mirror of
https://github.com/ejeanboris/MDAF.git
synced 2025-06-16 10:08:30 +00:00
First Prototype To Iannick
This commit is contained in:
@ -5,8 +5,18 @@ import multiprocessing
|
||||
import time
|
||||
import re
|
||||
from numpy import random as r
|
||||
from numpy import *
|
||||
|
||||
import shutil
|
||||
|
||||
# Surrogate modelling
|
||||
import itertools
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
# Test function characteristics
|
||||
import statistics as st
|
||||
from scipy import signal, misc, ndimage
|
||||
|
||||
|
||||
heuristicpath = "/home/remi/Documents/MDAF-GitLAB/SourceCode/SampleAlgorithms/SimmulatedAnnealing.py"
|
||||
@ -21,6 +31,10 @@ args = {"high": 200, "low": -200, "t": 1000, "p": 0.95}
|
||||
scale = 2.5
|
||||
|
||||
def measure(heuristicpath, heuristic_name, funcpath, funcname, objs, args, scale, connection):
|
||||
'''
|
||||
This function runs each optimization process of the heuristic with one test function
|
||||
'''
|
||||
|
||||
# Seeding the random module for generating the initial point of the optimizer: Utilising random starting point for experimental validity
|
||||
r.seed(int(time.time()))
|
||||
|
||||
@ -44,7 +58,7 @@ def measure(heuristicpath, heuristic_name, funcpath, funcname, objs, args, scale
|
||||
# ^^ The timer ends right above this; the CPU time is then calculated below by simple difference ^^
|
||||
|
||||
# Building the response
|
||||
response = "The optimum point obtained is: " + str(best) + "\nThe CPU time of the process was: " + str((toc - tic)*(10**-9))
|
||||
response = "The optimum point obtained is: " + str(best) + "\nThe CPU time of the process was: " + str((toc - tic)*(10**-9) + "Seconds")
|
||||
|
||||
connection.send(response)
|
||||
|
||||
@ -89,21 +103,95 @@ def representfunc(funcpath):
|
||||
results[charac[0]] = float(charac[1])
|
||||
|
||||
# Automatically generate the representation if the docstrings did not return anything
|
||||
if not results:
|
||||
print("Calculating the Characteristics")
|
||||
|
||||
# Modality
|
||||
|
||||
# Basins
|
||||
|
||||
# Valleys
|
||||
|
||||
# Separability
|
||||
|
||||
# Dimensionality
|
||||
|
||||
if not ('Represented' in results):
|
||||
print("Warning, the Representation of the Test Function has not specified\n===\n******Calculating the Characteristics******")
|
||||
n = int(results['dimmensions'])
|
||||
|
||||
# pickle these steps
|
||||
coords = arange(-10,10,0.5)
|
||||
samplemx = array([*itertools.product(coords, repeat=n)])
|
||||
funcmap = array([* map(funcmodule.main, samplemx)])
|
||||
|
||||
# Arrays for plotting the test function
|
||||
X = array([tp[0] for tp in samplemx])
|
||||
Y = array([tp[1] for tp in samplemx])
|
||||
Z = array(funcmap)
|
||||
|
||||
# reshaping the array into a 3D topology
|
||||
topology = reshape(Z,(coords.size,coords.size))
|
||||
ck = topology
|
||||
|
||||
# Plotting the test function
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111, projection='3d')
|
||||
ax.plot_trisurf(X, Y, Z)
|
||||
# plt.show()
|
||||
|
||||
|
||||
|
||||
# Number of Modes filter the data for local optima: look for circle like shapes, or squares or rectangles of very low derivative (tip of modes)
|
||||
|
||||
|
||||
|
||||
# Valleys and Bassins
|
||||
|
||||
# Alternative filter used for calculating derivatives
|
||||
derfilt = array([1.0, -2, 1.0], dtype=float32)
|
||||
alpha = signal.sepfir2d(ck, derfilt, [1]) + signal.sepfir2d(ck, [1], derfilt)
|
||||
|
||||
# Currently used filter for Valley detection
|
||||
hor = array([[0,1,1],[-1,0,1], [-1,-1,0]])
|
||||
vert = array([[-1,-1,0], [-1,0,1], [0,1,1]])
|
||||
|
||||
for i in range(1): betaH = signal.convolve(ck,hor,mode='valid')
|
||||
for i in range(1): betaV = signal.convolve(ck,vert, mode='valid')
|
||||
|
||||
beta = sqrt(betaH ** 2 + betaV ** 2)
|
||||
|
||||
|
||||
#beta = beta[5:-5][5:-5]
|
||||
|
||||
norm = linalg.norm(beta)
|
||||
beta/= norm # normalized matrix
|
||||
|
||||
|
||||
# custom filter for detection should light up the locaton of pattern
|
||||
kernel = array([[1,1,1], [1,100,1], [1,1,1]])
|
||||
beta = beta < average(beta)
|
||||
beta = beta * 1
|
||||
for i in range(100):
|
||||
beta = ndimage.convolve(beta,kernel)
|
||||
beta = beta >= 101
|
||||
beta = beta * 1
|
||||
|
||||
if any(beta): results['Valleys'] = True
|
||||
|
||||
|
||||
# Separability: calculate the derivatives in one dimension and see if independant from other dimension
|
||||
|
||||
|
||||
# Dimensionality: number of objectives, inputs: call function once and see what it gives | for number of inputs call until it works; try catch
|
||||
|
||||
|
||||
# Pareto fronts:
|
||||
|
||||
|
||||
# Noisyness: use the previously generated DOE and calculate a noisyness factor; average of derivative
|
||||
|
||||
# Displaying the plots for development purposes
|
||||
img1 = plt.figure()
|
||||
ax2 = img1.add_subplot(111)
|
||||
ax2.imshow(alpha)
|
||||
|
||||
img2 = plt.figure()
|
||||
ax3 = img2.add_subplot(111)
|
||||
ax3.imshow(beta)
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
# Writing the calculated representation into the test function file
|
||||
# results['Represented'] = True
|
||||
writerepresentation(funcpath, results)
|
||||
|
||||
|
||||
@ -153,6 +241,6 @@ def doe(heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args,
|
||||
for process in proc: print(process.name + "____\n" + str(responses[process.name]) + "\n_________________")
|
||||
|
||||
|
||||
#doe (heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale)
|
||||
doe (heuristicpath, heuristic_name, testfunctionpaths, funcnames, objs, args, scale)
|
||||
|
||||
representfunc("/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin2.py")
|
||||
#representfunc("/home/remi/Documents/MDAF-GitLAB/SourceCode/TestFunctions/Bukin6.py")
|
||||
|
@ -1,6 +1,10 @@
|
||||
def main(args):
|
||||
'''
|
||||
|
||||
#_# dimmensions: 0
|
||||
'''
|
||||
result = 0
|
||||
for i,x in enumerate(args[1:-1]):
|
||||
for i,x in enumerate(args[0:-1]):
|
||||
result += (x**2)**(args[i+1]**2+1) + (args[i+1]**2)**(x**2 + 1)
|
||||
|
||||
return result
|
||||
return result
|
||||
|
@ -5,7 +5,27 @@ def main(args):
|
||||
:return: float
|
||||
|
||||
|
||||
#_# dimmensions: 2
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
'''
|
||||
return 100*(args[1]-0.01*args[0]**2+1)+0.01*(args[0]+10)**2
|
||||
|
||||
|
@ -1,2 +1,7 @@
|
||||
def main(args):
|
||||
return 100*args[1]**2+0.01*abs(args[0]+10)
|
||||
'''
|
||||
#_# dimmensions: 2
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
'''
|
||||
return 100*args[1]**2+0.01*abs(args[0]+10)
|
||||
|
@ -2,4 +2,64 @@ from math import sqrt, fabs
|
||||
|
||||
|
||||
def main(args):
|
||||
return 100*sqrt(fabs(args[1]-0.01*args[0]**2))+0.01*fabs(args[0]+10)
|
||||
'''
|
||||
#_# dimmensions: 2
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
|
||||
#_# dimmensions: 2.0
|
||||
#_# Valleys: True
|
||||
'''
|
||||
return 100*sqrt(fabs(args[1]-0.01*args[0]**2))+0.01*fabs(args[0]+10)
|
||||
|
@ -3,6 +3,9 @@ import math
|
||||
|
||||
|
||||
def main(args):
|
||||
'''
|
||||
#_# dimmensions: 2
|
||||
'''
|
||||
for x in args:
|
||||
if(x<0 | x>10): return 0
|
||||
return (math.sin(args[0]-args[1])**2*math.sin(args[0]+args[1])**2)/(math.sqrt(args[0]**2+args[1]**2))
|
||||
|
@ -2,6 +2,9 @@
|
||||
|
||||
|
||||
def main(args):
|
||||
'''
|
||||
#_# dimmensions: 2
|
||||
'''
|
||||
for x in args:
|
||||
if x < -1.2 or x > 1.2:
|
||||
return 0
|
||||
|
@ -1,13 +1,12 @@
|
||||
|
||||
def main(args):
|
||||
"""
|
||||
'''
|
||||
>>> main([0,1])
|
||||
0.26
|
||||
|
||||
:param args: list of floats
|
||||
:return: float
|
||||
|
||||
"""
|
||||
|
||||
#_# dimmensions: 2
|
||||
'''
|
||||
for x in args:
|
||||
if x < -10 or x > 10:
|
||||
return 0
|
||||
@ -15,4 +14,4 @@ def main(args):
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
doctest.testmod()
|
||||
|
@ -1,16 +1,16 @@
|
||||
import math
|
||||
def main(args):
|
||||
"""
|
||||
'''
|
||||
>>>main([-0.547, -1.547])
|
||||
0
|
||||
|
||||
:param args:
|
||||
:return:
|
||||
"""
|
||||
|
||||
#_# dimmensions: 2
|
||||
|
||||
'''
|
||||
for args[0] in args:
|
||||
if args[0] < -1.5 or args[0] > 4:
|
||||
return 0
|
||||
if args[1] < -3 or args[1] > 3:
|
||||
return 0
|
||||
return math.sin(args[0]+args[1])+(args[0]-args[1])**2-(3*args[0]/2)+(5*args[1/2])+1
|
||||
return math.sin(args[0]+args[1])+(args[0]-args[1])**2-(3*args[0]/2)+(5*args[1]/2)+1
|
||||
|
||||
|
@ -2,12 +2,12 @@ import math
|
||||
|
||||
|
||||
def main(args):
|
||||
"""
|
||||
'''
|
||||
>>>main([0, 1, 1, 1])
|
||||
0
|
||||
:param args:
|
||||
:return:
|
||||
"""
|
||||
|
||||
#_# dimmensions: 4
|
||||
'''
|
||||
for x in args:
|
||||
if x < -1 or x > 1:
|
||||
return 0
|
||||
|
Reference in New Issue
Block a user