Reorganised the code into a PyPI package format

This commit is contained in:
Remi Ehounou
2021-05-23 16:45:16 -04:00
parent 00e46546f4
commit 43de559f08
43 changed files with 181 additions and 159 deletions

121
PackageCode/LICENSE Normal file
View File

@ -0,0 +1,121 @@
Creative Commons Legal Code
CC0 1.0 Universal
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
HEREUNDER.
Statement of Purpose
The laws of most jurisdictions throughout the world automatically confer
exclusive Copyright and Related Rights (defined below) upon the creator
and subsequent owner(s) (each and all, an "owner") of an original work of
authorship and/or a database (each, a "Work").
Certain owners wish to permanently relinquish those rights to a Work for
the purpose of contributing to a commons of creative, cultural and
scientific works ("Commons") that the public can reliably and without fear
of later claims of infringement build upon, modify, incorporate in other
works, reuse and redistribute as freely as possible in any form whatsoever
and for any purposes, including without limitation commercial purposes.
These owners may contribute to the Commons to promote the ideal of a free
culture and the further production of creative, cultural and scientific
works, or to gain reputation or greater distribution for their Work in
part through the use and efforts of others.
For these and/or other purposes and motivations, and without any
expectation of additional consideration or compensation, the person
associating CC0 with a Work (the "Affirmer"), to the extent that he or she
is an owner of Copyright and Related Rights in the Work, voluntarily
elects to apply CC0 to the Work and publicly distribute the Work under its
terms, with knowledge of his or her Copyright and Related Rights in the
Work and the meaning and intended legal effect of CC0 on those rights.
1. Copyright and Related Rights. A Work made available under CC0 may be
protected by copyright and related or neighboring rights ("Copyright and
Related Rights"). Copyright and Related Rights include, but are not
limited to, the following:
i. the right to reproduce, adapt, distribute, perform, display,
communicate, and translate a Work;
ii. moral rights retained by the original author(s) and/or performer(s);
iii. publicity and privacy rights pertaining to a person's image or
likeness depicted in a Work;
iv. rights protecting against unfair competition in regards to a Work,
subject to the limitations in paragraph 4(a), below;
v. rights protecting the extraction, dissemination, use and reuse of data
in a Work;
vi. database rights (such as those arising under Directive 96/9/EC of the
European Parliament and of the Council of 11 March 1996 on the legal
protection of databases, and under any national implementation
thereof, including any amended or successor version of such
directive); and
vii. other similar, equivalent or corresponding rights throughout the
world based on applicable law or treaty, and any national
implementations thereof.
2. Waiver. To the greatest extent permitted by, but not in contravention
of, applicable law, Affirmer hereby overtly, fully, permanently,
irrevocably and unconditionally waives, abandons, and surrenders all of
Affirmer's Copyright and Related Rights and associated claims and causes
of action, whether now known or unknown (including existing as well as
future claims and causes of action), in the Work (i) in all territories
worldwide, (ii) for the maximum duration provided by applicable law or
treaty (including future time extensions), (iii) in any current or future
medium and for any number of copies, and (iv) for any purpose whatsoever,
including without limitation commercial, advertising or promotional
purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
member of the public at large and to the detriment of Affirmer's heirs and
successors, fully intending that such Waiver shall not be subject to
revocation, rescission, cancellation, termination, or any other legal or
equitable action to disrupt the quiet enjoyment of the Work by the public
as contemplated by Affirmer's express Statement of Purpose.
3. Public License Fallback. Should any part of the Waiver for any reason
be judged legally invalid or ineffective under applicable law, then the
Waiver shall be preserved to the maximum extent permitted taking into
account Affirmer's express Statement of Purpose. In addition, to the
extent the Waiver is so judged Affirmer hereby grants to each affected
person a royalty-free, non transferable, non sublicensable, non exclusive,
irrevocable and unconditional license to exercise Affirmer's Copyright and
Related Rights in the Work (i) in all territories worldwide, (ii) for the
maximum duration provided by applicable law or treaty (including future
time extensions), (iii) in any current or future medium and for any number
of copies, and (iv) for any purpose whatsoever, including without
limitation commercial, advertising or promotional purposes (the
"License"). The License shall be deemed effective as of the date CC0 was
applied by Affirmer to the Work. Should any part of the License for any
reason be judged legally invalid or ineffective under applicable law, such
partial invalidity or ineffectiveness shall not invalidate the remainder
of the License, and in such case Affirmer hereby affirms that he or she
will not (i) exercise any of his or her remaining Copyright and Related
Rights in the Work or (ii) assert any associated claims and causes of
action with respect to the Work, in either case contrary to Affirmer's
express Statement of Purpose.
4. Limitations and Disclaimers.
a. No trademark or patent rights held by Affirmer are waived, abandoned,
surrendered, licensed or otherwise affected by this document.
b. Affirmer offers the Work as-is and makes no representations or
warranties of any kind concerning the Work, express, implied,
statutory or otherwise, including without limitation warranties of
title, merchantability, fitness for a particular purpose, non
infringement, or the absence of latent or other defects, accuracy, or
the present or absence of errors, whether or not discoverable, all to
the greatest extent permissible under applicable law.
c. Affirmer disclaims responsibility for clearing rights of other persons
that may apply to the Work or any use thereof, including without
limitation any person's Copyright and Related Rights in the Work.
Further, Affirmer disclaims responsibility for obtaining any necessary
consents, permissions or other rights required for any use of the
Work.
d. Affirmer understands and acknowledges that Creative Commons is not a
party to this document and has no duty or obligation with respect to
this CC0 or use of the Work.

272
PackageCode/MDAF/MDAF.py Normal file
View File

@ -0,0 +1,272 @@
# directly running the DOE because existing surrogates can be explored with another workflow
from os import path
from os import sys
import importlib.util
import multiprocessing
import time
import re
from numpy import random as r
from numpy import *
import statistics
from functools import partial
import shutil
# Surrogate modelling
import itertools
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Test function representation
from rpy2 import robjects as robjs
from rpy2.robjects.packages import importr
from rpy2 import rinterface
# Test function characteristics
import statistics as st
from scipy import signal, misc, ndimage
def installFalcoo(mirror = 'https://utstat.toronto.edu/cran/'):
utils = importr('utils')
utils.install_packages('flacco', repos=mirror)
utils.install_packages('list', repos=mirror)
class counter:
#wraps a function, to keep a running count of how many
#times it's been called
def __init__(self, func):
self.func = func
self.count = 0
def __call__(self, *args, **kwargs):
self.count += 1
return self.func(*args, **kwargs)
def simulate(algName, algPath, funcname, funcpath, args, initpoint):
# loading the heuristic object into the namespace and memory
spec = importlib.util.spec_from_file_location(algName, algPath)
heuristic = importlib.util.module_from_spec(spec)
spec.loader.exec_module(heuristic)
# loading the test function object into the namespace and memory
testspec = importlib.util.spec_from_file_location(funcname, funcpath)
func = importlib.util.module_from_spec(testspec)
testspec.loader.exec_module(func)
# defining a countable test function
@counter
def testfunc(args):
return func.main(args)
# using a try statement to handle potential exceptions raised by child processes like the algorithm or test functions or the pooling algorithm
try:
#This timer calculates directly the CPU time of the process (Nanoseconds)
tic = time.process_time_ns()
# running the test by calling the heuritic script with the test function as argument
quality = heuristic.main(testfunc, initpoint, args)
toc = time.process_time_ns()
# ^^ The timer ends right above this; the CPU time is then calculated below by simple difference ^^
# CPU time in seconds
cpuTime = (toc - tic)*(10**-9)
numCalls = testfunc.count
converged = 1
except:
quality = NaN
cpuTime = NaN
numCalls = testfunc.count
converged = 0
return cpuTime, quality, numCalls, converged
def measure(heuristicpath, funcpath, args, connection):
'''
This function runs a set of optimization flows for each test function. it returns the mean and standard deviation of the performance results
'''
#defining the heuristic's name
heuristic_name = path.splitext(path.basename(heuristicpath))[0]
#defining the test function's name
funcname = path.splitext(path.basename(funcpath))[0]
# Seeding the random module for generating the initial point of the optimizer: Utilising random starting point for experimental validity
r.seed(int(time.time()))
# guetting the representation of the function
funcChars = representfunc(funcpath)
n = funcChars['dimmensions']
upper = funcChars['upper']
lower = funcChars['lower']
if upper is not list: upper = [upper for i in range(n)]
if lower is not list: lower = [lower for i in range(n)]
scale = list()
for i in range(n):
scale.append(upper[i] - lower[i])
# Defining random initial points to start testing the algorithms
initpoints = [[r.random() * scale[i] + lower[i] for i in range(n)] for run in range(30)] #update the inner as [r.random() * scale for i in range(testfuncDimmensions)]
# building the iterable arguments
partfunc = partial(simulate, heuristic_name, heuristicpath, funcname, funcpath, args)
n_proc = multiprocessing.cpu_count() # Guetting the number of cpus
with multiprocessing.Pool(processes = n_proc) as pool:
# running the simulations
newRun = pool.map(partfunc,initpoints)
cpuTime = array([resl[0] for resl in newRun])
quality = array([resl[1] for resl in newRun])
numCalls = array([resl[2] for resl in newRun])
converged = array([resl[3] for resl in newRun])
cpuTime = cpuTime[~(isnan(cpuTime))]
quality = quality[~(isnan(quality))]
numCalls = numCalls[~(isnan(numCalls))]
converged = converged[~(isnan(converged))]
results = dict()
results['cpuTime'] = array([statistics.fmean(cpuTime), statistics.stdev(cpuTime)])
results['quality'] = array([statistics.fmean(quality), statistics.stdev(quality)])
results['numCalls'] = array([statistics.fmean(numCalls), statistics.stdev(numCalls)])
results['convRate'] = array([statistics.fmean(converged), statistics.stdev(converged)])
connection.send((results,newRun))
def writerepresentation(funcpath, charas):
# Save a backup copy of the function file
shutil.copyfile(funcpath, funcpath + '.old')
# create a string format of the representation variables
representation = ''
for line in list(charas):
representation += '\n\t#_# ' + line + ': ' + repr(charas[line]).replace('\n','')
representation+='\n\n\t#_# Represented: 1\n\n'
# Creating the new docstring to be inserted into the file
with open(funcpath, "r") as file:
content = file.read()
docstrs = re.findall("def main\(.*?\):.*?'''(.*?)'''.*?return\s+.*?", content, re.DOTALL)[0]
docstrs += representation
repl = "\\1"+docstrs+"\t\\2"
# Create the new content of the file to replace the old. Replacing the whole thing
pattrn = re.compile("(def main\(.*?\):.*?''').*?('''.*?return\s+.*?\n|$)", flags=re.DOTALL)
newContent = pattrn.sub(repl, content, count=1)
# Overwrite the test function file
with open(funcpath,"w") as file:
file.write(newContent)
def representfunc(funcpath, forced = False):
#defining the function name
funcname = path.splitext(path.basename(funcpath))[0]
# loading the function to be represented
spec = importlib.util.spec_from_file_location(funcname, funcpath)
funcmodule = importlib.util.module_from_spec(spec)
spec.loader.exec_module(funcmodule)
# Finding the function characteristics inside the docstring
if funcmodule.main.__doc__:
regex = re.compile("#_#\s?(\w+):(.+)?\n") # this regular expression matches the characteristics already specified in the docstring section of the function -- old exp: "#_#\s?(\w+):\s?([-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?)"
characs = re.findall(regex, funcmodule.main.__doc__)
results = {}
for charac in characs:
results[charac[0]] = eval(charac[1])
# Automatically generate the representation if the docstrings did not return anything
if not ('Represented' in results):
print("Warning, the Representation of the Test Function has not been specified\n===\n******Calculating the Characteristics******")
n = int(results['dimmensions'])
blocks = int(1+10/n)
if blocks< 3: blocks=3
# Importing FLACCO using rpy2
flacco = importr('flacco')
# creating the r functions
rlist = robjs.r['list']
rapply = robjs.r['apply']
rvector = robjs.r['c']
r_unlist = robjs.r['unlist']
rtestfunc = rinterface.rternalize(funcmodule.main)
# Verify if a list of limits has been specified for all dimensions or if all dimensions will use the same boundaries
if (type(results['lower']) is list):
lowerval = r_unlist(rvector(results['lower']))
upperval = r_unlist(rvector(results['upper']))
else:
lowerval = results['lower']
upperval = results['upper']
X = flacco.createInitialSample(n_obs = 500, dim = n, control = rlist(**{'init_sample.type' : 'lhs', 'init_sample.lower' : lowerval, 'init_sample.upper' : upperval}))
y = rapply(X, 1, rtestfunc)
testfuncobj = flacco.createFeatureObject(**{'X': X, 'y': y, 'fun': rtestfunc, 'lower': lowerval, 'upper': upperval, 'blocks': blocks, 'force': forced})
# these are the retained features. Note that some features are being excluded for being problematic and to avoid overcomplicating the neural network.... the feature sets are redundant and the most relevant ones have been retained
# the excluded feature sets are: 'bt', 'ela_level'
# feature sets that require special attention: 'cm_angle', 'cm_grad', 'limo', 'gcm' (large set with some nans),
featureset = ['cm_angle','cm_conv','cm_grad','ela_conv','ela_curv','ela_distr','ela_local','ela_meta','basic','disp','limo','nbc','pca','gcm','ic']
pyfeats = dict()
for feature in featureset:
rawfeats = flacco.calculateFeatureSet(testfuncobj, set=feature)
pyfeats[feature] = asarray(rawfeats)
writerepresentation(funcpath, pyfeats)
return results
def doe(heuristicpath, testfunctionpaths, args):
#defining the function's name
funcnames = [path.splitext(path.basename(funcpath))[0] for funcpath in testfunctionpaths]
#defining the heuristic's name
heuristic_name = path.splitext(path.basename(heuristicpath))[0]
# logic variables to deal with the processes
proc = []
connections = {}
# loading the test functions into the namespace and memory
for idx, funcpath in enumerate(testfunctionpaths):
funcname = funcnames[idx]
# Creating the connection objects for communication between the heuristic and this module
connections[funcname] = multiprocessing.Pipe(duplex=False)
proc.append(multiprocessing.Process(target=measure, name=funcname, args=(heuristicpath, funcpath, args, connections[funcname][1])))
# defining the response variables
responses = {}
failedfunctions = {}
processtiming = {}
# Starting the subprocesses for each testfunction
for idx,process in enumerate(proc):
process.start()
# Waiting for all the runs to be done
for process in proc: process.join()
for process in proc:
run = process.name
if process.exitcode == 0: responses[run] = connections[run][0].recv()
else:
responses[run] = "this run was not successful"
failedfunctions[run] = process.exitcode
connections[run][0].close()
connections[run][1].close()
# display output
print("\n\n||||| Responses: [mean,stdDev] |||||")
for process in proc: print(process.name + "____\n" + str(responses[process.name][0]) + "\n_________________")
#return the performance values
return responses
# %%

View File

@ -0,0 +1,84 @@
import math as m
import numpy as np
from numpy import random as r
import time
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
import copy as cp
#def func(Sc):
# x1 = Sc[0]
# x2 = Sc[1]
# return m.sqrt(x1**2+x2**2)
def tweak(St,p,sigma,high,low):
for i in range(len(St)):
if p > r.random():
while True:
n = r.normal(loc=0, scale=sigma)
if (high > St[i]+n) and (low < St[i]+n):
St[i]+=n
break
return St
def Quality(Sc,objective,func):
func_output = func(Sc)
if type(func_output) == list:
error = [func_output[i]-objective[i] for i in range(len(func_output))]
else:
error = func_output - objective
print("Error is: "+str(error))
return 1/abs(error)
def main(func, S, args):
r.seed(int(time.time()))
route = list()
#Parsing arguments
y = args["objs"]
t = args["t"]
p = args["p"]
high = 20
low = -20
Best = list()
Best[:] = cp.deepcopy(S)
sigma = 0.1
route.append(Best[:])
while True:
print('\n\n\n')
R = tweak(cp.deepcopy(S),p,sigma,high, low)
print(R)
print(S)
Qr = Quality(R,y,func)
Qs = Quality(S,y,func)
try:
P = m.e**((Qr-Qs)/t)
except:
pass
print('QUALITY_R///{}'.format(Qr))
print('QUALITY_S///{}'.format(Qs))
print('fraction is:{}'.format(P))
if (Qr > Qs) or (r.random() < P):
print('NEW_S')
S[:] = R[:]
if t > 0.01:
t-= t/10
print('t = {}'.format(t))
if (Quality(S,y,func) > Quality(Best,y,func)):
print('new Best****:{}'.format(Best))
Best[:] = S[:]
route.append(Best[:])
print(route)
if t < 0 or Quality(Best,y,func) > 50:
break
#print('the Best Quality obtained was:{}'.format(Quality(Best,y)))
print("Final Quality is: {}".format(Quality(Best,y,func)))
print("final Temperature is: {}".format(t))
return Quality(Best,y,func)

View File

@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,33 @@
def main(args):
'''
#_# dimmensions: 6
#_# upper: 4
#_# lower: -1
#_# minimum: 0
#_# cm_angle: array([[4.38674589e+00], [1.19556006e+00], [4.47966360e+00], [1.19983352e+00], [5.60286032e+00], [1.07792176e+01], [2.25826784e-03], [2.51639450e-02], [0.00000000e+00], [2.62000000e-01]])
#_# cm_conv: array([[0.33635988], [0.16095749], [0.76392901], [0.23607099], [0. ], [0.57 ]])
#_# cm_grad: array([[0.74319842], [0.11137735], [0. ], [0.095 ]])
#_# ela_conv: array([[ 9.80000000e-01], [ 0.00000000e+00], [-2.06944119e+18], [ 2.06944119e+18], [ 1.00000000e+03], [ 1.12000000e-01]])
#_# ela_curv: array([[4.79755856e+00], [1.34573105e+03], [5.12834662e+19], [3.70342074e+07], [3.86444487e+12], [8.88644003e+21], [5.30415946e+20], [0.00000000e+00], [3.81373465e+00], [4.90886432e+02], [5.97651830e+14], [1.97651206e+05], [9.10648718e+08], [7.52108388e+16], [5.45247010e+15], [1.94000000e-01], [4.54265125e+00], [3.29125394e+03], [9.25189949e+46], [2.18081469e+07], [9.89777937e+09], [2.74236176e+49], [1.35682556e+48], [5.00000000e-02], [1.07656000e+05], [1.04290000e+01]])
#_# ela_distr: array([[1.33769544e+01], [1.94701124e+02], [1.80000000e+01], [0.00000000e+00], [2.90000000e-02]])
#_# ela_local: array([[2.70000000e+02], [9.00000000e-01], [2.35864648e-04], [4.89568303e-02], [8.33333333e-02], [3.40768278e-03], [3.33333333e-03], [1.17000000e+02], [2.08000000e+02], [2.95273333e+02], [2.73000000e+02], [3.77000000e+02], [7.28000000e+02], [1.02839577e+02], [8.88520000e+04], [7.16600000e+00]])
#_# ela_meta: array([[ 2.12758964e-02], [-6.21915065e+18], [ 1.35144338e+16], [ 2.24256868e+18], [ 1.65938782e+02], [ 6.15453221e-02], [ 5.94927163e-02], [ 6.24028558e+00], [ 2.43822411e-01], [ 0.00000000e+00], [ 1.50000000e-02]])
#_# basic: array([[ 6.00000000e+00], [ 5.00000000e+02], [-1.00000000e+00], [-1.00000000e+00], [ 4.00000000e+00], [ 4.00000000e+00], [ 2.88961528e+00], [ 4.10691709e+20], [ 3.00000000e+00], [ 3.00000000e+00], [ 7.29000000e+02], [ 3.96000000e+02], [ 1.00000000e+00], [ 0.00000000e+00], [ 0.00000000e+00]])
#_# disp: array([[ 0.54940333], [ 0.63595834], [ 0.77089952], [ 0.89491857], [ 0.53989005], [ 0.63417083], [ 0.7646051 ], [ 0.88560301], [-2.18734742], [-1.76718039], [-1.1121306 ], [-0.5101005 ], [-2.24631371], [-1.78602329], [-1.14922704], [-0.55850027], [ 0. ], [ 0.01 ]])
#_# limo: array([[ nan], [ nan], [ nan], [ nan], [ nan], [ nan], [ nan], [ nan], [ nan], [ nan], [ nan], [ nan], [0. ], [0.033]])
#_# nbc: array([[ 0.47974042], [ 0.96061989], [ 0.34786143], [ 0.0693798 ], [-0.0889751 ], [ 0. ], [ 0.04 ]])
#_# pca: array([[1. ], [1. ], [0.14285714], [1. ], [0.18943524], [0.18942493], [1. ], [0.17000728], [0. ], [0.003 ]])
#_# gcm: array([[1.00000000e+00], [1.37174211e-03], [5.41838134e-01], [0.00000000e+00], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [ nan], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [ nan], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [ nan], [5.43209877e-01], [5.43209877e-01], [1.37174211e-03], [0.00000000e+00], [7.93900000e+00], [1.00000000e+00], [1.37174211e-03], [5.41838134e-01], [0.00000000e+00], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [ nan], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [ nan], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [5.43209877e-01], [ nan], [5.43209877e-01], [5.43209877e-01], [1.37174211e-03], [0.00000000e+00], [7.53700000e+00], [2.00000000e+00], [2.74348422e-03], [9.97256516e-01], [1.00000000e+00], [5.00000000e-01], [5.00000000e-01], [5.00000000e-01], [5.00000000e-01], [0.00000000e+00], [0.00000000e+00], [0.00000000e+00], [0.00000000e+00], [0.00000000e+00], [0.00000000e+00], [0.00000000e+00], [4.88340192e-01], [5.00000000e-01], [5.00000000e-01], [5.11659808e-01], [1.64894585e-02], [1.00000000e+00], [1.00000000e+00], [2.74348422e-03], [0.00000000e+00], [1.21150000e+01]])
#_# ic: array([[ 0.57808329], [ nan], [68.69928016], [10.73573574], [ 0.53413655], [ 0. ], [ 0.281 ]])
#_# Represented: 1
'''
result = 0
for i,x in enumerate(args[0:-1]):
result += (x**2)**(args[i+1]**2+1) + (args[i+1]**2)**(x**2 + 1)
return result

View File

@ -0,0 +1,29 @@
def main(args):
'''
#_# dimmensions: 2
#_# upper: [-5, 3]
#_# lower: [-15, -3]
#_# minimum: [-10,0]
#_# cm_angle: array([[3.49881571e-01], [1.07838645e-01], [3.22906733e-01], [1.09086923e-01], [1.36740093e+02], [3.72333248e+01], [6.24743683e-02], [1.45683932e-02], [0.00000000e+00], [7.70000000e-02]])
#_# cm_conv: array([[0.08928571], [0.04166667], [0.51785714], [0.48214286], [0. ], [0.038 ]])
#_# cm_grad: array([[0.80986036], [0.11715403], [0. ], [0.05 ]])
#_# ela_conv: array([[0.00000000e+00], [0.00000000e+00], [2.74360332e+00], [2.74360332e+00], [1.00000000e+03], [1.39000000e-01]])
#_# ela_curv: array([[1.00520667e+02], [1.01157352e+02], [1.02102548e+02], [1.01875092e+02], [1.03042277e+02], [1.04371521e+02], [1.09894163e+00], [0.00000000e+00], [3.34559633e+00], [4.02357156e+00], [5.48926800e+00], [5.13982675e+00], [6.55405463e+00], [9.78678891e+00], [1.70558030e+00], [0.00000000e+00], [3.29353234e+00], [1.48351404e+04], [2.19236653e+31], [4.03941866e+04], [3.14916313e+07], [4.17710288e+33], [2.95558281e+32], [0.00000000e+00], [8.40000000e+03], [1.06400000e+00]])
#_# ela_distr: array([[ 0.01739786], [-1.01700978], [ 1. ], [ 0. ], [ 0.02 ]])
#_# ela_local: array([[1.000e+00], [1.000e-02], [1.000e+00], [ nan], [1.000e+00], [0.000e+00], [1.000e+00], [1.000e+01], [1.000e+01], [1.000e+01], [1.000e+01], [1.000e+01], [1.000e+01], [0.000e+00], [1.001e+03], [9.300e-02]])
#_# ela_meta: array([[9.98338849e-01], [1.91750766e+02], [1.99998995e+01], [1.00059864e+02], [5.00301834e+00], [9.98335620e-01], [1.00000000e+00], [3.55077954e+14], [1.00000000e+00], [0.00000000e+00], [9.00000000e-03]])
#_# basic: array([[ 2. ], [ 500. ], [ -15. ], [ -3. ], [ -5. ], [ 3. ], [-388.17734244], [ 369.94308917], [ 10. ], [ 10. ], [ 100. ], [ 100. ], [ 1. ], [ 0. ], [ 0. ]])
#_# disp: array([[ 0.26139886], [ 0.36358526], [ 0.5516879 ], [ 0.80572442], [ 0.25023966], [ 0.32900436], [ 0.49402763], [ 0.72135232], [-3.13648576], [-2.70254902], [-1.90376706], [-0.82499549], [-3.02850003], [-2.7103465 ], [-2.04376951], [-1.125539 ], [ 0. ], [ 0.01 ]])
#_# limo: array([[ 1.02002699e+02], [ 9.98507972e-01], [ 1.02155253e+02], [ 1.13240181e+00], [-3.88783841e-02], [-9.92102532e-01], [ 5.48006296e+00], [ 1.74733189e+00], [ 3.39374032e+01], [ 5.00221530e+00], [ 2.94406289e+00], [ 3.22874553e-02], [ 0.00000000e+00], [ 9.50000000e-02]])
#_# nbc: array([[ 0.5341454 ], [ 0.87561488], [ 0.47062778], [ 0.15902654], [-0.19513986], [ 0. ], [ 0.027 ]])
#_# pca: array([[1. ], [1. ], [0.33333333], [0.66666667], [0.73549361], [0.51109865], [0.99976032], [0.66217335], [0. ], [0.002 ]])
#_# gcm: array([[1. ], [0.01 ], [0.99 ], [0. ], [1. ], [1. ], [1. ], [1. ], [ nan], [1. ], [1. ], [1. ], [1. ], [ nan], [1. ], [1. ], [1. ], [1. ], [1. ], [ nan], [1. ], [1. ], [0.01 ], [0. ], [0.085], [1. ], [0.01 ], [0.99 ], [0. ], [1. ], [1. ], [1. ], [1. ], [ nan], [1. ], [1. ], [1. ], [1. ], [ nan], [1. ], [1. ], [1. ], [1. ], [1. ], [ nan], [1. ], [1. ], [0.01 ], [0. ], [0.084], [1. ], [0.01 ], [0.99 ], [0. ], [1. ], [1. ], [1. ], [1. ], [ nan], [1. ], [1. ], [1. ], [1. ], [ nan], [1. ], [1. ], [1. ], [1. ], [1. ], [ nan], [1. ], [1. ], [0.01 ], [0. ], [0.088]])
#_# ic: array([[ 0.67118887], [ 2.02702703], [70.28244264], [ 1.90690691], [ 0.23293173], [ 0. ], [ 0.204 ]])
#_# Represented: 1
'''
return 100*(args[1]-0.01*args[0]**2+1)+0.01*(args[0]+10)**2

View File

@ -0,0 +1,28 @@
def main(args):
'''
#_# dimmensions: 2
#_# upper: [-5, 3]
#_# lower: [-15, -3]
#_# minimum: [-10,0]
#_# cm_angle: array([[3.46336319e-01], [1.11596448e-01], [3.32688632e-01], [1.10567852e-01], [1.26709762e+02], [3.96040507e+01], [1.47616482e-01], [9.06041269e-02], [0.00000000e+00], [7.90000000e-02]])
#_# cm_conv: array([[0.23809524], [0.19642857], [0.67857143], [0.32142857], [0. ], [0.033 ]])
#_# cm_grad: array([[0.81854428], [0.1192788 ], [0. ], [0.052 ]])
#_# ela_conv: array([[ 1.00000000e+00], [ 0.00000000e+00], [-1.06441804e+02], [ 1.06441804e+02], [ 1.00000000e+03], [ 1.04000000e-01]])
#_# ela_curv: array([[3.20384285e+00], [1.59352986e+02], [3.11716056e+02], [3.16753438e+02], [4.75852875e+02], [5.98482830e+02], [1.80339798e+02], [0.00000000e+00], [3.20382725e+02], [1.59352986e+04], [3.11716055e+04], [3.16753436e+04], [4.75852869e+04], [5.98482828e+04], [1.80339798e+04], [0.00000000e+00], [5.31778742e+06], [4.94191117e+07], [1.07037935e+36], [3.96591773e+08], [6.61335123e+12], [1.60389805e+38], [1.16318553e+37], [0.00000000e+00], [8.40000000e+03], [9.98000000e-01]])
#_# ela_distr: array([[ 0.63700187], [-0.86671884], [ 2. ], [ 0. ], [ 0.024 ]])
#_# ela_local: array([[9.00000000e+01], [9.00000000e-01], [1.00000000e+00], [1.64410646e-01], [1.00000000e-01], [1.01123596e-02], [1.00000000e-02], [4.50000000e+01], [8.00000000e+01], [8.93000000e+01], [9.00000000e+01], [1.00000000e+02], [1.35000000e+02], [1.65758130e+01], [9.02000000e+03], [7.07000000e-01]])
#_# ela_meta: array([[-6.03426790e-03], [ 3.06569525e+02], [ 2.05064239e-02], [ 6.61146864e-01], [ 3.22409635e+01], [-7.94339775e-03], [ 1.00000000e+00], [ 5.33390671e+04], [ 1.00000000e+00], [ 0.00000000e+00], [ 1.40000000e-02]])
#_# basic: array([[ 2.00000000e+00], [ 5.00000000e+02], [-1.50000000e+01], [-3.00000000e+00], [-5.00000000e+00], [ 3.00000000e+00], [ 8.36446791e-03], [ 8.95463288e+02], [ 1.00000000e+01], [ 1.00000000e+01], [ 1.00000000e+02], [ 1.00000000e+02], [ 1.00000000e+00], [ 0.00000000e+00], [ 1.00000000e-03]])
#_# disp: array([[ 0.90387646], [ 0.87562005], [ 0.80237804], [ 0.81384686], [ 0.90019544], [ 0.85330973], [ 0.74450389], [ 0.74867028], [-0.40830656], [-0.52833206], [-0.83944411], [-0.79072771], [-0.40329912], [-0.59275905], [-1.03243135], [-1.01559546], [ 0. ], [ 0.011 ]])
#_# limo: array([[4.17880614e-01], [4.99806181e-03], [2.99599766e+02], [1.70588576e+02], [6.54778826e-02], [5.20933692e-03], [9.01491863e+02], [3.18988622e+03], [9.03063909e+01], [3.88297785e+01], [1.74942209e+02], [5.15283205e-01], [0.00000000e+00], [1.12000000e-01]])
#_# nbc: array([[ 0.19285636], [ 0.84080448], [ 0.11842373], [ 0.17016598], [-0.30584099], [ 0. ], [ 0.034 ]])
#_# pca: array([[1. ], [1. ], [0.33333333], [1. ], [0.73538694], [0.50398941], [0.99984257], [0.33688393], [0. ], [0.003 ]])
#_# gcm: array([[5. ], [0.05 ], [0.95 ], [0.93 ], [0.16376097], [0.2 ], [0.18658697], [0.26119064], [0.03940216], [0.01 ], [0.014 ], [0.01 ], [0.02 ], [0.00547723], [0.07 ], [0.08 ], [0.2 ], [0.21 ], [0.32 ], [0.10024969], [1. ], [0.21551545], [0.01 ], [0. ], [0.091 ], [4. ], [0.04 ], [0.96 ], [0.9 ], [0.10082007], [0.25 ], [0.19083529], [0.51750934], [0.18364899], [0.01 ], [0.025 ], [0.015 ], [0.06 ], [0.02380476], [0.1 ], [0.05 ], [0.25 ], [0.18 ], [0.59 ], [0.23537205], [1. ], [0.17734396], [0.01 ], [0. ], [0.094 ], [4. ], [0.04 ], [0.96 ], [0.88 ], [0.15058257], [0.25 ], [0.22415964], [0.40109815], [0.10875386], [0.01 ], [0.03 ], [0.025 ], [0.06 ], [0.0244949 ], [0.12 ], [0.14 ], [0.25 ], [0.22 ], [0.42 ], [0.13241349], [1. ], [0.40109815], [0.01 ], [0. ], [0.095 ]])
#_# ic: array([[ 0.56692136], [ 2.74774775], [116.69898186], [ 2.36736737], [ 0.27710843], [ 0. ], [ 0.228 ]])
#_# Represented: 1
'''
return 100*args[1]**2+0.01*abs(args[0]+10)

View File

@ -0,0 +1,12 @@
from math import sqrt, fabs
def main(args):
'''
#_# dimmensions: 2
#_# upper: [-5, 3]
#_# lower: [-15, -3]
#_# minimum: [-10,1]
'''
return 100*sqrt(fabs(args[1]-0.01*args[0]**2))+0.01*fabs(args[0]+10)

View File

@ -0,0 +1,11 @@
#Import math library
import math
def main(args):
'''
#_# dimmensions: 2
'''
for x in args:
if(x<0 | x>10): return 0
return (math.sin(args[0]-args[1])**2*math.sin(args[0]+args[1])**2)/(math.sqrt(args[0]**2+args[1]**2))

View File

@ -0,0 +1,11 @@
#Import math library
def main(args):
'''
#_# dimmensions: 2
'''
for x in args:
if x < -1.2 or x > 1.2:
return 0
return (100*(args[1]-args[0])**2)+(1-args[0])**2

View File

@ -0,0 +1,17 @@
def main(args):
'''
>>> main([0,1])
0.26
#_# dimmensions: 2
'''
for x in args:
if x < -10 or x > 10:
return 0
return (0.26*(args[0]**2+args[1]**2))-(0.48*args[0]*args[1])
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -0,0 +1,16 @@
import math
def main(args):
'''
>>>main([-0.547, -1.547])
0
#_# dimmensions: 2
'''
for args[0] in args:
if args[0] < -1.5 or args[0] > 4:
return 0
if args[1] < -3 or args[1] > 3:
return 0
return math.sin(args[0]+args[1])+(args[0]-args[1])**2-(3*args[0]/2)+(5*args[1]/2)+1

View File

@ -0,0 +1,16 @@
import math
def main(args):
'''
>>>main([0, 1, 1, 1])
0
#_# dimmensions: 4
'''
for x in args:
if x < -1 or x > 1:
return 0
return (math.exp(-args[0])-args[1])**4+(100*(args[1]-args[2])**6)+(math.tan(args[2]-args[3]))**4+args[0]**8

View File

@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}

View File

Binary file not shown.

2
PackageCode/README.md Normal file
View File

@ -0,0 +1,2 @@
# MDAF
THe desc will go here

View File

@ -0,0 +1,3 @@
[build-system]
requires = ["setuptools>=42", "wheel"]
build-backend = "setuptools.build_meta"

26
PackageCode/setup.cfg Normal file
View File

@ -0,0 +1,26 @@
[metadata]
name = MDAF
version = 0.1
description =A Framework for the Analysis and Benchmarking of Metaheuristics
url = https://git.rehounou.ca/remi/MDAF
author = Remi Ehounou
author_email = remi.ehounou@outlook.com
license = MIT
long_description = file: README.md
long_description_content_type = text/markdown
classifiers =
Programming Language :: Python :: 3
License :: OSI Approved :: MIT License
Operating System :: OS Independent
[options]
package_dir =
= .
include_package_data = True
packages = find:
python_requires = >=3.6
install_requires =
numpy
importlib
rpy2 == 3.4.4