0]
#defining the test function's name
funcname = path.splitext(path.basename(funcpath))[0]
# Seeding the random module for generating the initial point of the optimizer: Utilising random starting point for experimental validity # Seeding the random module for generating the initial point of the optimizer: Utilising random starting point for experimental validity
r.seed(int(time.time())) r.seed(int(time.time()))
# guetting the representation of the function
funcChars = representfunc(funcpath)
n = funcChars['dimmensions']
upper = funcChars['upper']
lower = funcChars['lower']
if upper is not list: upper = [upper for i in range(n)]
if lower is not list: lower = [lower for i in range(n)]
scale = list()
for i in range(n):
scale.append(upper[i] - lower[i])
# Defining random initial points to start testing the algorithms # Defining random initial points to start testing the algorithms
initpoints = [[r.random() * scale, r.random() * scale] for run in range(30)] #update the inner as [r.random() * scale for i in range(testfuncDimmensions)] initpoints = [[r.random() * scale[i] + lower[i] for i in range(n)] for run in range(30)] #update the inner as [r.random() * scale for i in range(testfuncDimmensions)]
# building the iterable arguments # building the iterable arguments
partfunc = partial(simulate, heuristic_name, heuristicpath, funcname, funcpath, objs, args) partfunc = partial(simulate, heuristic_name, heuristicpath, funcname, funcpath, args)
with multiprocessing.Pool(processes = 3) as pool: n_proc = multiprocessing.cpu_count() # Guetting the number of cpus
with multiprocessing.Pool(processes = n_proc) as pool:
# running the simulations # running the simulations
newRun = pool.map(partfunc,initpoints) newRun = pool.map(partfunc,initpoints)
cpuTime = [resl[0] for resl in newRun] cpuTime = array([resl[0] for resl in newRun])
quality = [resl[1] for resl in newRun] quality = array([resl[1] for resl in newRun])
numCalls = [resl[2] for resl in newRun] numCalls = array([resl[2] for resl in newRun])
converged = [resl[3] for resl in newRun] converged = array([resl[3] for resl in newRun])
cpuTime = cpuTime[~(isnan(cpuTime))]
quality = quality[~(isnan(quality))]
numCalls = numCalls[~(isnan(numCalls))]
converged = converged[~(isnan(converged))]
results = dict() results = dict()
results['cpuTime'] = array([statistics.mean(cpuTime), statistics.stdev(cpuTime)]) results['cpuTime'] = array([statistics.fmean(cpuTime), statistics.stdev(cpuTime)])
results['quality'] = array([statistics.mean(quality), statistics.stdev(quality)]) results['quality'] = array([statistics.fmean(quality), statistics.stdev(quality)])
results['numCalls'] = array([statistics.mean(numCalls), statistics.stdev(numCalls)]) results['numCalls'] = array([statistics.fmean(numCalls), statistics.stdev(numCalls)])
results['convRate'] = array([statistics.mean(converged), statistics.stdev(converged)]) results['convRate'] = array([statistics.fmean(converged), statistics.stdev(converged)])
connection.send((results,newRun)) connection.send((results,newRun))
@ -133,7 +160,7 @@ def writerepresentation(funcpath, charas):
with open(funcpath,"w") as file: with open(funcpath,"w") as file:
file.write(newContent) file.write(newContent)
def representfunc(funcpath): def representfunc(funcpath, forced = False):
#defining the function name #defining the function name
funcname = path.splitext(path.basename(funcpath))[0] funcname = path.splitext(path.basename(funcpath))[0]
# loading the function to be represented # loading the function to be represented
@ -153,6 +180,8 @@ def representfunc(funcpath):
if not ('Represented' in results): if not ('Represented' in results):
print("Warning, the Representation of the Test Function has not been specified\n===\n******Calculating the Characteristics******") print("Warning, the Representation of the Test Function has not been specified\n===\n******Calculating the Characteristics******")
n = int(results['dimmensions']) n = int(results['dimmensions'])
blocks = int(1+10/n)
if blocks< 3: blocks=3
# Importing FLACCO using rpy2 # Importing FLACCO using rpy2
flacco = importr('flacco') flacco = importr('flacco')
@ -164,12 +193,17 @@ def representfunc(funcpath):
r_unlist = robjs.r['unlist'] r_unlist = robjs.r['unlist']
rtestfunc = rinterface.rternalize(funcmodule.main) rtestfunc = rinterface.rternalize(funcmodule.main)
### # Verify if a list of limits has been specified for all dimensions or if all dimensions will use the same boundaries
lower = r_unlist(rvector(results['lower'])) if (type(results['lower']) is list):
upper = r_unlist(rvector(results['upper'])) lowerval = r_unlist(rvector(results['lower']))
X = flacco.createInitialSample(n_obs = 500, dim = n, control = rlist(**{'init_sample.type' : 'lhs', 'init_sample.lower' : lower, 'init_sample.upper' : upper})) upperval = r_unlist(rvector(results['upper']))
else:
lowerval = results['lower']
upperval = results['upper']
X = flacco.createInitialSample(n_obs = 500, dim = n, control = rlist(**{'init_sample.type' : 'lhs', 'init_sample.lower' : lowerval, 'init_sample.upper' : upperval}))
y = rapply(X, 1, rtestfunc) y = rapply(X, 1, rtestfunc)
testfuncobj = flacco.createFeatureObject(X = X, y = y, fun = rtestfunc, lower = lower, upper = upper, blocks = 10) testfuncobj = flacco.createFeatureObject(**{'X': X, 'y': y, 'fun': rtestfunc, 'lower': lowerval, 'upper': upperval, 'blocks': blocks, 'force': forced})
# these are the retained features. Note that some features are being excluded for being problematic and to avoid overcomplicating the neural network.... the feature sets are redundant and the most relevant ones have been retained # these are the retained features. Note that some features are being excluded for being problematic and to avoid overcomplicating the neural network.... the feature sets are redundant and the most relevant ones have been retained
# the excluded feature sets are: 'bt', 'ela_level' # the excluded feature sets are: 'bt', 'ela_level'
@ -186,7 +220,13 @@ def representfunc(funcpath):
def doe(heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale): def doe(heuristicpath, testfunctionpaths, args):
#defining the function's name
funcnames = [path.splitext(path.basename(funcpath))[0] for funcpath in testfunctionpaths]
#defining the heuristic's name
heuristic_name = path.splitext(path.basename(heuristicpath))[0]
# logic variables to deal with the processes # logic variables to deal with the processes
proc = [] proc = []
@ -197,20 +237,18 @@ def doe(heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args,
funcname = funcnames[idx] funcname = funcnames[idx]
# Creating the connection objects for communication between the heuristic and this module # Creating the connection objects for communication between the heuristic and this module
connections[funcname] = multiprocessing.Pipe(duplex=False) connections[funcname] = multiprocessing.Pipe(duplex=False)
proc.append(multiprocessing.Process(target=measure, name=funcname, args=(heuristicpath, heuristic_name, funcpath, funcname, objs, args, scale, connections[funcname][1]))) proc.append(multiprocessing.Process(target=measure, name=funcname, args=(heuristicpath, funcpath, args, connections[funcname][1])))
# defining the response variables # defining the response variables
responses = {} responses = {}
failedfunctions = {} failedfunctions = {}
processtiming = {} processtiming = {}
# defining some logic variables # Starting the subprocesses for each testfunction
for idx,process in enumerate(proc): for idx,process in enumerate(proc):
process.start() process.start()
# Waiting for all the runs to be # Waiting for all the runs to be done
# multiprocessing.connection.wait([process.sentinel for process in proc])
for process in proc: process.join() for process in proc: process.join()
for process in proc: for process in proc:
@ -227,26 +265,8 @@ def doe(heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args,
print("\n\n||||| Responses: [mean,stdDev] |||||") print("\n\n||||| Responses: [mean,stdDev] |||||")
for process in proc: print(process.name + "____\n" + str(responses[process.name][0]) + "\n_________________") for process in proc: print(process.name + "____\n" + str(responses[process.name][0]) + "\n_________________")
#return output #return the performance values
return responses return responses
if __name__ == '__main__':
heuristicpath = "SampleAlgorithms/SimmulatedAnnealing.py"
heuristic_name = "SimmulatedAnnealing"
testfunctionpaths = ["TestFunctions/Bukin2.py", "TestFunctions/Bukin4.py", "TestFunctions/Brown.py"]
funcnames = ["Bukin2", "Bukin4", "Brown"]
# testfunctionpaths = ["/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin4.py"]
# funcnames = ["Bukin4"]
objs = 0
args = {"high": 200, "low": -200, "t": 1000, "p": 0.95}
scale = 1
# data = doe (heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale)
# print([point[2] for point in data['Bukin2'][1]])
representfunc("TestFunctions/Bukin2.py")
# %% # %%

View File

@ -31,15 +31,15 @@ def Quality(Sc,objective,func):
print("Error is: "+str(error)) print("Error is: "+str(error))
return 1/abs(error) return 1/abs(error)
def main(func, obj, S, args): def main(func, S, args):
r.seed(int(time.time())) r.seed(int(time.time()))
route = list() route = list()
#Parsing arguments #Parsing arguments
y = obj y = args["objs"]
high = args["high"]
low = args["low"]
t = args["t"] t = args["t"]
p = args["p"] p = args["p"]
high = 20
low = -20
Best = list() Best = list()
Best[:] = cp.deepcopy(S) Best[:] = cp.deepcopy(S)
@ -47,7 +47,7 @@ def main(func, obj, S, args):
route.append(Best[:]) route.append(Best[:])
while True: while True:
print('\n\n\n') print('\n\n\n')
R = tweak(cp.deepcopy(S),p,sigma,high,low) R = tweak(cp.deepcopy(S),p,sigma,high, low)
print(R) print(R)
print(S) print(S)
Qr = Quality(R,y,func) Qr = Quality(R,y,func)

View File

@ -0,0 +1,33 @@
def main(args):
'''
#_# dimmensions: 6
#_# upper: 4
#_# lower: -1
#_# minimum: 0
#_# cm_angle: array([[4.38674589e+00], [1.19556006e+00], [4.47966360e+00], [1.19983352e+00], [5.60286032e+00], [1.07792176e+01], [2.25826784e-03], [2.51639450e-02], [0.00000000e+00], [2.62000000e-01]])
#_# cm_conv: array([[0.33635988], [0.16095749], [0.76392901], [0.23607099], [0. ], [0.57 ]])
#_# cm_grad: array([[0.74319842], [0.11137735], [0. ], [0.095 ]])
#_# ela_conv: array([[ 9.80000000e-01], [ 0.00000000e+00], [-2.06944119e+18], [ 2.06944119e+18], [ 1.00000000e+03], [ 1.12000000e-01]])
#_# ela_curv: array([[4.79755856e+00], [1.34573105e+03], [5.12834662e+19], [3.70342074e+07], [3.86444487e+12], [8.88644003e+21], [5.30415946e+20], [0.00000000e+00], [3.81373465e+00], [4.90886432e+02], [5.97651830e+14], [1.97651206e+05], [9.10648718e+08], [7.52108388e+16], [5.45247010e+15], [1.94000000e-01], [4.54265125e+00], [3.29125394e+03], [9.25189949e+46], [2.18081469e+07], [9.89777937e+09], [2.74236176e+49], [1.35682556e+48], [5.00000000e-02], [1.07656000e+05], [1.04290000e+01]])
#_# ela_distr: array([[1.33769544e+01], [1.94701124e+02], [1.80000000e+01], [0.00000000e+00], [2.90000000e-02]])
#_# ela_local: array([[2.70000000e+02], [9.00000000e-01], [2.35864648e-04], [4.89568303e-02], [8.33333333e-02], [3.40768278e-03], [3.33333333e-03], [1.17000000e+02], [2.08000000e+02], [2.95273333e+02], [2.73000000e+02], [3.77000000e+02], [7.28000000e+02], [1.02839577e+02], [8.88520000e+04], [7.16600000e+00]])
#_# ela_meta: array([[ 2.12758964e-02], [-6.21915065e+18], [ 1.35144338e+16], [ 2.24256868e+18], [ 1.65938782e+02], [ 6.15453221e-02], [ 5.94927163e-02], [ 6.24028558e+00], [ 2.43822411e-01], [ 0.00000000e+00], [ 1.50000000e-02]])
#_# basic: array([[ 6.00000000e+00], [ 5.00000000e+02], [-1.00000000e+00], [-1.00000000e+00], [ 4.00000000e+00], [ 4.00000000e+00], [ 2.88961528e+00], [ 4.10691709e+20], [ 3.00000000e+00], [ 3.00000000e+00], [ 7.29000000e+02], [ 3.96000000e+02], [ 1.00000000e+00], [ 0.00000000e+00], [ 0.00000000e+00]])
#_# disp: array([[ 0.54940333], [ 0.63595834], [ 0.77089952], [ 0.89491857], [ 0.53989005], [ 0.63417083], [ 0.7646051 ], [ 0.88560301], [-2.18734742], [-1.76718039], [-1.1121306 ], [-0.5101005 ], [-2.24631371], [-1.78602329], [-1.14922704], [-0.55850027], [ 0. ], [ 0.01 ]])
#_# limo: array([[ nan], [ nan], [ nan], [ nan], [ nan], [ nan], [ nan], [ nan], [ nan], [ nan], [ nan], [ nan], [0. ], [0.033]])
#_# nbc: array([[ 0.47974042], [ 0.96061989], [ 0.34786143], [ 0.0693798 ], [-0.0889751 ], [ 0. ], [ 0.04 ]])
#_# pca: array([[1. ], [1. ], [0.14285714], [1. ], [0.18943524], [0.18942493], [1. ], [0.17000728], [0. ], [0.003 ]])
#_# gcm: array([[1.00000000e+00], [1.37174211e-03], [5.41838134e-01], [0.00000000e+00], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [ nan], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [ nan], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [ nan], [5.43209877e-01], [5.43209877e-01], [1.37174211e-03], [0.00000000e+00], [7.93900000e+00], [1.00000000e+00], [1.37174211e-03], [5.41838134e-01], [0.00000000e+00], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [ nan], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [ nan], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [ nan], [5.43209877e-01], [5.43209877e-01], [1.37174211e-03], [0.00000000e+00], [7.53700000e+00], [2.00000000e+00], [2.74348422e-03], [9.97256516e-01], [1.00000000e+00], [5.00000000e-01], [5.00000000e-01], [5.00000000e-01], [5.00000000e-01], [0.00000000e+00], [0.00000000e+00], [0.00000000e+00], [0.00000000e+00], [0.00000000e+00], [0.00000000e+00], [0.00000000e+00], [4.88340192e-01], [5.00000000e-01], [5.00000000e-01], [5.11659808e-01], [1.64894585e-02], [1.00000000e+00], [1.00000000e+00], [2.74348422e-03], [0.00000000e+00], [1.21150000e+01]])
#_# ic: array([[ 0.57808329], [ nan], [68.69928016], [10.73573574], [ 0.53413655], [ 0. ], [ 0.281 ]])
#_# Represented: 1
'''
result = 0
for i,x in enumerate(args[0:-1]):
result += (x**2)**(args[i+1]**2+1) + (args[i+1]**2)**(x**2 + 1)
return result

View File

@ -0,0 +1,28 @@
def main(args):
'''
#_# dimmensions: 2
#_# upper: [-5, 3]
#_# lower: [-15, -3]
#_# minimum: [-10,0]
#_# cm_angle: array([[3.46336319e-01], [1.11596448e-01], [3.32688632e-01], [1.10567852e-01], [1.26709762e+02], [3.96040507e+01], [1.47616482e-01], [9.06041269e-02], [0.00000000e+00], [7.90000000e-02]])
#_# cm_conv: array([[0.23809524], [0.19642857], [0.67857143], [0.32142857], [0. ], [0.033 ]])
#_# cm_grad: array([[0.81854428], [0.1192788 ], [0. ], [0.052 ]])
#_# ela_conv: array([[ 1.00000000e+00], [ 0.00000000e+00], [-1.06441804e+02], [ 1.06441804e+02], [ 1.00000000e+03], [ 1.04000000e-01]])
#_# ela_curv: array([[3.20384285e+00], [1.59352986e+02], [3.11716056e+02], [3.16753438e+02], [4.75852875e+02], [5.98482830e+02], [1.80339798e+02], [0.00000000e+00], [3.20382725e+02], [1.59352986e+04], [3.11716055e+04], [3.16753436e+04], [4.75852869e+04], [5.98482828e+04], [1.80339798e+04], [0.00000000e+00], [5.31778742e+06], [4.94191117e+07], [1.07037935e+36], [3.96591773e+08], [6.61335123e+12], [1.60389805e+38], [1.16318553e+37], [0.00000000e+00], [8.40000000e+03], [9.98000000e-01]])
#_# ela_distr: array([[ 0.63700187], [-0.86671884], [ 2. ], [ 0. ], [ 0.024 ]])
#_# ela_local: array([[9.00000000e+01], [9.00000000e-01], [1.00000000e+00], [1.64410646e-01], [1.00000000e-01], [1.01123596e-02], [1.00000000e-02], [4.50000000e+01], [8.00000000e+01], [8.93000000e+01], [9.00000000e+01], [1.00000000e+02], [1.35000000e+02], [1.65758130e+01], [9.02000000e+03], [7.07000000e-01]])
#_# ela_meta: array([[-6.03426790e-03], [ 3.06569525e+02], [ 2.05064239e-02], [ 6.61146864e-01], [ 3.22409635e+01], [-7.94339775e-03], [ 1.00000000e+00], [ 5.33390671e+04], [ 1.00000000e+00], [ 0.00000000e+00], [ 1.40000000e-02]])
#_# basic: array([[ 2.00000000e+00], [ 5.00000000e+02], [-1.50000000e+01], [-3.00000000e+00], [-5.00000000e+00], [ 3.00000000e+00], [ 8.36446791e-03], [ 8.95463288e+02], [ 1.00000000e+01], [ 1.00000000e+01], [ 1.00000000e+02], [ 1.00000000e+02], [ 1.00000000e+00], [ 0.00000000e+00], [ 1.00000000e-03]])
#_# disp: array([[ 0.90387646], [ 0.87562005], [ 0.80237804], [ 0.81384686], [ 0.90019544], [ 0.85330973], [ 0.74450389], [ 0.74867028], [-0.40830656], [-0.52833206], [-0.83944411], [-0.79072771], [-0.40329912], [-0.59275905], [-1.03243135], [-1.01559546], [ 0. ], [ 0.011 ]])
#_# limo: array([[4.17880614e-01], [4.99806181e-03], [2.99599766e+02], [1.70588576e+02], [6.54778826e-02], [5.20933692e-03], [9.01491863e+02], [3.18988622e+03], [9.03063909e+01], [3.88297785e+01], [1.74942209e+02], [5.15283205e-01], [0.00000000e+00], [1.12000000e-01]])
#_# nbc: array([[ 0.19285636], [ 0.84080448], [ 0.11842373], [ 0.17016598], [-0.30584099], [ 0. ], [ 0.034 ]])
#_# pca: array([[1. ], [1. ], [0.33333333], [1. ], [0.73538694], [0.50398941], [0.99984257], [0.33688393], [0. ], [0.003 ]])
#_# gcm: array([[5. ], [0.05 ], [0.95 ], [0.93 ], [0.16376097], [0.2 ], [0.18658697], [0.26119064], [0.03940216], [0.01 ], [0.014 ], [0.01 ], [0.02 ], [0.00547723], [0.07 ], [0.08 ], [0.2 ], [0.21 ], [0.32 ], [0.10024969], [1. ], [0.21551545], [0.01 ], [0. ], [0.091 ], [4. ], [0.04 ], [0.96 ], [0.9 ], [0.10082007], [0.25 ], [0.19083529], [0.51750934], [0.18364899], [0.01 ], [0.025 ], [0.015 ], [0.06 ], [0.02380476], [0.1 ], [0.05 ], [0.25 ], [0.18 ], [0.59 ], [0.23537205], [1. ], [0.17734396], [0.01 ], [0. ], [0.094 ], [4. ], [0.04 ], [0.96 ], [0.88 ], [0.15058257], [0.25 ], [0.22415964], [0.40109815], [0.10875386], [0.01 ], [0.03 ], [0.025 ], [0.06 ], [0.0244949 ], [0.12 ], [0.14 ], [0.25 ], [0.22 ], [0.42 ], [0.13241349], [1. ], [0.40109815], [0.01 ], [0. ], [0.095 ]])
#_# ic: array([[ 0.56692136], [ 2.74774775], [116.69898186], [ 2.36736737], [ 0.27710843], [ 0. ], [ 0.228 ]])
#_# Represented: 1
'''
return 100*args[1]**2+0.01*abs(args[0]+10)

View File

@ -4,6 +4,9 @@ from math import sqrt, fabs
def main(args): def main(args):
''' '''
#_# dimmensions: 2 #_# dimmensions: 2
#_# upper: [-5, 3]
#_# lower: [-15, -3]
#_# minimum: [-10,1]
''' '''
return 100*sqrt(fabs(args[1]-0.01*args[0]**2))+0.01*fabs(args[0]+10) return 100*sqrt(fabs(args[1]-0.01*args[0]**2))+0.01*fabs(args[0]+10)

View File

Binary file not shown.

2
PackageCode/README.md Normal file
View File

@ -0,0 +1,2 @@
# MDAF
THe desc will go here

View File

@ -0,0 +1,3 @@
[build-system]
requires = ["setuptools>=42", "wheel"]
build-backend = "setuptools.build_meta"

26
PackageCode/setup.cfg Normal file
View File

@ -0,0 +1,26 @@
[metadata]
name = MDAF
version = 0.1
description =A Framework for the Analysis and Benchmarking of Metaheuristics
url = https://git.rehounou.ca/remi/MDAF
author = Remi Ehounou
author_email = remi.ehounou@outlook.com
license = MIT
long_description = file: README.md
long_description_content_type = text/markdown
classifiers =
Programming Language :: Python :: 3
License :: OSI Approved :: MIT License
Operating System :: OS Independent
[options]
package_dir =
= .
include_package_data = True
packages = find:
python_requires = >=3.6
install_requires =
numpy
importlib
rpy2 == 3.4.4

View File

@ -1 +0,0 @@

View File

@ -1,10 +0,0 @@
def main(args):
'''
#_# dimmensions: 0
'''
result = 0
for i,x in enumerate(args[0:-1]):
result += (x**2)**(args[i+1]**2+1) + (args[i+1]**2)**(x**2 + 1)
return result

View File

@ -1,7 +0,0 @@
def main(args):
'''
#_# dimmensions: 2
#_# dimmensions: 2.0
'''
return 100*args[1]**2+0.01*abs(args[0]+10)

View File

@ -1,89 +0,0 @@
from math import sqrt, fabs
def main(args):
'''
#_# dimmensions: 2
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
#_# dimmensions: 2.0
#_# Valleys: True
'''
return 100*sqrt(fabs(args[1]-0.01*args[0]**2))+0.01*fabs(args[0]+10)

13
work.py Normal file
View File

@ -0,0 +1,13 @@
if __name__ == '__main__':
heuristicpath = "SampleAlgorithms/SimmulatedAnnealing.py"
heuristic_name = "SimmulatedAnnealing"
#testfunctionpaths = ["TestFunctions/Bukin2.py", "TestFunctions/Bukin4.py", "TestFunctions/Brown.py"]
funcnames = ["Bukin2", "Bukin4", "Brown"]
testfunctionpaths = ["/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Brown.py"]
# funcnames = ["Bukin4"]
args = {"t": 1000, "p": 0.95, "objs": 0}
#data = doe (heuristicpath, testfunctionpaths, args)
#print(data['Brown'])
representfunc("TestFunctions/Brown.py", forced = True)